首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Impact odorants of different young white wines from the Canary Islands   总被引:5,自引:0,他引:5  
Five young monovarietal white wines from the Canary Islands made from Gual, Verdello, Marmajuelo, white Listán, and Malvasia grape cultivars were studied to determine the characteristics of their most important aromas and the differences among them. The study was carried out using gas chromatography-olfactometry (GC-O) to detect the potentially most important aroma compounds, which were then analyzed quantitatively by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. The strongest odorants in the GC-O experiments were similar in all cases, although significant differences in intensity between samples were noted. Calculation of the odor activity values (OAVs) showed that 3-mercaptohexyl acetate was the most active odorant in the Marmajuelo and Verdello wines, as were 3-methylbutyl acetate in the Gual wine, beta-damascenone in the Malvasia wine, and ethyl octanoate in the white Listán wine. However, the most important differences between varieties were caused by the three mercaptans (3-mercaptohexyl acetate, 3-mercaptohexanol, and 4-methyl-4-mercapto-2-pentanone) and the vinylphenols (4-vinylphenol and 2-methoxy-4-vinylphenol). The correlation between the olfactometric values and the OAVs was satisfactory in the cases when the compound eluted in the GC-O system was well isolated from other odorants and had aromatic importance and the OAVs for the different wines were sufficiently different.  相似文献   

2.
The purpose of this study was to understand why some canned orange juices are not perceived as orange juice. Sensory flavor profile data indicated that the primary odor (orthonasal) attributes were tropical fruit/grapefruit, cooked/caramel, musty, and medicine. By comparison fresh-squeezed juice lacked these odor attributes. GC-O analysis found 43 odor-active components in canned juices. Eight of these aroma volatiles were sulfur based. Four of the 12 most intense aroma peaks were sulfur compounds that included methanethiol, 1-p-menth-1-ene-8-thiol, 2-methyl-3-furanthiol, and dimethyl trisulfide. The other most intense odorants included 7-methyl-3-methylene-1,6-octadiene (myrcene), octanal, 2-methoxyphenol (guaiacol), 2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone (homofuraneol), (E)-non-2-enal, (E,E)-deca-2,4-dienal, 4-hydroxy-3-methoxybenzaldehyde (vanillin), and alpha-sinensal. Odorants probably responsible for the undesirable sensory attributes included grapefruit (1-p-menth-1-ene-8-thiol), cooked [2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol), and 3-(methylthio)propanal (methional)], musty [7-methyl-3-methylene-1,6-octadiene and (E)-non-2-enal], and medicine (2-methoxyphenol). The canned juices also lacked several aldehydes and esters normally found in fresh orange juice.  相似文献   

3.
4.
Four Spanish aged red wines made in different wine-making areas have been extracted, and the extracts and their 1:5, 1:50, and 1:500 dilutions have been analyzed by a gas chromatography-olfactometry (GC-O) approach in which three judges evaluated odor intensity on a four-point scale. Sixty-nine different odor regions were detected in the GC-O profiles of wines, 63 of which could be identified. GC-O data have been processed to calculate averaged flavor dilution factors (FD). Different ANOVA strategies have been further applied on FD and on intensity data to check for significant differences among wines and to assess the effects of dilution and the judge. Data show that FD and the average intensity of the odorants are strongly correlated (r(2) = 0.892). However, the measurement of intensity represents a quantitative advantage in terms of detecting differences. For some odorants, dilution exerts a critical role in the detection of differences. Significant differences among wines have been found in 30 of the 69 odorants detected in the experiment. Most of these differences are introduced by grape compounds such as methyl benzoate and terpenols, by compounds released by the wood, such as furfural, (Z)-whiskey lactone, Furaneol, 4-propylguaiacol, eugenol, 4-ethylphenol, 2,6-dimethoxyphenol, isoeugenol, and ethyl vanillate, by compounds formed by lactic acid bacteria, such as 2,3-butanedione and acetoine, or by compounds formed during the oxidative storage of wines, such as methional, sotolon, o-aminoacetophenone, and phenylacetic acid. The most important differences from a quantitative point of view are due to 2-methyl-3-mercaptofuran, 4-propylguaiacol, 2,6-dimethoxyphenol, and isoeugenol.  相似文献   

