首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eighteen soybean ( Glycine max [L.] Merr) cultivars from maturity groups V and VI were screened with two Bradyrhizobium japonicum strains (USDA 110 and TAL 378) in the greenhouse to determine N2 fixation (C2H2: reduction) rates. Antibiotic resistant markers were used for observing nodule occupancy. Cultivars L.-76-0132, PI 159319, Hoberland, Lee, PI 22173 and Centennial showed high nitrogenase activity of 6.25, 5.54, 17.43, 4.73, 6.94, and 4.81 μM C2H4/Pl/hr, respectively. Cultivars PI417419, PI 230978, Ogden , and FC 31665 showed low nitrogenase activity of 1.51, 0.80, 0.62 and 0.94 μM C2H4/Pl/hr, respectively. The data from this screening experiment suggest that the N2 fixation varied among genotypes and all the nodules were occupied by the inoculated strains only. Rhizobial strain effect was observed among soybean cultivars (MGVI).  相似文献   

2.
Influence of light quantity on growth and biological nitrogen fixation of white clover ( Trifolium repens L.)
The influence of photon irradiance (Ep; 100 to 500 μmol m−2 s−1) and of the photoperiod (16 or 11 h) on growth and nitrogenase activity of nodulated white clover plants was studied in growth chambers at two nitrate levels (1.0 and 7.5 mM NO3).
Total dry mass production, the root proportion and nitrogenase activity increased with increasing Ep and photoperiod. Nitrogenase activity generally increased proportionally to root mass. Only at low Ep (100 μmol m−2 s−1) and under a short photoperiod (11 h) was the specific nitrogenase activity per unit root mass reduced. An abrupt change in Ep led to a rapid and parallel change in nitrogenase activity and relative growth rate.
A higher NO3 concentration in the nutrient solution (7.5 mM) led to a marked decrease in specific nitrogenase activity, but increased growth between 200 and 500 μmol m−2 s−1 during early development only. At 100 μmol m−2 s−1, there was no growth response to nitrate, although its effect on nitrogenase activity was more marked than at a higher Ep.
The results show that with changing light quantity, biological nitrogen fixation of white clover adapts to the existing demand for nitrogen and does not limit growth except during early development, even when light supply is low.  相似文献   

3.
Development of hybrids between white clover ( Trifolium repens L.) and Trifolium nigrescens provides a novel route for genetically improving the reproductive capacity of white clover, provided the hybrids are agronomically viable, particularly with respect to N2 fixation. A comparative study of growth and rates of N2 fixation over 21 days was conducted with the parental species, F 1 hybrids and backcross hybrids, in flowing solution culture, without a supply of mineral N to the plants. T. nigrescens was unable to fix N2 in association with the strains of Rhizobium leguminosarum biovar. trifolii selected for inoculation. Rates of N2 fixation per plant increased in the order T. nigrescens < F 1 hybrid < T. repens < backcross 1. Specific rates of N2 fixation (days 0–21) increased in the order T. nigrescens < F 1 hybrid < backcross 1 <  T. repens . Dry matter production and nodule biomass per plant increased at a higher rate in backcross 1 hybrids than in T. repens. The results suggest that the potential for N2 fixation by backcross 1 hybrids is at least as great as that by T. repens .  相似文献   

4.
Sensitivity of different agronomic crops to UV-B radiation was studied under environmentally controlled conditions. UV-B radiation reduced plant height, fresh weight, dry weight and ash contents. The reduction varied among the different species tested. Narrow-leaved plants (mainly C4) were less sensitive to UV-B than broad-leaved plants (mainly C3).  相似文献   

5.
Allometric relationship (W1=αW2β, where α and β are the parameters) was fitted among growth components in two maize cultivars viz., Decani hybrid and Deccan 101 in order to obtain estimates of other components of the plant system which are time consuming measurements. The results of the agronomic field trial conducted at the University of Agricultural Sciences, Bangalore were used. This model's predictability was compared with linear regression model. In both the cultivars, allometric model using leaf area (LA - W2.) and leaf dry matter (LDM - W2) simulated total dry matter production (DMP - W2) by 79 to 98 % of actual values. Further allometric model fitted well to predict stem dry matter by 91 to 93 % using LDM and LA 89 to 92 % using LDW. Whereas linear regression model estimated total DMP by 95 to 96 % using cob dry matter. In case of LDM - LA association, linear regression model was found to be the best than other model. The leaf area decreased after silking in both the cultivars and the ratio of growth rates of DMP – LA ( β 2) was negative. Between cultivars, cv. Deccan 101 had higher R2 values in most of the relationships than cv. Deccan hybrid indicating the varietal difference.  相似文献   

