首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The uncatalyzed edge growth of carbon nanotubes was investigated by first-principles molecular dynamics simulations. At experimental temperatures the open end of single-walled nanotubes closed spontaneously into a graphitic dome, which may explain why these nanotubes do not grow in the absence of transition metal catalysts. On the other hand, chemical bonding between the edges of adjacent coaxial tubes ("lip-lip" interactions) trapped the end of a double-walled nanotube in a metastable energy minimum, thus preventing dome closure. These calculations show that this end geometry exhibits a high degree of chemical activity and easily accommodates incoming carbon fragments, supporting a model of growth by chemisorption from the vapor phase.  相似文献   

2.
The synthesis of massive arrays of monodispersed carbon nanotubes that are self-oriented on patterned porous silicon and plain silicon substrates is reported. The approach involves chemical vapor deposition, catalytic particle size control by substrate design, nanotube positioning by patterning, and nanotube self-assembly for orientation. The mechanisms of nanotube growth and self-orientation are elucidated. The well-ordered nanotubes can be used as electron field emission arrays. Scaling up of the synthesis process should be entirely compatible with the existing semiconductor processes, and should allow the development of nanotube devices integrated into silicon technology.  相似文献   

3.
Field emission of electrons from individually mounted carbon nanotubes has been found to be dramatically enhanced when the nanotube tips are opened by laser evaporation or oxidative etching. Emission currents of 0.1 to 1 microampere were readily obtained at room temperature with bias voltages of less than 80 volts. The emitting structures are concluded to be linear chains of carbon atoms, Cn, (n = 10 to 100), pulled out from the open edges of the graphene wall layers of the nanotube by the force of the electric field, in a process that resembles unraveling the sleeve of a sweater.  相似文献   

4.
[目的]探讨引起Cu-MgO催化剂失活的微观因素。[方法]采用共沉淀法制备Cu-MgO催化剂,并采用XRD、BET、NH3-TPD、CO2-TPD、H2-TPD、失重等手段对失活前后的Cu-MgO催化剂进行了表征。[结果]Cu-MgO催化剂对环己烯基环己酮脱氢制备邻苯基苯酚(OPP)有较高的活性,双聚的初始转化率达到99%以上,OPP的选择性达到95%以上,但其催化性能随运转时间的延长呈逐渐下降趋势。表征结果显示,在反应条件下催化剂上Cu原子和MgO随运转时间的延长明显聚集长大,导致Cu与MgO之间作用力减弱,氢吸附能力和碱量降低;催化剂表面积炭,改变了催化剂比表面积和孔结构,从而使催化剂活性和选择性下降。[结论]为抑制催化剂失活的研究奠定了基础。  相似文献   

5.
The photoresponse in the electrical conductivity of a single-walled carbon nanotube (SWNT) film is dramatically enhanced when the nanotube film is suspended in vacuum. We show here that the change in conductivity is bolometric (caused by heating of the SWNT network). Electron-phonon interactions lead to ultrafast relaxation of the photoexcited carriers, and the energy of the incident infrared (IR) radiation is efficiently transferred to the crystal lattice. It is not the presence of photoexcited holes and electrons, but a rise in temperature, that results in a change in resistance; thus, photoconductivity experiments cannot be used to support the band picture over the exciton model of excited states in carbon nanotubes. The photoresponse of suspended SWNT films is sufficiently high that they may function as the sensitive element of an IR bolometric detector.  相似文献   

6.
With their impressive individual properties, carbon nanotubes should form high-performance fibers. We explored the roles of nanotube length and structure, fiber density, and nanotube orientation in achieving optimum mechanical properties. We found that carbon nanotube fiber, spun directly and continuously from gas phase as an aerogel, combines high strength and high stiffness (axial elastic modulus), with an energy to breakage (toughness) considerably greater than that of any commercial high-strength fiber. Different levels of carbon nanotube orientation, fiber density, and mechanical properties can be achieved by drawing the aerogel at various winding rates. The mechanical data obtained demonstrate the considerable potential of carbon nanotube assemblies in the quest for maximal mechanical performance. The statistical aspects of the mechanical data reveal the deleterious effect of defects and indicate strategies for future work.  相似文献   