5.
Application of the aroma extract dilution analysis (AEDA) on the volatile fraction carefully isolated from an American Bourbon whisky revealed 45 odor-active areas in the flavor dilution (FD) factor range of 32-4096 among which (E)-beta-damascenone and delta-nonalactone showed the highest FD factors of 4096 and 2048, respectively. With FD factors of 1024, (3S,4S)-cis-whiskylactone, gamma-decalactone, 4-allyl-2-methoxyphenol (eugenol), and 4-hydroxy-3-methoxy-benzaldehyde (vanillin) additionally contributed to the overall vanilla-like, fruity, and smoky aroma note of the spirit. Application of GC-Olfactometry on the headspace above the whisky revealed 23 aroma-active odorants among which 3-methylbutanal, ethanol, and 2-methylbutanal were identified as additional important aroma compounds. Compared to published data on volatile constituents in whisky, besides ranking the whisky odorants on the basis of their odor potency, 13 aroma compounds were newly identified in this study: ethyl (S)-2-methylbutanoate, (E)-2-heptenal, (E,E)-2,4-nonadienal, (E)-2-decenal, (E,E)-2,4-decadienal, 2-isopropyl-3-methoxypyrazine, ethyl phenylacetate, 4-methyl acetophenone, alpha-damascone, 2-phenylethyl propanoate, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, trans-ethyl cinnamate, and (Z)-6-dodeceno-gamma-lactone.  相似文献   

6.
Application of aroma extract dilution analysis (AEDA) to the volatiles isolated from a commercial Japanese soy sauce revealed 30 odor-active compounds in the flavor dilution (FD) factor range of 8-4096, among which 2-phenylethanol showed the highest FD factor of 4096, followed by 3-(methylsulfanyl)propanal (methional), the tautomers 4-hydroxy-5-ethyl-2-methyl- and 4-hydroxy-2-ethyl-5-methyl-3(2H)-furanone (4-HEMF), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (4-HDF), and 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolone), all showing FD factors of 1024. Thirteen odorants were quantified by stable isotope dilution assays, and their odor activity values (OAVs) were calculated as ratio of their concentrations and odor thresholds in water. Among them, 3-methylbutanal (malty), sotolone (seasoning-like), 4-HEMF (caramel-like), 2-methylbutanal (malty), methional (cooked potato), ethanol (alcoholic), and ethyl 2-methylpropanoate (fruity) showed the highest OAVs (>200). An aqueous model aroma mixture containing 13 odorants, which had been identified with the highest OAVs, in concentrations that occur in the soy sauce showed a good similarity with the overall aroma of the soy sauce itself. Heat treatment of the soy sauce resulted in a clear change of the overall aroma. Quantitation of selected odorants revealed a significant decrease in sotolone and, in particular, increases in 2-acetyl-1-pyrroline, 4-HDMF, and 4-HEMF induced by heating.  相似文献   

7.
The aromatic profile of Jura flor-sherry wines (also called "yellow wines") has been little studied. Only acetaldehyde, diethoxy-1,1-ethane, and sotolon have been described as key odorants. In the present work, three wines (vintages 2002 and 2003) were investigated by gas chromatography-mass spectrometry and gas chromatography-olfactometry (GC-O) aroma extract dilution analysis. The goal was to assess the relative impact of varietal, fermentation, and oak-barrel compounds by using two complementary extraction procedures. No grape terpenoids were found after the long barrel aging (6 years and 3 months). On the other hand, two candy/fruity esters issued from yeast exhibited high flavor dilution factor (FD) values: ethyl isobutyrate (64-1024) and ethyl isovalerate (128-1024). As expected, many oak-related odorants were found in the XAD 2 flavor extracts, mainly homofuraneol [2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone] (cotton candy, FD = 16-256) and cis-β-methyloctalactone (butter, woody, FD = 256). Most probably issued from oxidation of the grape constituent theaspirane, an exceptional grenadine odor was perceived by GC-O up to dilution 64-1024. Chemical oxidation experiments and GC-high-resolution mass spectrometry (HRMS) allowed us to identify it as 4-hydroxy-7,8-dihydro-β-ionone (RI(CPsil5CB) = 1373), a hydrolysis-derived product of dihydrodehydro-β-ionone. With an extraction dedicated to hydrophilic compounds, the key role of sotolon was confirmed (112-387 μg/kg; FD = 256-1024). This procedure enabled us to also evidence its ethyl analogue, abhexon (31-74 μg/kg; FD = 64-256).  相似文献   