6.
G. H. Kim    H. K. Yun    C. S. Choi    J. H. Park    Y. J. Jung    K. S. Park    F. Dane    K. K. Kang 《Plant Breeding》2008,127(4):418-423
Resistance to anthracnose or black spot ( Elsinoe ampelina ), a serious fungal pathogen in viticulture and table grape production, was investigated on 25 grape cultivars. Bioassays performed with culture filtrates produced by the pathogen revealed 14 resistant genotypes. In most plants resistance originated from Vitis labrucsa but also genotypes with V. rupestris and V. riparia  ×  V. rupestris background showed resistance. Genetic analysis was conducted in F1, S1 and BC1 plants developed from various cultivars. In total, 326 F1 plants were evaluated, 172 genotypes proofed to be resistant, whereas 154 were susceptible to anthracnose. A Mendelian segregation ratio of 1 : 1 (χ2 = 0.30–0.65) indicating that anthracnose resistance is controlled by a single dominant gene. To facilitate the use of marker-assisted selection in grape-breeding PCR-based markers were developed by random amplified polymorphic DNA and amplified fragment length polymorphism in bulk segregant analysis. Finally, OPB 151247 was developed as a sequence characterized amplified region marker being diagnostic for the locus of resistance to anthracnose in all resistant genotypes tested. Within the 25 grape cultivars OPB 151247 is diagnostic in the genetic background of both V. labrucsa and V. rupestris and V. riparia  ×  V. rupestris .  相似文献   

7.
The effect of plant water stress on net photosynthesis and leaf growth were investigated in order to determine to what extent leaf water potential during vegetative growth and silking affects maize development.
Two commercial maize hybrids grown in pots in a glasshouse were subjected to leaf water potentials of -1300 and -1700 kPa during the eighth leaf stage and during silking to -1700 and -2300 kPa to previously unstressed, moderately and severely stressed plants. The effect of stress on inhibiting CO2 uptake rates and leaf areas, as well as the recovery after alleviating stress, were compared to that of unstressed plants.
No substantial differences in CO2 uptake rates were found between medium and long seasoned cultivars. The CO2 uptake rates per unit leaf area decreased to negative values under both moderate and severe stress conditions during both growth stages. During silking, the recovery of CO2 uptake rate was much lower than during the eight leaf stage. Leaf area decreased proportionally with increased stress but did not recover after alleviating stress on plants stressed during both the eighth leaf and silking stages.  相似文献   

8.
Soybean ( Glycine max L.) nitrogen nutrition is ensured by both symbiotic nitrogen fixation and mineral nitrogen assimilation. The relationship between these two modes of N nutrition was analysed in 3 growth types (determinate, semi-determinate and undeterminate) of soybean. The nitrate reductase activity and nitrogenase activity (acetylene reduction) of plants grown in the field and greenhouse showed that these enzymatic activity acted simultaneously or successively during the growth cycle, depending on the availability of inorganic nitrogen in the growing medium. Undeterminate soybean types had a higher potential nitrate reductase activities than determinate types.
The proportion of N2 fixed as measured by 15N labelling or stem ureide content indicated that determinate soybeans derived a higher proportion of their N from N2 fixation than the undeterminates.  相似文献   

9.
A Field trial was conducted during 1988–89 and 1989–90 at Water Management Research Station, Memari. Bidhan Chandra Krishi Viswavidyalaya, Burdwan, to study the effect of three different irrigation regimes, namely rainfed (I1) (No irrigation), one irrigation (I2) at flowering and two irrigations (I3 at flowering and at sihqua formation stages) on the grain yield and water expenses on four different rapeseed-mustard cultivars, namely Pusa Bold, Pusa Baroni, Varuna and DIR 247. The variety DIR 247 recorded maximum grain yield (12.1 qha') followed by Pusa Baroni (11.8 q ha−1). The variety Varuna showed the lowest water use efficiency (48.1 kg ha−1 cm−1) while DIR 247 showed the maximum value of 57.0 kg ha−1 cm−1. The number of irrigations significantly increased the grain yield. Two irrigations, one at flowering and at siliqua formation stage increased grain yield by 28 % over the rainfed plots. During the crop growth period the actual water expenses among the cultivars in any moisture regime were more or less similar. The interaction between varieties and irrigation levels were, however, not significant.  相似文献   