7.
We have measured carbon nanotube quantum dots with multiple electrostatic gates and used the resulting enhanced control to investigate a nanotube double quantum dot. Transport measurements reveal honeycomb charge stability diagrams as a function of two nearly independent gate voltages. The device can be tuned from weak to strong interdot tunnel-coupling regimes, and the transparency of the leads can be controlled independently. We extract values of energy-level spacings, capacitances, and interaction energies for this system. This ability to control electron interactions in the quantum regime in a molecular conductor is important for applications such as quantum computation.  相似文献   

8.
吴文胜  李志伟  郝向英 《安徽农业科学》2013,(21):8832-8836,8876
碳纳米管是一种重要的一维纳米材料,具有许多独特的力学、电学和化学性质。碳纳米管的吸附特性一直是碳纳米管领域研究的一个热点。碳纳米管特性的分子模拟研究主要有2种方法,一种是密度泛函理论方法,另一种是分子动力学模拟方法。该研究对碳纳米管的结构特征进行了介绍,重点对碳纳米管吸附特性的密度泛函理论研究和分子动力学模拟研究进展进行了综述,同时简要介绍了密度泛函理论和分子动力学模拟这2种分子模拟,展望了分子模拟研究方法在碳纳米管吸附特性研究方面的发展方向。  相似文献   

9.
通过对碳纳米管进行金属包覆,制备一维纳米复合材料,利用化学镀方法在碳纳米管表面得到完整均匀的银镀层。研究表明,镀层质量与表面处理,反应速率和反应时间密切相关。  相似文献   

10.
An important issue in nanoelectromechanical systems is developing small electrically driven motors. We report on an artificial nanofabricated motor in which one short carbon nanotube moves relative to another coaxial nanotube. A cargo is attached to an ablated outer wall of a multiwalled carbon nanotube that can rotate and/or translate along the inner nanotube. The motion is actuated by imposing a thermal gradient along the nanotube, which allows for subnanometer displacements, as opposed to an electromigration or random walk effect.  相似文献   

11.
[目的]研究碳纳米材料在紫外条件下对微生物细胞的生物学效应。[方法]以pUC19质粒的大肠杆菌(E.coli)为材料,研究多壁纳米碳管、纳米碳粉在不同紫外强度下对微生物存活率的影响。[结果]通过不同时间的紫外照射试验表明,加入纳米碳管可以有效增加存活菌落数目,而加入纳米碳粉也能提高微生物的存活率。[结论]碳纳米材料能够提高微生物在紫外条件下的生存率。  相似文献   

12.
We report that freestanding films of vertically aligned carbon nanotubes exhibit super-compressible foamlike behavior. Under compression, the nanotubes collectively form zigzag buckles that can fully unfold to their original length upon load release. Compared with conventional low-density flexible foams, the nanotube films show much higher compressive strength, recovery rate, and sag factor, and the open-cell nature of the nanotube arrays gives excellent breathability. The nanotube films present a class of open-cell foam structures, consisting of well-arranged one-dimensional units (nanotube struts). The lightweight, highly resilient nanotube films may be useful as compliant and energy-absorbing coatings.  相似文献   

13.
The combination of their electronic properties and dimensions makes carbon nanotubes ideal building blocks for molecular electronics. However, the advancement of carbon nanotube-based electronics requires assembly strategies that allow their precise localization and interconnection. Using a scheme based on recognition between molecular building blocks, we report the realization of a self-assembled carbon nanotube field-effect transistor operating at room temperature. A DNA scaffold molecule provides the address for precise localization of a semiconducting single-wall carbon nanotube as well as the template for the extended metallic wires contacting it.  相似文献   

14.
Lower olefins are key building blocks for the manufacture of plastics, cosmetics, and drugs. Traditionally, olefins with two to four carbons are produced by steam cracking of crude oil-derived naphtha, but there is a pressing need for alternative feedstocks and processes in view of supply limitations and of environmental issues. Although the Fischer-Tropsch synthesis has long offered a means to convert coal, biomass, and natural gas into hydrocarbon derivatives through the intermediacy of synthesis gas (a mixture of molecular hydrogen and carbon monoxide), selectivity toward lower olefins tends to be low. We report on the conversion of synthesis gas to C(2) through C(4) olefins with selectivity up to 60 weight percent, using catalysts that constitute iron nanoparticles (promoted by sulfur plus sodium) homogeneously dispersed on weakly interactive α-alumina or carbon nanofiber supports.  相似文献   

