首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation, using herbicidal pot tests in a greenhouse condition, was conducted to determine the whole‐plant dose–response relationships to several acetolactate synthase (ALS)‐inhibiting herbicides of sulfonylurea (SU)‐resistant Schoenoplectus juncoides with various Pro197 mutations in ALS that was collected from Japanese rice paddy fields. All the tested SU‐resistant accessions with a Pro197 mutation were highly resistant to two commonly used SU herbicides (imazosulfuron and bensulfuron‐methyl), but were much less resistant to another SU herbicide, metsulfuron‐methyl, and were substantially not resistant to imazaquin‐ammonium. These cross‐resistance patterns have been known previously in fragments of S. juncoides and other weed species and were comprehensively confirmed in this study with a whole set of Pro197 mutations. The analyses of resistance levels, based on ED90 values, newly showed that different accessions with a common amino acid substitution in ALS1 showed similar responses to these herbicides (confirmed with four amino acid substitutions), that the rankings of resistance levels that were conferred by various Pro197 mutations in ALS1 differed among the SU herbicides and that the resistance levels of the ALS2‐mutated accessions were higher than, lower than or similar to those of the corresponding ALS1‐mutated accessions, depending on the compared pair, but the deviation patterns were generally similar among the SU herbicides in each compared pair. The final finding might suggest that the abundance of ALS2 is not as stable as that of ALS1. In addition, as a result of these new findings, together with expected further research, a suggested possibility is that substituting amino acids at Pro197 generally could be estimated by plotting each accession's ED90 values of imazosulfuron and bensulfuron‐methyl in a two‐dimensional graph.  相似文献   

2.
Sulfonylurea-resistant biotypes of Schoenoplectus juncoides were collected from Nakafurano, Shiwa, Matsuyama, and Yurihonjyo in Japan. All of the four biotypes showed resistance to bensulfuron-methyl and thifensulfuron-methyl in whole-plant experiments. The growth of the Nakafurano, Shiwa, and Matsuyama biotypes was inhibited by imazaquin-ammonium and bispyribac-sodium, whereas the Yurihonjyo biotype grew normally after treatment with these herbicides. The herbicide concentration required to inhibit the acetolactate synthase (ALS) enzyme by 50% (I50), obtained using in vivo ALS assays, indicated that the four biotypes were > 10-fold more resistant to thifensulfuron-methyl than a susceptible biotype. The Nakafurano, Shiwa, and Matsuyama biotypes exhibited no or little resistance to imazaquin-ammonium, whereas the Yurihonjyo biotype exhibited 6700-fold resistance to the herbicide. The Nakafurano and Shiwa biotypes exhibited no resistance to bispyribac-sodium, but the Matsuyama biotype exhibited 21-fold resistance and the Yurihonjyo biotype exhibited 260-fold resistance to the herbicide. Two S. juncoides ALS genes (ALS1 and ALS2) were isolated and each was found to contain one intron and to encode an ALS protein of 645 amino acids. Sequencing of the ALS genes revealed an amino acid substitution at Pro197 in either encoded protein (ALS1 or ALS2) in the biotypes from Nakafurano (Pro197 → Ser197), Shiwa (Pro197 → His197), and Matsuyama (Pro197 → Leu197). The ALS2 of the biotype from Yurihonjyo was found to contain a Trp574 → Leu574 substitution. The relationships between the responses to ALS-inhibiting herbicides and the amino acid substitutions, which are consistent with previous reports in other plants, indicate that the substitutions at Pro197 and Trp574 are the basis of the resistance to sulfonylureas in these S. juncoides biotypes.  相似文献   

3.
Suspected sulfonylurea (SU)‐resistant Schoenoplectus juncoides plants were collected from rice paddy fields at 24 sites in Japan in order to discover the occurrence pattern of target‐site substitutions on a nationwide scale and at a local field scale. A genetic analysis of the two acetolactate synthase (ALS) genes, ALS1 and ALS2, of the collected plants confirmed that a single‐nucleotide mutation at the Pro197, Asp376 or Trp574 site of either ALS1 or ALS2 existed in each suspected SU‐resistant plant. On a nationwide scale, it was shown that the ALS1 mutations and the ALS2 mutations occurred at a similar frequency, that the P197S and the P197L substitutions were found most frequently among all the substitutions, and that the W574L substitutions (known as global resistance to any ALS‐inhibiting herbicide) were found at a relatively low frequency but in a geographically wide range. In the local field‐scale survey, which was conducted at two sites in Hyogo Prefecture, it was shown that the substitutions were less diverse, compared to on a nationwide scale, probably because the investigation involved a limited number of local fields, and that several substitutions and a susceptible biotype were found in single fields suggesting that a number of collections is required in order to understand the local SU‐resistant status of S. juncoides. In addition, this study reported new findings, that of the P197R, P197T and D376E substitutions in S. juncoides. This set of diverse substitutions in a weed species can be used for further research purposes.  相似文献   