10.
A simple randomized field experiment was conducted to assess the growth and yield of rape-seed-mustard in relation to sulphur and nitrogen interaction. Three levels of sulphur (0, 40 and 60 kg ha−1) in combination with three levels of nitrogen (60, 100 and 150 kg ha−1) were tested as treatments, T1, T2, T3, T4, and T5. Results indicated significant favourable effects of sulphur and nitrogen, when applied together, on yield components, seed and oil yield. Maximum response was observed with treatment T3 (having S and N of 40 and 100 kg ha1, respectively). Percentage oil content of seed was maximal at T4 (having S and N of 60 and 100 kg ha1) in both cultivars. The increase in N dose from 100 to 150 kg ha−1 without any change in applied S, i.e. 60 kg ha1 (T5), decreased the percentage oil content. The seed and oil yield, however, were similar to T3. Favourable responses of S and N interaction on leaf area index, rate of photosynthesis and biomass production were also observed.  相似文献   

11.
M. Staniaszek    E. U. Kozik    W. Marczewski 《Plant Breeding》2007,126(3):331-333
Fusarium oxysporum f. sp. lycopersici inhabits most tomato-growing regions worldwide, causing tomato production yield losses. A molecular marker linked to resistance would be useful for tomato improvement programmes. Thus, a cleaved amplified polymorphic sequence (CAPS) marker TAO1902 was developed to identify tomato genotypes possessing the I-2 gene, which confers resistance to F. o. lycopersici race 2. The Rsa I or Fok I restriction fragments corresponded to the presence or absence of the I-2 allele in a segregating 100 F2 progeny, tomato cultivars, 16 resistant and 20 susceptible to Fusarium wilt, respectively, lines and F1 hybrids, representing various tomato gene pools. TAO1902 may be helpful for selection of F. o. lycopersici -resistant tomato germplasm.  相似文献   

12.
The common bean is affected by several pathogens that can cause severe yield losses. Here we report the introgression of resistance genes to anthracnose, angular leaf spot and rust in the 'carioca-type' bean cultivar 'Rudá'. Initially, four backcross (BC) lines were obtained using 'TO', 'AB 136', 'Ouro Negro' and 'AND 277' as donor parents. Molecular fingerprinting was used to select the lines genetically closer to the recurrent parent. The relative genetic distances between 'Rudá' and the BC lines varied between 0.0% and 1.99%. The BC lines were intercrossed and molecular markers linked to the resistance genes were used to identify the plants containing the genes of interest. These plants were selfed to obtain the F2, F3 and F4 plants which were selected based on the presence of the molecular markers mentioned and resistance was confirmed in the F4 generation by inoculation. Four F4:7 pyramid lines with all the resistance genes showed resistance spectra equivalent to those of their respective donor parents. Yield tests showed that these lines are as productive as the best 'carioca-type' cultivars.  相似文献   

13.
On a brown warp soil (Fluventic Eutrochrept) near Goettingen, Germany, conventional leafed pea ( Pisum sativum L. cvs Messire and Bohatyr) and semileafless types (cvs Profi, Juno and Azur) were grown in mixed stands together with oat ( Avena sativa cvs Alf and Lutz) in substitutively designed experiments from 1995 to 1997. Oat was the dominant component. Crowding coefficients for oat averaged 7.4. No relationship could be detected between the crowding coefficient of oat and any yield advantage from the mixture. Crowding coefficients for pea varied substantially, between 0.1002 (Juno and Alf in 1996) and 0.2979 (Bohatyr and Alf in 1996). Crowding coefficients for semileafless pea cultivars were smaller than for conventional leafed types. The yield advantage of the mixture increased as the crowding coefficient of pea increased. The maximum yield increase for the mixture was achieved when the relative yield total (RYT)=1.17 or + 11 dt grain DM ha–1 for mixtures of the long-strawed conventional leafed cultivars Bohatyr and Alf (in 1996). The crowding coefficients of pea were positively correlated with the level of symbiotically fixed N2 in the mixed stands. When N2 fixation with mixed cropping was about 30 kg N ha–1, RYT was unity. Increasing symbiotic N2 in the mixtures resulted in increasing yield advantages in the mixture. Short-strawed pea cultivars seem unsuitable for mixing with oat. Plant height of pea appeared to be more important than plant leaf type. Accordingly, mixtures containing the long-strawed semileafless pea cultivars Profi and Alf were more successful. It is concluded that increased competitiveness of the pea component in the mixture with oat entails increasing the level of symbiotic N2 fixation including resource complementarity and thus yield advantage in the mixed stands.  相似文献   

