首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new cucurbitane-type triterpene glycosides, charantagenins D (1) and E (2), and one new sterol, 7-oxo-stigmasta-5,25-diene-3-O-β-d-glucopyranoside (3), were isolated from the fruit of Momordica charantia L. together with another eight known compounds. Their structures were determined on the basis of spectral analysis. Cytotoxicity activities of the isolated major compounds were evaluated against lung cancer cell line A549, glioblastoma cell line U87, and hepatoma carcinoma cell line Hep3B by using a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) in vitro assay. Results showed compounds 1 and 7 (goyaglycoside d) with an -OMe substituent group in the side chain exhibited significant cytotoxic activities against cancer cells. Impressively, the IC(50) values of the new compound 1 to A549, U87, and Hep3B were 1.07, 1.08, and 14.01 μmol/L, respectively, which were much lower than those of other tested compounds.  相似文献   

2.
Garcinol is a polyisoprenylated benzophenone derivative found in Garcinia indica fruit rind and other species. The potential antioxidative and neuroprotective effects of garcinol in rat cortical astrocyte were demonstrated in our laboratory recently. Here, the effects of garcinol on the neuritogenesis process in cultured cortical progenitor cells were investigated to understand the roles of garcinol in neuronal survival and differentiation. These cells, derived from embryonic day 17 rats, differentiated into EGF-responsive neural precursor cells, would further form neurospheres. Our data exhibited garcinol induced neurite outgrowth in early developing EGF-treated neurospheres and significantly enhanced the expression of neuronal proteins, microtubule-associated protein 2 (MAP-2), and glial fibrillary acidic protein (GFAP). Furthermore, the neuronal marker, high-molecular-weight subunit of neurofilaments (NFH), was highly expressed after 5 μM garcinol treatment in neural precursor cells for 20 days. To identify the extracellular mechanism, rat cortical progenitor cells were treated garcinol and accordingly mediated the sustained activation of extracellular signal-regulated kinase (ERK) for different periods up to 20 h. In this regard, NMDA receptor-mediated calcium influx led to excitotoxic death and activated tyrosine phosphatase which limited the duration of ERK in cultured neurons. MK801, the NMDA receptor antagonist, treatment also induced the sustained phosphorylation of ERK and therefore enhanced neuronal survival. In our observation, garcinol treatment reduced growth factor deprivation-mediated cell death and nuclear import of C/EBPβ levels. Noteworthy, garcinol could promote neurite outgrowth in EGF-responsive neural precursor cells and modulate the ERK pathway in the enhancement of neuronal survival.  相似文献   

3.
The Tithonia diversifolia methanolic extract (TDM), which showed antiproliferative activity against human glioblastoma U373 cells, with an IC50 value of 59.2±3.7 μg mL(-1), was passed through silica gel chromatography and successively eluted with different percentages of EtOAc/hexane. The 10-60% EtOAc/hexane subfractions, which exhibited a comparatively higher antiproliferative activity, were isolated, and then structural identification was proceeded with 1H nuclear magnetic resonance. The isolated compound was tagitinin C, a kind of sesquiterpenoid. The IC50 value was 6.1±0.1 μg mL(-1) in U373 treated with tagitinin C. In flow cytometric analysis and inhibition of pan-caspase, the results showed that the anti-glioblastoma effect was apoptosis-independent. In PARP, p-p38, ULK1, and LC3-II expression, the anti-glioblastoma induced by tagitinin C was likely via autophagy. In the ULK1 siRNA transfection experiment, autophagy blockade counteracted the suppression induced by tagitinin C. The result suggested that tagitinin C induces U373 cell death dependent upon autophagy under certain conditions.  相似文献   