4.
Ten accessions of sulfonylurea‐resistant Schoenoplectus juncoides were collected from paddy fields in Japan. In order to characterize acetolactate synthase from sulfonylurea‐resistant S. juncoides, acetolactate synthase amino acid substitutions, whole‐plant growth inhibition and acetolactate synthase enzyme inhibition were examined. Schoenoplectus juncoides has two acetolactate synthase genes (ALS1 and ALS2). The sulfonylurea‐resistant accessions harbored amino acid substitutions at Pro197 or Trp574 in either ALS1 or ALS2 (the amino acid number is standardized to the Arabidopsis thaliana sequence). The whole plants of all the sulfonylurea‐resistant accessions showed resistance to imazosulfuron. The resistance level depended on the altered amino acid residues in acetolactate synthase. The acetolactate synthase enzyme that was partially purified from all the sulfonylurea‐resistant accessions was less sensitive to imazosulfuron, compared to the susceptible accession, suggesting that the resistance is related to the altered acetolactate synthase enzyme. In addition, the concentration–response inhibition of acetolactate synthase activity by imazosulfuron in the sulfonylurea‐resistant accessions was remarkably different with the presence of an amino acid substitution in either ALS1 or ALS2. Furthermore, the concentration–response inhibition of acetolactate synthase activity in the sulfonylurea‐resistant accessions with a P197S, P197T or W574L mutation showed a double‐sigmoid curve. The regression analysis of enzyme inhibition suggested that the abundance ratio of ALS1 to ALS2 enzymes was approximately 70:30%, with a range of ±15%. Taken together, these results suggest that the resistance of sulfonylurea‐resistant accessions of S. juncoides is related to altered acetolactate synthase in either ALS1 or ALS2, although the abundance of the altered acetolactate synthase in the plants is different among the sulfonylurea‐resistant accessions.  相似文献   

5.
Rapid diagnostic methods to detect known mutations in acetolactate synthase (ALS) genes that confer sulfonylurea (SU) resistance to Schoenoplectus juncoides were developed in this study. By using 11 SU‐resistant accessions (nine accessions with a Pro197 substitution in ALS1 or ALS2, one accession with an Asp376Glu substitution in ALS2 and one accession with a Trp574Leu substitution in ALS2), polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) analysis for DNA fragments that were amplified simultaneously from genomic ALS1 and ALS2 and PCR–RFLP analysis for DNA fragments that were amplified from either of the genomic ALS1 or ALS2 were carried out. In each of the two PCR–RFLP analyses, a common PCR product was digested separately with the restriction enzymes, BspLI, MboI and MunI, in order to detect Pro197 substitutions, an Asp376Glu substitution and a Trp574Leu substitution, respectively. In each of the lanes where the detection of SU‐resistant substitutions was aimed, a specific band to suggest the existence of the said substitutions was observed in theoretically assumable ways. Separately, a direct sequencing method also was established, which was able to selectively sequence ALS1 or ALS2 from common templates containing both ALS1 and ALS2 by the isogene‐selective primers that were designed to anneal either of the ALS genes. It is expected that these methods could be used for the genetic analysis of SU‐resistant S. juncoides by providing rapid and accurate diagnosis.  相似文献   