14.
Field beans of indeterminate (cv. Nadwiślański) and determinate (cv. Tibo) growth habits were grown on field plots with a density of 20, 40 and 80 plants m−2 at two levels of nitrogen fertilization: low (20 kg N ha−1) and very high (150 kg N ha−1). At the phase of intense pod growth the number and the dry matter weight of root nodules as well as their nitrogenase activity and some features of the plants growth were determined, and in the period of ripeness the components of seed yield were established.
It was found that increased density of sowing as well as the high level of nitrogen fertilization inhibited the growth and development of root nodules and limited their nitrogenase activity in both cultivars. Plants of both varieties were characterized by a similar potential of forming the root nodules, however, in plants of the cv. Tibo the nitrogenase activity of nodules was much lower than in the cv. Nadwiślański.
Increased population density of the plants has in both varieties given increased seed yield when calculated per m2 of the soil, compensating in excess the depression of the seed yield from one plant. Such compensation did not occur in the case of the depression of nitrogen fixation under intense nitrogen fertilization.  相似文献   

15.
The effect of very high sowing rates on establishment year dry matter (DM) yield and stand persistence of irrigated lucerne ( Medicago sativa L.) was studied. Two cultivars ('Peace' and 'Apollo II') were sown in 1986 at two row spacings and six sowing rates from 5.6 to 50.4 kg ha−1. Established seedling density (Sd) increased linearly with sowing rate (R):Sd= 24.1R. Establishment year DM yield increased at sowing rates from 5.6 to 16.8 kg ha−1, levelled off as sowing rate increased to 33.6 ka ha−1, and then decreased as sowing rate increased further. Thus, there was a broad optimum sowing rate that gave a maximum sowing year DM yield. Percent plant survival to the third year (1988) decreased with increasing sowing rate so that plant densities became similar for sowing rates greater than 16.8 kg ha−1. Within the range 5.6 to 16.8 kg ha−1, increasing sowing rate increased stand persistence measured as 1988 plant density; however, a corresponding increase in DM yield was not obtained. For all full-production years, DM yield was independent of sowing rate. Sowing rate did not affect three chemical measures of forage quality.  相似文献   

16.
K. S. Reddy 《Plant Breeding》2009,128(5):521-523
Powdery mildew (PM) is one of the important foliar diseases of mungbean. Resistance sources have been identified in India and the inheritance studies showed that complete resistance (RO) was controlled by two dominant genes, Pm1 , Pm2 . The breakdown of complete resistance (RO) into moderate resistance (R2) by race-2 (Akola) has been reported. It is assumed that the change in resistance reaction is due to a mutation in the pathogen. The present investigation was carried out with a view to screen germplasm, cultivars and mutants for identification of complete resistance (RO) sources against race-2 and to study their inheritance. 'Mulmarada', a local mungbean cultivar from Maharashtra state of India was identified as a complete resistance (RO) source for race-2. The inheritance of Mulmarada's resistance (RO) was studied. The F1 and the segregation in F2 and F3 showed that the complete resistance (RO) in 'Mulmarada' is controlled by a single dominant gene, which is different from the earlier identified Pm1 and Pm2 resistance genes. Mulmarada's resistance gene is designated as Pm3 for PM resistance.  相似文献   

17.
Two lentil cultivars, UJ1 and ILL, have been introduced into the farming system of the Middle East. The influence of P on their potential to fix N2 under drought conditions is lacking. A factorial field experiment was carried out at Taibeh (500 mm yr−1) and Muru (300 mm yr−1), where three rates of P, two lentil cultivars and barley were included. Phosphorus was the main plot, while lentil and barley were grown randomly in the subplots. A typical experiment treated with unlabeled 100 kg N ha−1 with similar P rates was conducted at the Taibeh site. Both cultivars on each site did not differ significantly at different levels of P regarding the biological yield. At each P level, both cultivars derived similar nitrogen percentages from atmosphere (per cent Ndfa), except at Taibeh with the intermediate rate of P, where ILL derived (66.1 %) compared to UJ1 (40.3 %). At Taibeh, the average percentages of N in the grain and straw were 4.17 % and 1.14%, respectively, and were significantly higher than at the Muru site (3.38 %, 1.29 %). The relatively drought-like conditions at Muru reduced percentage Ndfa to ∼28 but this was increased by P addition. Nitrogen addition reduced partitioning of N (N index) from ∼0.70 % to ∼0.55 % and decreased P percentage in the grain from ∼0.40 % to ∼0.31 % and in straw from 0.11% to 0.07 % due to early maturation. In spite of the indigenous Rhizobium efficiency to fix N2, only 52.0 % and 42.3 % of the plant N was derived from the atmosphere at Taibeh and Muru, respectively, causing depletion of soil N reservoir.  相似文献   