4.
In this study, the hypothesis that food-derived opioid peptides besides β-casomorphin 7 might modulate the production of mucin via a direct action on epithelial goblet cells was investigated in HT29-MTX cells used as a model of human colonic epithelium. Seven milk whey or casein peptides, a human milk peptide, and a wheat gluten-derived peptide with proved or probable ability to bind μ- or δ-opioid receptors were tested on the cell culture. Significantly increased secretion of mucins was found after exposure to six of the assayed peptides, besides the previously described β-casomorphin 7, as measured by an enzyme-linked lectin assay (ELLA). Human β-casomorphin 5 and α-lactorphin were selected to study the expression of mucin 5AC gene (MUC5AC), the HT29-MTX major secreted mucin gene. α-Lactorphin showed increased expression of MUC5AC from 4 to 24 h (up to 1.6-fold over basal level expression), although differences were statistically different only after 24 h of exposure. However, this increased expression of MUC5AC did not reach significance after cell treatment with human β-casomorphin 5. In conclusion, six food-derived peptides have been identifed with described or probable opioid activity that induce mucin secretion in HT29-MTX cells. Concretely, α-lactorphin is able to up-regulate the expression of the major secreted mucin gene encoded by these cells.  相似文献   

5.
以两个大豆 [Glycine max (L.) Merr.] 品种(耐铝性大豆浙春2号和铝敏感性大豆华春18)的边缘细胞为材料,比较研究了Al3+对根尖原位边缘细胞释放以及对离体边缘细胞的毒害作用。结果显示,0、100、200 μmol/L Al3+处理后,浙春2号和华春18的根尖边缘细胞在水中均易分散,华春18的边缘细胞在300 μmol/L的Al3+处理时已聚集成团不易分散,而浙春2号的边缘细胞在400 μmol/LAl3+处理时才不易分散。Al3+对离体边缘细胞有明显的毒害作用,100 μmol/L Al3+处理1~ 6 h就表现出细胞死亡症状,毒害作用最大时出现在6 h之后,其中Al3+对华春18的毒害作用略高于浙春2号。系列浓度Al3+ (0、100、200、300、400 μmol/L Al3+)处理,100 mol/ L Al3+处理的离体边缘细胞存活率已出现较大幅度的下降,至400 mol/L Al3+处理时,浙春2号和华春18的相对存活率分别只有对照的45.9%和39.0%。 说明外界Al3+浓度升高不仅影响边缘细胞的释放,而且显著降低离体边缘细胞的存活率,毒害作用最大时出现在6 h之后。大豆品种间细胞对Al3+的反应存在一定差异,随时间变化,差异最大时在6 h。  相似文献   

6.
The effect of daily contact of a grape seed extract (GSE) on Caco-2 cell proliferation and differentiation was investigated. GSE at 400 mg/L was added to Caco-2 cells for 2 h a day after successive incubation in saliva, gastric, and pancreatic media. When applied at the beginning of the cell culture, GSE triggered inhibition of cell growth associated with a possible cytotoxic reaction. On the other hand, when the treatment was applied to confluent cells, treated cells displayed a higher protein content than control cells and a more developed brush border, with taller and denser microvilli. These observations were accompanied by stimulation of alkaline phosphatase activity, especially at day 5 postconfluency, with a 2.2-fold increase in comparison with the control. On the other hand, aminopeptidase N activity was inhibited throughout the differentiation period in GSE-treated cells to reach 28.8% of control cell activity on day 30. GSE did not affect either sucrase-isomaltase activity or cytoplasmic lactate dehydrogenase (LDH) activity, which otherwise appeared to be a good cellular marker. GSE treatment of Caco-2 cells thus inhibited their proliferation from seeding onward and stimulated both proliferation and differentiation after confluency.  相似文献   