6.
BACKGROUND: Papaver rhoeas (L.) has evolved resistance to tribenuron in winter wheat fields in northern Greece owing to multiple Pro197 substitutions. Therefore, the cross‐resistance pattern to other sulfonylurea and non‐sulfonylurea ALS‐inhibiting herbicides of the tribenuron resistant (R) and susceptible (S) corn poppy populations was studied by using whole‐plant trials and in vitro ALS catalytic activity assays. RESULTS: The whole‐plant trials revealed that tribenuron R populations were also cross‐resistant to sulfonylureas mesosulfuron + iodosulfuron, chlorsulfuron and triasulfuron. The whole‐plant resistance factors (RFs) calculated for pyrithiobac, imazamox and florasulam ranged from 12.4 to > 88, from 1.5 to 28.3 and from 5.6 to 25.4, respectively, and were lower than the respective tribenuron RF values (137 to > 2400). The ALS activity assay showed higher resistance of the ALS enzyme to sulfonylurea herbicides (tribenuron > chlorsulfuron) and lower resistance to non‐sulfonylurea ALS‐inhibiting herbicides (pyrithiobac > florasulam ≈ imazamox). CONCLUSION: These findings indicate that Pro197 substitution by Ala, Ser, Arg or Thr in corn poppy results in a less sensitive ALS enzyme to sulfonylurea herbicides than to other ALS‐inhibiting herbicides. The continued use of sulfonylurea herbicides led to cross‐resistance to all ALS‐inhibiting herbicides, making their use impossible in corn poppy resistance management programmes. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
8.
Primisulfuron‐resistant (AR and MR) and ‐susceptible (AS and MS) Bromus tectorum biotypes were collected from a Poa pratensis field at Athena, Oregon, and in research plots at Madras, Oregon. Studies were conducted to characterize the resistance of the B. tectorum biotypes. Whole plant bioassay and acetolactate synthase (ALS) enzyme assay revealed that the AR biotype was highly resistant to the sulfonylurea (SU) herbicides, primisulfuron and sulfosulfuron and to a sulfonylaminocarbonyltriazolinone (SCT) herbicide, propoxycarbazone‐sodium. However, the AR biotype was not resistant to imazamox, an imidazolinone (IMI) herbicide. Results of the whole plant bioassay studies showed that the MR biotype was moderately resistant to all ALS inhibitors tested. However, there were no differences in ALS sensitivities between the MR and MS biotypes. The nucleotide and amino acid sequence analysis of the als gene demonstrated a single‐point mutation from C to T, conferring the exchange of the amino acid proline to serine at position 197 in the AR biotype. However, this mutation was not found in the MR biotype. Results of this research indicate that: the resistance of the AR biotype to SU and SCT herbicides is based on an altered target site due to a single‐point mutation; resistance in the MR biotype is not due to a target site mutation.  相似文献   

9.
Monochoria vaginalis is one of the most serious weeds of rice fields in Asia. The species is predominantly selfing. To reveal the potential for multiple mutational events, outcrossing and gene flow in the sulfonylurea‐resistant (SU‐R) M. vaginalis populations, we investigated (i) if each SU‐R population was a single SU‐R biotype or a mixture of several SU‐R biotypes using restriction analysis or direct sequencing of acetolacatate synthase (ALS) genes and (ii) genetic diversity of SU‐R and ‐susceptible (S) populations using amplified fragment length polymorphism (AFLP) analysis. Nineteen or 20 individuals were sampled from four SU‐R and five SU‐S populations respectively. Amino acid substitutions conferring resistance in the SU‐R populations were Pro197Ser in the ALS1 or ALS3, or Asp376Glu in the ALS1 and each SU‐R population was composed of a single SU‐R biotype. In cluster analysis each SU‐R individual formed a cluster, whereas the individuals from a SU‐S population belonged to different clusters. Some SU‐R populations showed polymorphic AFLP loci. The results indicated that these SU‐R biotypes emerged from a single mutational event and any gene flow of SU‐R genes from adjacent populations did not occur. A low level of outcrossing and recombinations of SU‐R genes occurred within some SU‐R populations of M. vaginalis.  相似文献   

10.
Schoenoplectus juncoides, a noxious weed for paddy rice, is known to become resistant to sulfonylurea (SU) herbicides by a target-site mutation in either of the two acetolactate synthase (ALS) genes (ALS1 and ALS2). SU-resistant S. juncoides plants having an Asp376Glu mutation in ALS2 were found from a paddy rice field in Japan, but their resistance profile has not been quantitatively investigated. In this study, dose–response of the SU-resistant accession was compared with that of a SU-susceptible accession at in vivo whole-plant level as well as at in vitro enzymatic level.  相似文献   