8.
The volatiles present in fresh, pink-fleshed Colombian guavas ( Psidium guajava, L.), variety regional rojo, were carefully isolated by solvent extraction followed by solvent-assisted flavor evaporation, and the aroma-active areas in the gas chromatogram were screened by application of the aroma extract dilution analysis. The results of the identification experiments in combination with the FD factors revealed 4-methoxy-2,5-dimethyl-3(2 H)-furanone, 4-hydroxy-2,5-dimethyl-3(2 H)-furanone, 3-sulfanylhexyl acetate, and 3-sulfanyl-1-hexanol followed by 3-hydroxy-4,5-dimethyl-2(5 H)-furanone, ( Z)-3-hexenal, trans-4,5-epoxy-( E)-2-decenal, cinnamyl alcohol, ethyl butanoate, hexanal, methional, and cinnamyl acetate as important aroma contributors. Enantioselective gas chromatography revealed an enantiomeric distribution close to the racemate in 3-sulfanylhexyl acetate as well as in 3-sulfanyl-1-hexanol. In addition, two fruity smelling diastereomeric methyl 2-hydroxy-3-methylpentanoates were identified as the ( R,S)- and the ( S,S)-isomers, whereas the ( S,R)- and ( R,R)-isomers were absent. Seven odorants were identified for the first time in guavas, among them 3-sulfanylhexyl acetate, 3-sulfanyl-1-hexanol, 3-hydroxy-4,5-dimethyl-2(5 H)-furanone, trans-4,5-epoxy-( E)-2-decenal, and methional were the most odor-active.  相似文献   

9.
Odorant compounds of five young clonal red wines made from cv. Trincadeira, a native grape variety of Vitis vinifera L. grown in Portugal, were studied using 2001 and 2003 vintages. The study was carried out using gas chromatography-mass spectrometry (GC-MS) for compound identification and the gas chromatography-olfactometry (GC-O) posterior intensity method to detect the potentially most important aroma compounds. Forty-one odorant peaks were detected by GC-O analysis, from which 31 were identified by GC-MS. The odorant compounds with the highest odorant average intensities are 3-methylbutanoic acid, 2-phenylethanol, 2,5-dimethyl-4-hydroxy-3(2H)-furanone, and 4-vinylguaiacol. The GC-O analysis showed odor intensity differences among compounds, which was confirmed by analysis of variance (ANOVA). Principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed that the five clonal wines from the 2001 vintage were more similar than those from the 2003 vintage. Moreover, stepwise linear discriminant analysis (SLDA) demonstrated that the factor vintage has influence on the Trincadeira clonal red wine odorant profile differentiation.  相似文献   

10.
Aroma extract dilution analysis of raw Arabica coffee revealed 3-isobutyl-2-methoxypyrazine (I), 2-methoxy-3,5-dimethylpyrazine (II), ethyl 2-methylbutyrate (III), ethyl 3-methylbutyrate (IV), and 3-isopropyl-2-methoxypyrazine (V) as potent odorants. The highest odor activity value was found for I followed by II, IV, and V. It was concluded that I was responsible for the characteristic, peasy odor note of raw coffee. Twelve odorants occurring in raw coffee and (E)-beta-damascenone were also quantified after roasting. The concentration of I did not change, whereas methional, 3-hydroxy-4, 5-dimethyl-2(5H)-furanone, vanillin, (E)-beta-damascenone, and 4-vinyl- and 4-ethylguaiacol increased strongly during the roasting process.  相似文献   

11.
The volatile compounds of guava wine were isolated by continuous solvent extraction and analyzed by GC-FID and GC-MS. A total of 124 volatile constituents were detected, and 102 of them were positively identified. The composition of guava wine included 52 esters, 24 alcohols, 11 ketones, 7 acids, 6 aldehydes, 6 terpenes, 4 phenols and derivatives, 4 lactones, 4 sulfur-compounds, and 5 miscellaneous compounds. The aroma-active areas in the gas chromatogram were screened by application of the aroma extract dilution analysis and by odor activity values. Twelve odorants were considered as odor-active volatiles: (E)-β-damascenone, ethyl octanoate, ethyl 3-phenylpropanoate, ethyl hexanoate, 3-methylbutyl acetate, 2-methyltetrahydrothiophen-3-one, 2,5-dimethyl-4-methoxy-3(2H)-furanone, ethyl (E)-cinnamate, ethyl butanoate, (E)-cinnamyl acetate, 3-phenylpropyl acetate, and ethyl 2-methylpropanoate.  相似文献   