7.
8.
Gallic acid (GA) is widely distributed in various plants and foods and has various biological properties including anticancer effects. In this study, we investigated the effects of mitogen-activated protein kinase (MAPK) [MAP 20 kinase or ERK kinase (MEK), c-Jun N-terminal kinase (JNK), or p38)] inhibitors or small interfering RNAs (siRNAs) on GA-induced HeLa cell death in relation to reactive oxygen species (ROS) and glutathione (GSH) levels. GA dose dependently inhibited the growth of HeLa cells via apoptosis and/or necrosis at 24 h, which was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨ(m)). Treatment with 70 μM GA increased the ROS level including O(2)(?-) and significantly induced GSH depletion in HeLa cells. GA decreased the activity of extracellular signal-regulated kinase (ERK) at 24 h, whereas it increased that of JNK at the same time. While the MEK inhibitor or ERK siRNA did not affect cell growth and death in 70 μM GA-treated HeLa cells at 24 h, JNK and p38 inhibitors enhanced cell growth inhibition and death in these cells. Additionally, p38 siRNA administration augmented growth inhibition, death, and MMP (ΔΨ(m)) loss in 70 μM GA-treated HeLa cells. In relation to ROS and GSH levels, JNK and p38 inhibitors increased ROS levels, and GSH-depleted cell numbers in GA-treated HeLa cells. Moreover, p38 siRNA increased O(2)(?-) levels and GSH depletion in GA-treated HeLa cells. Each MAPK inhibitor and siRNA differentially affected ROS and GSH levels in HeLa control cells. Conclusively, JNK and p38 inhibitors and p38 siRNA enhanced growth inhibition and cell death in GA-treated HeLa cells, which were to some extent related to GSH depletion and ROS levels, especially O(2)(?-).  相似文献   

9.
To replace benzoyl peroxide as a bread dough-bleaching agent, pure and commercial oxido-reductases (peroxidases, catalases, glucose oxidases, lipoxygenase, and laccase) were screened based on degradation of β-carotene in a liquid system (5 μg of β-carotene/mL of 0.1M citrate phosphate buffer at pH 5.5 or 6.5) or dough. Peroxidases had the best bleaching activity; some catalases also showed bleaching potential in a liquid system but not in bread dough, suggesting that screening enzymes in liquid media has limited application for dough. In 100 g of flour, combinations of peroxidase (3,000 U), lipase (815–1,630 U), and linoleic acid (0–300 mg) completely bleached bread dough.  相似文献   

10.
Adipokines have been implicated in the pathogenesis of atherosclerosis via pro-inflammatory mechanisms contributing to insulin resistance. The adipokine resistin causes endothelium dysfunction, which plays an important role in sustaining atherogenesis. This study investigated whether resistin induced expression of cell adhesion molecules and integrins in endothelial cells and THP-1 monocytes and whether such induction was attenuated by 1-20 μM caffeic acid. Resistin enhanced endothelial expression of vascular cell adhesion molecule 1 (VCAM-1), intercellular cell adhesion molecule 1 (ICAM-1), and E-selectin and monocyte expression of β1, β2, and α4 integrins. The enhancement of these proteins was diminished by caffeic acid with reduced THP-1 cell adhesion on activated endothelium. Caffeic acid at ≤20 μM demoted resistin-stimulated interleukin 8 (IL-8) production responsible for ICAM-1 and β2 integrin induction. The endothelial up-regulation of IL-8 secretion by resistin entailed toll-like receptor 4 (TLR4) activation, but caffeic acid diminished IL-8 production and TLR4 induction. Furthermore, caffeic acid encumbered resistin-activated nuclear factor κB (NF-κB) signaling. These results demonstrate that caffeic acid blocked monocyte trafficking to resistin-activated endothelium via disturbing NF-κB signaling responsive to IL-8. Therefore, caffeic acid may have therapeutic potential in preventing obesity-associated atherosclerosis.  相似文献   

11.
Pomiferin and osajin are prenylated isoflavones from Osage orange fruit that both have potent antioxidant activity in a variety of assays. Pomiferin, in particular, has strong activity against the superoxide anion in a photochemiluminescence (PCL) assay system. In vitro, pomiferin, but not osajin, demonstrated selective antiproliferative activity against the tumorigenic breast epithelial cell line MCF-7 (IC(50) = 5.2 μM) with limited toxicity toward nontumorigenic breast epithelial cells (MCF-10A). The differential sensitivity of normal and tumorigenic cells to the antiproliferative action of pomiferin was examined further by using cDNA microarrays. With a stringent cutoff of p < 0.01, a total of 94 genes were significantly differentially expressed between MCF-7 and MCF-10A cells; 80 up-regulated and 14 down-regulated when cells were exposed to 5 μM pomiferin for 24 h. Fold changes by microarray analysis were confirmed using RT-qPCR, and the most significant changes were found with genes related to antioxidant enzymes. Genes involved in mitotic inhibition and apoptotic regulations were also found to be up-regulated. Pomiferin is therefore a good anticancer candidate agent that may be useful either alone or in combination with other therapeutic agents and, because of its selectivity toward tumor cells, likely to have fewer side effects that classic chemotherapy drugs.  相似文献   