11.
BACKGROUND: Wild radish, a problem weed worldwide, is a severe dicotyledonous weed in crops. In Australia, sustained reliance on ALS‐inhibiting herbicides to control this species has led to the evolution of many resistant populations endowed by any of several ALS mutations. The molecular basis of ALS‐inhibiting herbicide resistance in a novel resistant population was studied. RESULTS: ALS gene sequencing revealed a previously unreported substitution of Tyr for Ala at amino acid position 122 in resistant individuals of a wild radish population (WARR30). A purified subpopulation individually homozygous for the Ala‐122‐Tyr mutation was generated and characterised in terms of its response to the different chemical classes of ALS‐inhibiting herbicides. Whole‐plant dose‐response studies showed that the purified subpopulation was highly resistant to chlorsulfuron, metosulam and imazamox, with LD50 or GR50 R/S ratio of > 1024, > 512 and > 137 respectively. The resistance to imazypyr was found to be relatively moderate (but still substantial), with LD50 and GR50 R/S ratios of > 16 and > 7.8 respectively. In vitro ALS activity assays showed that Ala‐122‐Tyr ALS was highly resistant to all tested ALS‐inhibiting herbicides. CONCLUSION: The molecular basis of ALS‐inhibiting herbicide resistance in wild radish population WARR30 was identified to be due to an Ala‐122‐Tyr mutation in the ALS gene. This is the first report of an amino acid substitution at Ala‐122 in the plant ALS that confers high‐level and broad‐spectrum resistance to ALS‐inhibiting herbicides, a remarkable contrast to the known mutation Ala‐122‐Thr endowing resistance to imidazolinone herbicide. Copyright © 2012 Society of Chemical Industry  相似文献   

12.
The baseline toxicity of 22 acetolactate synthase (ALS)-inhibiting herbicides and the cross-resistance patterns of chlorsulfuron- and imazapyr-resistant (R) lines on these 22 ALS-inhibiting herbicides were investigated using the model species Arabidopsis thaliana. The 22 herbicides consisted of 18 sulfonylureas (SU), three imidazolinones (IMI) and one triazolopyrimidine (TP). The ED50 values (doses of herbicides required to reduce dry matter by 50%) of the post-emergence-treated Col and Ler susceptible (S) lines ranged from 22 to 4822 mg ha−1 and from 17 to 3143 mg ha−1 respectively. The csr1-1 chlorsulfuron-resistant line (substitution of Pro197 to Ser) conferred a high resistance to the only TP tested as well as to nine SU herbicides (R:S ratio ≥30), a low resistance to two SU herbicides (R:S≥5 and <30) and little or no resistance to the three IMI and seven other SU herbicides (R:S <5). This result contradicts the expectation that an ALS mutation selected by an SU herbicide confers high cross-resistance to other SU herbicides. We found that the efficacy of specific ALS inhibitors was different for different species and therefore could not be predicted from our results with A. thaliana; however, the cross-resistance patterns in A. thaliana were highly correlated with cross-resistance patterns in unrelated species with the same resistance mutation. These results have implications for resistance management.  相似文献   

13.
Yu Q  Han H  Powles SB 《Pest management science》2008,64(12):1229-1236
BACKGROUND: In the important grass weed Lolium rigidum (Gaud.), resistance to ALS‐inhibiting herbicides has evolved widely in Australia. The authors have previously characterised the biochemical basis of ALS herbicide resistance in a number of L. rigidum biotypes and established that resistance can be due to a resistant ALS and/or enhanced herbicide metabolism. The purpose of this study was to identify specific resistance‐endowing ALS gene mutation(s) in four resistant populations and to develop PCR‐based molecular markers. RESULTS: Six resistance‐conferring ALS mutations were identified: Pro‐197‐Ala, Pro‐197‐Arg, Pro‐197‐Gln, Pro‐197‐Leu, Pro‐197‐Ser and Trp‐574‐Leu. All six mutations were found in one population (WLR1). Each Pro‐197 mutation conferred resistance to the sulfonylurea (SU) herbicide sulfometuron, whereas the Trp‐574‐Leu mutation conferred resistance to both sulfometuron and the imidazolinone (IMS) herbicide imazapyr. A derived cleaved amplified polymorphic sequences (dCAPS) marker was developed for detecting resistance mutations at Pro‐197. Furthermore, cleaved amplified polymorphic sequences (CAPS) markers were developed for detecting each of the six mutant resistant alleles. Using these markers, the authors revealed diverse ALS‐resistant alleles and genotypes in these populations and related them directly to phenotypic resistance to ALS‐inhibiting herbicides. CONCLUSION: This study established the existence of a diversity of ALS gene mutations endowing resistance in L. rigidum populations: 1–6 different mutations were found within single populations. At field herbicide rates, resistance profiles were determined more by the specific mutation than by whether plants were homo‐ or heterozygous for the mutation. Copyright © 2008 Society of Chemical Industry  相似文献   