12.
13.
The concentrations of 19 odorants, recently characterized by GC-olfactometry and aroma extract dilution analysis as the most odor-active compounds in raw hazelnuts, were quantitated by stable isotope dilution assays (SIDA). Calculation of odor activity values (OAV) on the basis of odor thresholds in oil revealed high OAVs, in particular for linalool, 5-methyl-4-heptanone, 2-methoxy-3,5-dimethylpyrazine, and 4-methylphenol. A model mixture in sunflower oil containing the 13 odorants showing OAVs above 1 in their natural concentrations resulted in a good similarity compared to the overall nut-like, fruity aroma of the raw hazelnuts. Quantitation of the 25 most odor-active compounds in roasted hazelnut paste by SIDA showed clear changes in the concentrations of most odorants, and formation of new odor-active compounds induced by the roasting process was observed. The highest OAVs were calculated for 3-methylbutanal (malty), 2,3-pentanedione (buttery), 2-acetyl-1-pyrroline (popcorn), and (Z)-2-nonenal (fatty), followed by dimethyl trisulfide, 2-furfurylthiol, 2,3-butanedione, and 4-hydroxy-2,5-dimethyl-3(2H)-furanone. The aroma of a model mixture containing the 19 odorants with OAVs above 1 in their actual concentrations in the roasted nut material was judged to elicit a very good similarity to the popcorn-like, coffee-like, and sweet-smoky aroma of the roasted hazelnut paste. New SIDAs were developed for the quantitation of 5-methyl-4-heptanone, 5-methyl-(E)-2-hepten-4-one, 2-thenylthiol, and 3,5,5-trimethyl-2(5H)-furanone.  相似文献   

14.
Hydrolyzed vegetable protein (HVP) was prepared from rice bran protein concentrate (RBPc) by partial hydrolysis with aqueous 0.5 N HCl at 95 degrees C for 12 or 36 h (H-RBPc-12 and H-RBPc-36, respectively). Aroma components of the RBPc and the HVPs were characterized by gas chromatography-olfactometry, gas chromatography-mass spectrometry, aroma extract dilution analysis, and calculation of odor activity values (OAVs). The predominant odorants in RBPc were 3-methylbutanal, hexanal, 2-aminoacetophenone, (E)-2-nonenal, phenylacetaldehyde, and beta-damascenone. Among these, the odor of 2-aminoacetophenone, present at 59 ng/g in RBPc, was reminiscent of the typical odor of RBPc. Most of the predominant odorants had higher log3FD factors in the H-RBPc-36 as compared to H-RBPc-12. Aroma impact compounds of H-RBPc-12 and H-RBPc-36 were 2-methoxyphenol (guaiacol), 4-hydroxy-2,5-dimethyl-3(2H)furanone, 3-hydroxy-4,5-dimethyl-2(5H)furanone (sotolon), vanillin, 3-methylbutanal, (E)-2-nonenal, 4-vinyl-2-methoxyphenol (p-vinylguaiacol), and beta-damascenone. Guaiacol had the highest OAV values of 2770 and 17650 in H-RBPc-12 and H-RBPc-36, respectively.  相似文献   

15.
Application of a comparative aroma extraction dilution analysis on unroasted and roasted Criollo cocoa beans revealed 42 aroma compounds in the flavor dilution (FD) factor range of 1-4096 for the unroasted and 4-8192 for the roasted cocoa beans. While the same compounds were present in the unroasted and roasted cocoa beans, respectively, these clearly differed in their intensity. For example, 2- and 3-methylbutanoic acid (rancid) and acetic acid (sour) showed the highest FD factors in the unroasted beans, while 3-methylbutanal (malty), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel-like), and 2- and 3-methylbutanoic acid (sweaty) were detected with the highest FD factors in the roasted seeds. Quantitation of 30 odorants by means of stable isotope dilution assays followed by a calculation of odor activity values (ratio of the concentration/odor threshold) revealed concentrations above the odor threshold for 22 compounds in the unroasted and 27 compounds in the roasted cocoa beans, respectively. In particular, a strong increase in the concentrations of the Strecker aldehydes 3-methylbutanal and phenylacetaldehyde as well as 4-hydroxy-2,5-dimethyl-3(2H)-furanone was measured, suggesting that these odorants should contribute most to the changes in the overall aroma after roasting. Various compounds contributing to the aroma of roasted cocoa beans, such as 3-methylbutanoic acid, ethyl 2-methylbutanoate, and 2-phenylethanol, were already present in unroasted, fermented cocoa beans and were not increased during roasting.  相似文献   