12.
Soy glyceollins, induced during stress, have been shown to inhibit cancer cell growth in vitro and in vivo. In the present study, we used prediabetic rats to examine the glyceollins effect on blood glucose. During an oral glucose tolerance test (OGTT), the blood glucose excursion was significantly decreased in the rats treated with oral administration of either 30 or 90 mg/kg glyceollins. Plasma analysis demonstrated that glyceollins are absorbed after oral administration, and duration of exposure extends from 20 min to at least 4 h postadministration. Exposure of 3T3-L1 adipocytes to glyceollins significantly increased both insulin-stimulated and basal glucose uptake. Basal glucose uptake was increased 1.5-fold by exposure to 5 μM glyceollin in a dose-response manner. Coincubation with insulin significantly stimulated maximal glucose uptake above basal uptake levels and tended to increase glucose uptake beyond the levels of either stimulus alone. On a molecular level, polymerase chain reaction showed significantly increased levels of glucose transporter GLUT4 mRNA in 3T3-L1 adipocytes, especially when the cells were exposed to 5 μM glyceollins for 3 h in vitro. It correlated with elevated protein levels of GLUT4 detected in the 5 μM glyceollin-treated cells. Thus, the simulative effect of the glyceollins on adipocyte glucose uptake was attributed to up-regulation of glucose transporters. These findings indicate potential benefits of the glyceollins as an intervention in prediabetic conditions as well as a treatment for type 1 and type 2 diabetes by increasing both the insulin-mediated and the basal, insulin-independent, glucose uptake by adipocytes.  相似文献   

13.
为建立方便、可靠、重复性好的胰岛素抵抗细胞模型,研究胰岛素受体底物-2(IRS-2)蛋白磷酸化与胰岛素抵抗的关系以及不同铬制剂对细胞葡萄糖代谢的作用。试验采用高胰岛素、高糖联合诱导Hep G2细胞建立胰岛素抵抗模型,通过葡萄糖氧化酶法及噻唑蓝比色法(MTT)分析受试物对细胞葡萄糖代谢及活性的影响,优化最佳造模条件;同时,利用蛋白免疫印迹法(WB)分析IRS-2的蛋白表达及其蛋白磷酸化,验证模型的胰岛素抵抗性。在此基础上,将模型应用于分析葡萄糖耐量因子(GTF)及其它铬制剂的降糖效果。结果表明,高胰岛素(10-6mol·L~(-1))和高糖培养基(25 mmol·L~(-1))处理细胞48h,细胞存活率达96%,与对照组相比,葡萄糖消耗量降低了5.7%,IRS-2含量减少31.02%,胰岛素抵抗效果显著,且该胰岛素抵抗模型可稳定维持48 h。相比于吡啶酸铬和三氯化铬,GTF对细胞葡萄糖代谢有显著的改善作用,其最佳作用浓度为1.0μg·m L-1。利用HepG2细胞建立体外胰岛素抵抗模型,方法简单可靠、重复性好,可广泛应用于天然活性物质的降糖功能研究。  相似文献   