14.
Sagittaria trifolia L. is one of the most serious weeds in paddy fields in Japan. Since the late 1990s, severe infestations of S. trifolia have occurred following applications of sulfonylurea herbicides in Akita prefecture. In this study, two accessions of S. trifolia, R1 and R2, were collected from paddy fields with severe infestations and their resistance profiles were determined in comparison to a susceptible accession, S1. R1 and R2 were highly resistant to bensulfuron‐methyl. R1 was also highly resistant to pyrazosulfuron‐ethyl, but R2 was susceptible. Relative to S1, R1 had an amino acid substitution at the Pro197 residue of acetolactate synthase (ALS), a well‐known mutation that confers sulfonylurea resistance, suggesting that R1 has a target‐site‐based resistance (TSR) mechanism. The sequence of the ALS gene in R2 was identical to that in S1. A Southern blot analysis indicated that there was only one copy of the ALS gene in S1 and R2. These results suggest that R2 has a non‐target‐site‐based resistance (NTSR) mechanism. R2 was moderately resistant to imazosulfuron but susceptible to thifensulfuron‐methyl. R2 and S1 were susceptible to pretilachlor, benfuresate, MCPA‐ethyl and bentazon. The results reveal the occurrence of two sulfonylurea‐resistant biotypes of S. trifolia that show different mechanisms of cross‐resistance to sulfonylureas related to TSR in R1 and NTSR in R2.  相似文献   

15.
Three Australian Sisymbrium orientale and one Brassica tournefortii biotypes are resistant to acetolactate synthase (ALS)-inhibiting herbicides due to their possession of an ALS enzyme with decreased sensitivity to these herbicides. Enzyme kinetic studies revealed no interbiotypic differences within species in Km (pyruvate) (the substrate concentration at which the reaction rate is half maximal) but a greater Vmax (the rate when the enzyme is fully saturated with substrate) for two of the resistant S orientale biotypes over susceptible levels. F1 hybrids from reciprocal crosses between resistant and susceptible biotypes of S orientale showed an intermediate response to chlorsulfuron compared to the parental plants. ALS herbicide resistance in S orientale segregated in a 3:1 (resistant:susceptible) ratio in F2 plants with a single rate of chlorsulfuron, indicating that resistance is inherited as a single, incompletely dominant nuclear gene. Two regions of the ALS structural gene known to vary in ALS-resistant biotypes were amplified and sequenced. Resistant S orientale biotypes NS01 and SS03 contained a single nucleotide substitution in Domain B, predicting a Trp (in susceptible) to Leu (in resistant) amino acid change. Two adjacent nucleotide substitutions (CC T to AT T) predicting a Pro (in susceptible) to Ile (in resistant) change in the primary amino acid sequence were identified in Domain A of resistant S orientale biotype SS01. Likewise, a single nucleotide substitution at the same site in the resistant B tournefortii biotype predicts a Pro (in susceptible) to Ala (in resistant) substitution. No other interbiotypic nucleotide differences predicted amino acid changes in the sequenced regions, suggesting that the amino acid substitutions reported above are responsible for resistance to ALS-inhibiting herbicides in the respective biotypes. © 1999 Society of Chemical Industry  相似文献   

16.
Herbicidal activity and acetolactate synthase (ALS) inhibition of sulfonylurea derivatives with a fused heterocyclic moiety bonded to a sulfonyl group were investigated. Some compounds that had an imidazo[1,2‐b]pyridazine moiety substituted at the 2‐position by chlorine or methyl controlled sulfonylurea‐resistant (SU‐R) weeds and showed inhibitory activity to ALS prepared from SU‐R Schoenoplectus juncoides shoot. There was a correlation between in vitro and whole‐plant herbicidal activity of the compounds mentioned above against SU‐R Schoenoplectus juncoides. Among them 1‐(2‐chloro‐6‐propylimidazo[1,2‐b]pyridazin‐3‐ylsulfonyl)‐3‐(4,6‐dimethoxypyrimidin‐2‐yl)urea, propyrisulfuron, was selected for further evaluation. Propyrisulfuron effectively controlled paddy weeds at doses of 70 and 140 g a.i. ha?1 with good rice selectivity in a field trial.  相似文献   