18.
A Rapid Method for Measuring Freezing Resistance in Crop Plants   总被引:3,自引:0,他引:3  
The objective of this study was to develop a technique based on chlorophyll fluorescence to assess freezing injury and resistance of leaves. Optimization was done with faba bean leaves and applicability to other crops was examined at winter and spring with types of barley, oats, rape and faba beans. Selected leaves from young hardened beans were subjected to standardized freezing tests with different minimum temperatures ( T min) and fluorescence was monitored. After a dark period basic fluorescence ( F O was induced by 0.2 μmol m−2 s−1 pulsed red light and maximum fluorescence ( F m) was assayed at different light intensities. 1500 μmol m−2 s−1 rendered to give the maximum possible output of Fm and best differentiation of differently damaged leaves by F n= F m - F O. Leaf temperature during measurement and during a short storage (± 2 h) should be kept at about 0°C to avoid biases between differently damaged leaves. The measuring spot on the leaf must be standardized since fluorescence response differed at the tip and base of a leaflet, but not between the two leaflets of a faba bean leaf. The applicability of F rr (ratio of F r of stressed to unstressed leaves) as a measure of resistance was demonstrated by comparison of winter hardiness of cultivars with freezing resistance calculated from the relationship of F vr and the T min used in freezing tests.  相似文献   

19.
M. Schuster    H. Flachowsky    D. Köhler 《Plant Breeding》2007,126(5):533-540
Sweet cherries are self-incompatible because of a gametophytic self-incompatibility system. S alleles in the style and pollen determine the crossing relationships. Knowledge of the S allele constitution of cultivars is very important for cherry growers and breeders, and recently, molecular methods have been developed to distinguish the S alleles in sweet cherries. The S allele genotypes of 149 sweet cherry cultivars and clones, including 126 not previously genotyped, were determined by using PCR analysis. Thirteen different S alleles in 40 combinations were distinguished and nine new incompatibility groups were documented. Two new S alleles were identified in five local sweet cherry processing cultivars from southwestern Germany using the second intron primers. The sequence of these alleles was determined and compared to all known sequences available in the NCBI database. The sequences obtained showed high similarities to the alleles S 19 and S 22, previously described only in wild cherries, Prunus avium L.  相似文献   

20.
The effect of salinity on the nodulation, N-fixation and plant growth of selected chickpea- Rhizobium symbionts was studied- Eighteen chickpea rhizobial strains were evaluated for their growth in a broth culture at salinity levels of 0 to 20 dS m−1 of NaCl + Na2SO4. Variability in response was high. Salinity generally reduced the lag phase and/or slowed the log phase of multiplication of Rhizobium. Nine chickpea genotypes were also evaluated for salt tolerance during germination and early seedling growth in Petri dishes at five salinity levels (0–32 dS m−1). Chickpea genotypes ILC-205 and ILC-1919 were the most salt-tolerant genotypes. The selected rhizobial strains and chickpea cultivars were combined in a pot experiment aimed at investigating the interactive effect of salinity (3, 6 and 9 dS m−1) and N source (symbiosis vs. inorganic N) on plant growth. Symbiotic plants were more sensitive to salinity than plants fed mineral N. Significant reductions in nodule dry weight (59.8 %) and N fixation (63.5 %) were evident even at the lowest salinity level of 3 dS m-1. Although nodules were observed in inoculated plants grown at 6 dS m-1, N-fixation was completely inhibited. The findings indicate that symbiosis is more salt-sensitive than both Rhizobium and the host plant, probably due to a breakdown in one of the processes involved in symbiotic-N fixation. Improvement of salinity tolerance in field grown chickpea may be achieved by application of sufficient amounts of mineral nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号