15.
Macroscopic fibers and ribbons of oriented carbon nanotubes   总被引:1,自引:0,他引:1  
A simple method was used to assemble single-walled carbon nanotubes into indefinitely long ribbons and fibers. The processing consists of dispersing the nanotubes in surfactant solutions, recondensing the nanotubes in the flow of a polymer solution to form a nanotube mesh, and then collating this mesh to a nanotube fiber. Flow-induced alignment may lead to a preferential orientation of the nanotubes in the mesh that has the form of a ribbon. Unlike classical carbon fibers, the nanotube fibers can be strongly bent without breaking. Their obtained elastic modulus is 10 times higher than the modulus of high-quality bucky paper.  相似文献   

16.
Polarized infrared optical emission was observed from a carbon nanotube ambipolar field-effect transistor (FET). An effective forward-biased p-n junction, without chemical dopants, was created in the nanotube by appropriately biasing the nanotube device. Electrical measurements show that the observed optical emission originates from radiative recombination of electrons and holes that are simultaneously injected into the undoped nanotube. These observations are consistent with a nanotube FET model in which thin Schottky barriers form at the source and drain contacts. This arrangement is a novel optical recombination radiation source in which the electrons and holes are injected into a nearly field-free region. Sucha source may form the basis for ultrasmall integrated photonic devices.  相似文献   

17.
Butenes and butadiene, which are useful intermediates for the synthesis of polymers and other compounds, are synthesized traditionally by oxidative dehydrogenation (ODH) of n-butane over complex metal oxides. Such catalysts require high O2/butane ratios to maintain the activity, which leads to unwanted product oxidation. We show that carbon nanotubes with modified surface functionality efficiently catalyze the oxidative dehydrogenation of n-butane to butenes, especially butadiene. For low O2/butane ratios, a high selectivity to alkenes was achieved for periods as long as 100 hours. This process is mildly catalyzed by ketonic CO groups and occurs via a combination of parallel and sequential oxidation steps. A small amount of phosphorus greatly improved the selectivity by suppressing the combustion of hydrocarbons.  相似文献   

18.
为探讨碳纳米材料对高羊茅生长和蚯蚓生理的影响,在草坪土壤基质中添加3种碳纳米材料(石墨烯、氧化石墨烯和碳纳米管),采用赤子爱胜蚓作为受试生物,研究了施加1%和3%碳纳米材料90 d后高羊茅生长、蚯蚓抗氧化酶活性和丙二醛(MDA)含量的变化。结果表明:不同比例的碳纳米材料对高羊茅的株高、地上鲜质量和干质量均没有显著影响。碳纳米材料均显著抑制了蚯蚓超氧化物歧化酶(SOD)的活性,3%碳纳米管的抑制率达到39.3%;暴露于3%氧化石墨烯,过氧化物酶(POD)活性显著降低;添加1%氧化石墨烯,过氧化氢酶(CAT)活性有所升高,添加3%碳纳米管和3%石墨烯,CAT活性显著低于1%氧化石墨烯处理。此外,碳纳米材料对蚯蚓体内的谷胱甘肽S-转移酶(GST)活性和MDA含量并无明显影响。因此,施加一定浓度的碳纳米材料不会影响草坪植物的生长,但其可以诱导蚯蚓体内活性氧(ROS)的产生,引起抗氧化酶活性发生变化,对土壤动物蚯蚓具有一定的毒性作用。  相似文献   

19.
In the processes that are used to produce single-walled nanotubes (electric arc, laser ablation, and chemical vapor deposition), the typical lengths of tangled nanotube bundles reach several tens of micrometers. We report that long nanotube strands, up to several centimeters in length, consisting of aligned single-walled nanotubes can be synthesized by the catalytic pyrolysis of n-hexane with an enhanced vertical floating technique. The long strands of nanotubes assemble continuously from arrays of nanotubes, which are intrinsically long.  相似文献   

20.
The transfer of electrons from one material to another is usually described in terms of energy conservation, with no attention being paid to momentum conservation. Here we present results on the junction resistance between a carbon nanotube and a graphite substrate and show that details of momentum conservation also can change the contact resistance. By changing the angular alignment of the atomic lattices, we found that contact resistance varied by more than an order of magnitude in a controlled and reproducible fashion, indicating that momentum conservation, in addition to energy conservation, can dictate the junction resistance in graphene systems such as carbon nanotube junctions and devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号