14.
A recombinant β-glucosidase from Dictyoglomus turgidum was purified with a specific activity of 31 U/mg by His-Trap affinity chromatography. D. turgidum β-glucosidase was identified as a memmber of the glycoside hydrolase (GH) 3 family on the basis of its amino acid sequence. The native enzyme existed as an 86 kDa monomer with an activity maximum at pH 5 and 85 °C with a half-life of 334 min. The hydrolytic activity of the enzyme with aryl-glycoside substrates was the highest for p-nitrophenyl (pNP)-β-D-glucopyranoside (with a K(m) of 1.3 mM and a k(cat) of 13900 1/s), followed by oNP-β-D-glucopyranoside, pNP-β-D-xylopyranoside, pNP-β-D-fucopyranoside, and pNP-β-D-galactopyranoside. However, no activity was observed for oNP-β-D-galactopyranoside, pNP-α-D-glucopyranoside, pNP-α-D-glucopyranoside, pNP-β-D-mannopyranoside, pNP-β-L-arabinopyranoside, and pNP-α-L-rhamnopyranoside. The hydrolytic activity of the β-glucosidase for coffee isoflavones followed the order genistin (with a K(m) of 0.67 mM and a k(cat) of 5750 1/s) > daidzin > ononin > glycitin. The concentrations of daidzin in ground coffee and spent coffee grounds were 160 and 107 μg/g, respectively, but other isoflavones were present at low concentrations or absent. The enzyme completely hydrolyzed 1.2 mM daidzin in spent coffee grounds after 2 h, with a productivity of 0.6 mM/h. This is the first report concerning the enzymatic hydrolysis of isoflavone glycosides in spent coffee grounds.  相似文献   

15.
This study is the first to investigate the anticancer effects of α-mangostin in human glioblastoma cells. α-Mangostin decreases cell viability by inducing autophagic cell death but not apoptosis. Pretreatment of cells with the autophagy inhibitors 3-methyladenine (3-MA) and bafilomycin or knockdown beclin-1, resulted in the suppression of α-mangostin-mediated cell death. We also found that liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) signaling is a critical mediator of α-mangostin-induced inhibition of cell growth. Activation of AMPK induces α-mangostin-mediated phosphorylation of raptor, which subsequently associates with 14-3-3γ and results in the loss of mTORC1 activity. The phosphorylation of both downstream targets of mTORC1, p70 ribosomal protein S6 kinase (p70S6 kinase) and 4E-BP1, is also diminished by activation of AMPK. Furthermore, the inhibition of AMPK expression with shRNAs or an inhibitor of AMPK reduced α-mangostin-induced autophagy and raptor phosphorylation, supporting the theory that activation of AMPK is beneficial to autophagy. A further investigation revealed that α-mangostin also induced autophagic cell death in transplanted glioblastoma in nude mice. Together, these results suggest a critical role for AMPK activation in the α-mangostin-induced autophagy of human glioblastoma cells.  相似文献   

16.
The carotenoid β-cryptoxanthin (β-CRX) is abundant in Satsuma mandarins (Citrus unshiu Marc). Several studies have shown a relationship between Satsuma mandarin consumption and a low risk of several diseases, for example, diabetes, gout, and hypertension, suggesting β-CRX involvement in disease prevention. We investigated the effect of β-CRX on mildly obese males. β-CRX administration reduced visceral adipose tissue, body weight, and abdominal circumference. However, the detailed mechanism by which β-CRX mediates these changes remains unknown. To identify this mechanism, we used an obese model mouse (TSOD). Oral β-CRX administration repressed body weight, abdominal adipose tissue weight, and serum lipid concentrations in TSOD; these results are identical to previous human trial results. β-CRX administration significantly repressed adipocyte hypertrophy. Gene expression analysis strongly indicated that β-CRX can alter cytokine secretion and cell proliferation. These results suggest that β-CRX derived from Satsuma mandarins can help prevent obesity by repressing hypertrophy of abdominal adipocytes.  相似文献   