16.
Three tasty (BR-139, FA-624, and FA-612) and two less tasty (R-144 and R-175) fresh greenhouse tomato cultivars, which significantly differ in their flavor profiles, were screened for potent odorants using aroma extract dilution analysis (AEDA). On the basis of AEDA results, 19 volatiles were selected for quantification in those 5 cultivars using gas chromatography-mass spectrometry (GC-MS). Compounds such as 1-penten-3-one, ( E, E)- and ( E, Z)-2,4-decadienal, and 4-hydroxy-2,5-dimethyl-3(2 H)-furanone (Furaneol) had higher odor units in the more preferred cultivars, whereas methional, phenylacetaldehyde, 2-phenylethanol, or 2-isobutylthiazole had higher odor units in the less preferred cultivars. Simulation of the odor of the selected tomato cultivars by preparation of aroma models and comparison with the corresponding real samples confirmed that all important fresh tomato odorants were identified, that their concentrations were determined correctly in all five cultivars, and that differences in concentration, especially of the compounds mentioned above, make it possible to distinguish between them and are responsible for the differential preference. To help elucidate formation pathways of key odorants, labeled precursors were added to tomatoes. Biogenesis of cis- and trans-4,5-epoxy-( E)-2-decenals from linoleic acid and methional from methionine was confirmed.  相似文献   

17.
By application of the aroma extract dilution analysis on the volatile fraction isolated from a black tea infusion (Darjeeling Gold Selection), vanillin (vanilla-like), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel), 2-phenylethanol (flowery), and (E,E,Z)-2,4,6-nonatrienal (oat-flake-like) were identified with the highest flavor dilution (FD) factors among the 24 odor-active compounds detected in the FD factor range of 4-128. Quantitative measurements performed by means of stable isotope dilution assays and a calculation of odor activity values (OAVs; ratio of concentration to odor threshold in water) revealed, in particular, the previously unknown tea constituent (E,E,Z)-2,4,6-nonatrienal as a key odorant in the infusion and confirmed the important role of linalool and geraniol for the tea aroma. An aroma recombinate performed by the 18 odorants for which OAVs > 1 were determined in their "natural" concentrations matched the overall aroma of the tea beverage. In the black tea leaves, a total of 42 odorants were identified, most of which were identical with those in the beverage prepared thereof. However, quantitative measurements indicated that, in particular, geraniol, but also eight further odorants were significantly increased in the infusion as compared to their concentration in the leaves.  相似文献   

18.
Application of aroma extract dilution analysis on the volatiles isolated from a Bavarian Pilsner-type beer revealed 40 odor-active constituents in the flavor dilution (FD) factor range of 16-2048, among which ethyl octanoate, (E)-beta-damascenone, 2- and 3-methylbutanoic acid, and 4-hydroxy-2,5-dimethyl-3(2H)-furanone showed the highest FD factor of 2048. After quantitation of the 26 odorants showing FD factors > or =128 by stable isotope dilution analysis and determination of their odor thresholds in water, odor acitivity values (OAVs) were calculated. The results indicated ethanol, (E)-beta-damascenone, (R)-linalool, acetaldehyde, and ethyl butanoate with the highest OAVs, followed by ethyl 2-methylpropanoate and ethyl 4-methylpentanoate, which was previously unknown in beer. Finally, the overall aroma of the beer could be mimicked for the first time by recombining 22 reference odorants in the same concentrations as they occurred in the beer using ethanol/water as the matrix.  相似文献   

19.
[(2)H(10)]-4-Mercapto-4-methylpentan-2-one (d(10)-1), [(2)H(2)]-3-mercaptohexan-1-ol (d(2)-2), and [(2)H(5)]-3-mercaptohex-1-yl acetate (d(5)-3), deuterated analogues of impact odorants of wines, were used to determine quantitatively the natural compounds in white wines (Muscadet, Sauvignon, and Bacchus) with a stable isotope dilution assay using gas chromatography coupled either with ion trap tandem mass spectrometry (GC-ITMS-MS) or with atomic emission detection monitored on sulfur-selective acquisition (GC-AED). The thiol compounds were recovered from wines by liquid-liquid extraction, then purified from the wine extracts by covalent chromatography, and analyzed. The quantitative determination of 4-mercapto-4-methylpentan-2-one 1 in the wines that were analyzed was performed better with GC-AED than with GC-ITMS-MS under the conditions that were used. However, the detection limit of the method was higher than the odor threshold of 4-mercapto-4-methylpentan-2-one 1 in wine (5 vs 0.8 ng/L). The levels of this compound in the Sauvignon and Bacchus wines were much higher than its odor threshold, but it was not detectable in the Muscadet wines. On the contrary, GC-ITMS-MS was much more sensitive than GC-AED for detection of 3-mercaptohexan-1-ol 2 and 3-mercaptohex-1-yl acetate 3, and the detection limits were much lower than their odor thresholds in wine. The former compound was detected in all of the Muscadet wines that were analyzed at levels always higher than its odor detection threshold, while the latter occurred at levels higher than its odor threshold in only one Muscadet wine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号