17.
为明确河南省部分地区的多花黑麦草Lolium multiflorum种群对乙酰辅酶A羧化酶(acetylCoA carboxylase,ACCase)和乙酰乳酸合成酶(acetolactate synthase,ALS)抑制剂类除草剂的抗性水平和抗性机理,采用整株生物测定法测定采自新乡市和驻马店市的多花黑麦草种群对ACCase抑制剂类除草剂精噁唑禾草灵、炔草酯、唑啉草酯和ALS抑制剂类除草剂甲基二磺隆、氟唑磺隆、啶磺草胺的抗性水平,并对多花黑麦草ACCase和ALS靶标酶编码基因进行克隆及氨基酸序列比对,分析其靶标抗性机理。结果显示,与多花黑麦草敏感种群HNXX01相比,HNZMD04和HNXX05种群对6种除草剂均产生了抗性,HNZMD04种群对精噁唑禾草灵和啶磺草胺的相对抗性倍数分别为44.65和40.31,对炔草酯和氟唑磺隆的相对抗性倍数分别为11.91和11.93;HNXX05种群对精噁唑禾草灵和氟唑磺隆的相对抗性倍数分别为27.70和25.67。HNZMD04和HNXX05抗性种群的ACCase基因均发生了D2078G突变,2个种群的突变率分别为55%和70%;HNZMD04...  相似文献   

18.
Two populations of Lactuca serriola L. with resistance to acetolactate synthase (ALS)-inhibiting herbicides were discovered in wheat fields at two locations more than 25 km apart in South Australia. Both resistant populations carried a single base change within a highly conserved coding region of the ALS gene that coded for a single amino acid modification within ALS. The modification of proline 197 to threonine resulted in an enzyme that was highly resistant (>200-fold) to inhibition by sulfonylurea herbicides and moderately resistant to triazolopyrimidine and imidazolinone herbicides. The herbicide-resistant ALS was also less sensitive to inhibition by the branched-chain amino acids valine and leucine. In addition, the resistant enzyme had a lower Km for pyruvate. However, extractable ALS activity was similar between resistant and susceptible plants. The substitution of threonine for proline 197 within ALS has multiple impacts on ALS enzyme activity in L. serriola that may influence the frequency of this resistant allele in the environment.  相似文献   

19.
BACKGROUND: Horseweed is a weed commonly found in agronomic crops, waste areas and roadsides. Resistance to ALS‐inhibiting herbicides in horseweed was first reported in 1993 in a population from Israel. Resistance to ALS‐inhibiting herbicides in horseweed is now widespread, but, as of now, the resistance mechanism has not been reported. RESULTS: Two of three populations evaluated (P116 and P13) were found to be uniform for resistance (>98% of individuals survived 8.8 g AI ha?1 of cloransulam), whereas a third population, P525, contained about 85% resistant individuals. Cross‐resistance to cloransulam, chlorimuron, imazethapyr and bispyribac was observed in the P116 population. P525 and P13 were both sensitive to imazethapyr but resistant to chlorimuron, imazethapyr and bispyribac. Enzyme activity assays indicated that resistance in P13 was due to an altered target site. Southern blot analysis indicated that the ALS target site is encoded by a single copy gene. Overlapping ALS gene regions were amplified and sequenced from each population. Amino acid substitutions of Ser for Pro at position 197 (P197S) was detected from P13, Ala for Pro (P197A) was identified from P525 and substitution of Glu for Asp (D376E) at position 376 was found in P116. Molecular markers were developed to differentiate between wild‐type and resistant codons at positions 197 and 376 of horseweed ALS. CONCLUSION: Resistance to ALS‐inhibiting herbicides in horseweed is conferred by target‐site mutations that have also been identified in other weed species. Identification of the mutations within horseweed ALS gene sequence enables molecular assays for rapid detection and resistance diagnosis. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
BACKGROUND: Hordeum populations are becoming increasingly difficult to control in cropping fields. Two herbicide‐resistant H. leporinum populations were identified during a random crop survey after herbicides were applied. The study aimed to determine the herbicide resistance profile of these H. leporinum biotypes to a range of herbicides used for their control. RESULTS: Based on dose–response studies, one H. leporinum population was very highly resistant to sulfosulfuron and sulfometuron (both sulfonylurea herbicides) and also displayed low‐level resistance to imazamox (an imidazolinone herbicide). Reduced sensitivity of the ALS enzyme was identified with in vitro activity assays. Gene sequence analysis revealed a proline‐to‐threonine substitution at amino acid position 197 of ALS, which is likely to be the molecular basis for resistance in this population. Herbicide screening also revealed a different H. leporinum population with resistance to the bipyridyl herbicide paraquat. CONCLUSION: This study established the first cases of (1) sulfonylurea‐to‐imidazolinone cross‐resistance and (2) field‐evolved paraquat resistance in a Hordeum species in Western Australia. Copyright © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号