17.
The new diterpenes brussonol (1) and iguestol (6alpha,11-dihydroxy-12-methoxy-abieta-8,11,13-triene) (2) with an icetexane and a dehydroabietane skeleton, respectively, have been isolated from hairy root cultures of Salvia broussonetii. Other previously known diterpenes, 7-oxodehydroabietane, 11-hydroxy-12-methoxyabietatriene, taxodione, inuroyleanol, ferruginol, deoxocarnosol 12-methyl ether, cryptojaponol, pisiferal, sugiol, isomanool, 14-deoxycoleon U, 6alpha-hydroxydemethylcryptojaponol, demethylsalvicanol, and demethylcryptojaponol, were also obtained from these roots. The insect antifeedant and toxic effects of several of these compounds were investigated against the insect pests Spodoptera littoralis and Leptinotarsa decemlineata. Additionally, their comparative cytotoxic effects were tested on insect Sf9 and mammalian CHO cells. Demethylsalvicanol (4) was a moderate antifeedant to L. decemlineata, whereas brussonol (1) was inactive. 14-Deoxycoleon U (15) was the strongest antifeedant, whereas demethylcryptojaponol (11) was toxic to this insect. None of these compounds had antifeedant or negative effects on S. littoralis ingestion or weight gains after oral administration. Demethylcryptojaponol (11) was cytotoxic to mammalian CHO and insect Sf9 cell lines, followed by the icetexane derivative brussonol (1), with moderate cytotoxicity in both cases. The remainder of the test compounds showed a strong selective cytotoxicty to insect Sf9 cells, with demethylsalvicanol (4) being the most active.  相似文献   

18.
A 30 kDa antifungal protein was purified from red cabbage ( Brassica oleracea ) seeds. It exhibited a molecular mass and N-terminal amino acid sequence disinct from those of previously isolated Brassica antifungal proteins. The protocol used entailed ion exchange chromatography on Q-Sepharose and SP-Sepharose followed by fast protein liquid chromatography on Mono S. The protein hindered mycelial growth in Mycosphaerella arachidicola (with an IC50=5 μM), Setospaeria turcica, and Bipolaris maydis. It also inhibited the yeast Candida albicans with an IC50=96 μM. It exerted its antifungal action by permeabilizing the fungal membrane as evidenced by staining with Sytox green. The antifungal activity was stable from pH 3 to 11 and from 0 to 65 °C. It manifested antibacterial activity against Pseudomonas aeruginosa (IC50=53 μM). Furthermore, after 48 h of culture, it suppressed proliferation of nasopharyngeal cancer and hepatoma cells with IC50=50 and 90 μM, respectively.  相似文献   

19.
Plant cell walls are the major structural component of fruits and vegetables, which break down to cell wall particles during ingestion (oral mastication) or food processing. The major health-promoting effect of cell walls occurs when they reach the colon and are fermented by the gut microbiota. In this study, the fermentation kinetics of carrot cell wall particle dispersions with different particle size and microstructure were investigated in vitro using porcine feces. The cumulative gas production and short-chain fatty acids (SCFAs) produced were measured at time intervals up to 48 h. The results show that larger cell clusters with an average particle size (d(0.5)) of 298 and 137 μm were more rapidly fermented and produced more SCFAs and gas than smaller single cells (75 μm) or cell fragments (50 μm), particularly between 8 and 20 h. Confocal microscopy suggests that the junctions between cells provides an environment that promotes bacterial growth, outweighing the greater specific surface area of smaller particles as a driver for more rapid fermentation. The study demonstrates that it may be possible, by controlling the size of cell wall particles, to design plant-based foods for fiber delivery and promotion of colon fermentation to maximize the potential for human health.  相似文献   

20.
Methylguanidine (MG) is widely recognized as a strong uremic toxin. The hydroxyl radical (*OH) specifically plays an important role in the pathway of MG production from creatinine (Cr). In this study, we investigated whether oral administration of (-)-epigallocatechin 3-O-gallate (EGCg) suppresses MG production in rats with chronic renal failure after intraperitoneal Cr injection. MG production from Cr was significantly increased in rats with adenine-induced renal failure, which was more vulnerable to oxidative stress, compared with that in normal rats. However, oral administration of EGCg 30 min before and after Cr injection effectively inhibited MG production. Our findings suggest that EGCg, an excellent antioxidant from green tea, exerts protective activity in rats with chronic renal failure, resulting in suppression of Cr oxidation influenced by *OH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号