首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A farm-scale trial to compare the effectiveness of polythene bags and wrapping of big bale silage was monitored for Listeria monocytogenes contamination. There was no significant difference between the level of L. monocytogenes found in wrapped and bagged big bale silage, but the work confirmed that big bale silage is prone to contamination by Listeria organisms, and that the degree of Listeria contamination could be significantly reduced by the removal of obviously spoiled material prior to feeding.  相似文献   

2.
Aerobically spoiled silage has often been shown to harbour dangerously high levels of Listeria monocytogenes. This paper investigates the dynamics of aerobic deterioration in a silage bale as it occurs close to a site of damage to the cover. The underlying aim was to enable prediction of the extent of the silage that may become suitable for Listeria growth during the course of storage. In order to meet these objectives, a model was formulated that represents the microbiology of the deterioration process and the transport of oxygen and heat through the silage. The geometry of the system was exploited to ensure that the model is computationally tractable. The model was used to evaluate the effect of silage pH and puncture size on the risk of Listeria contamination. Although the hazardous fraction was seen to be relatively insensitive to the initial pH of the silage, it increased rapidly with puncture size. However, a small puncture can result in the 'loss' of a considerable fraction of the bale because of the relatively long time scale over which bales are stored.  相似文献   

3.
A laboratory method for ensiling grass in bags, which simulates the aerobic deterioration found in big bale silage, is described. These conditions selectively encouraged the multiplication of naturally occurring listeria. All grasses ensiled in this way gave detectable numbers of listeria, usually L. monocytogenes , indicating that these bacteria are a normal part of the microflora of grass. The results from the laboratory silage were comparable to those found in the same grass ensiled in big bales on the farm.  相似文献   

4.
Physical and management factors, such as compaction and sealing, greatly influence the outcome of forage conservation. This study aimed to determine the effects of compaction, delayed sealing and aerobic exposure after ensiling on maize silage quality and on formation of volatile organic compounds. Whole‐crop maize (277 g/kg dry matter [DM]) in 120‐L plastic silos was compacted at either high or low density, and sealed immediately or with delay at 2 days or 4 days post‐filling (six replicates each). After ensiling for at least 175 days, the silages were exposed to air for 6‐day intervals and sampled at 2‐day intervals. A delay in sealing caused an increase in yeast counts and a decline of up to 65% in water‐soluble carbohydrates before ensiling. Sealing the silos after 4 days caused DM losses of up to 11%. Delayed sealing promoted the formation of ethyl esters at silo opening. A 4‐day delay in sealing resulted in the lowest aerobic stability. Aerobic exposure led to considerable changes in silage composition, a loss in feed value and, finally, spoilage. This study indicates that maize silage quality is adversely affected by low compaction, delayed sealing and aerobic exposure.  相似文献   

5.
The occurrence of Listeria spp. in pasture grass and grass silage made with various additives and preservation techniques is reported. Silage samples were collected three times (in November, February and May) from eighty dairy farms. The prevalence of Listeria spp. in pasture grass samples was 0.647 and in silage samples 0.227. Only two species, L. monocytogenes and L. innocua were observed. Listeria spp. Were isolated from the silage at least once at thirtynine farms (0.488), and L. monocytogenes at twenty-seven farms (0.338). The occurrence of Listeria was highest among the silage samples collected in November (0.288). Silages preserved with acids had the lowest prevalence of Listeria (0.194). Silages preserved in tower silos were most often free of Listeria, only 0.056 being positive. The highest prevalence of the Listeria spp. (0.324) was detected in clamp silage. The results of chemical analyses of silage statistically reflect the frequency of Listeria.  相似文献   

6.
Challenges to ensiling are coming from a wide spectrum. Faster harvest rates are making it more difficult to achieve target silage densities. Larger harvest equipment is increasing soil compaction and rural road issues. Older silos are too small and are overfilled, creating safety issues, or temporary piles are placed on bare ground permitting soil contamination. Mycotoxins and other pathogens in silages are still a problem. Global warming may affect the forage crops grown and crop characteristics as well as rates of silage fermentation and aerobic deterioration. Silage as an input to bio‐refineries has an unclear future. Silage analysis is challenged by sampling and knowing what components truly predict nutritional value. The future holds many opportunities for both ensiling and silage research. Robotic harvesting will release more labour for silo packing, and there are opportunities to develop tools to estimate silage density during filling. Total mixed ration silages should allow more by‐products in rations. The development of novel silage additives to improve silage hygiene or increase nutrient availability appears promising. Predicting the onset of aerobic deterioration with quick tests for lactate‐assimilating yeasts or silage temperatures seems possible. Metabolomics and metabonomics, in addition to the microbiome tools in development, put us at the cusp of being able to see which microorganisms are active in the silo and rumen and what compounds of significance they are producing. This could lead to many advances in silage quality including reduced microbial toxins, better hygiene and improved utilization by livestock.  相似文献   

7.
The survival of pathogenic and spoilage micro‐organisms in soil and on grass fertilized with spiked anaerobic digestion residue (ADR) was investigated in a climate chamber during periods of up to 56 d. In addition, the survival of these organisms over time was investigated during ensiling of grass at 390 g dry matter (DM) kg?1 or 610 g DM kg?1. Micro‐organisms included in these studies were: Clostridium tyrobutyricum, Salmonella serotype Typhimurium, Listeria monocytogenes, Campylobacter jejuni, Escherichia coli, Talaromyces emersonii, Byssochlamys nivea, Porcine parvovirus and Swine vesicular disease virus. Soil and grass still contained high numbers of E. coli, Cl. tyrobutyricum and T. emersonii (1·9–5·4 log10) 49 and 56 d after fertilization with spiked ADR. Listeria monocytogenes and S. Typhimurium were generally found in the samples. This indicates that, within this time span, there is a risk of silage contamination by bacteria, moulds and viruses present in ADR spread on grassland. An increase in DM content of the crop decreased its ensilability as measured by pH and short‐chain fatty acid content. However, no clear differences were found in survival of pathogenic and spoilage micro‐organisms between the two silages with different DM contents, regardless of storage time. The lack of moisture and oxygen was probably sufficient to cause the reduction in vegetative bacteria in the 610 g DM kg?1 silage. However, bacterial and fungal spores and the viruses studied were not significantly inactivated by ensiling at these high DM contents and could, therefore, pose a health risk to farm animals fed on the silage if present in ADR applied to crops prior to ensilage.  相似文献   

8.
Re‐ensiling of previously ensiled forage has been a common practice in Brazil, and the use of inoculants may provide a means of reducing dry‐matter (DM) loss. This study aimed to determine the effect of re‐ensiling and the use of microbial inoculants on the quality of sorghum silage. Treatments were presence/absence of an inoculant (Lactobacillus plantarum and Propionibacterium acidipropionici) in the silage, and the re‐ensiling, or not, of the material after 24 h of exposure to air, and these were tested in a factorial 2 × 2 design. Losses due to gas, effluent and total DM were assessed, as were the fermentation characteristics, chemical composition, aerobic stability, and aerobic counts of microorganisms. Effluent loss was higher in re‐ensiled silage, and these silages had lower lactic acid content and higher levels of acetic and propionic acids. The in vitro DM digestibility was lower in the re‐ensiled sorghum silages. The re‐ensiled silage had higher aerobic stability. The inoculant only increased the acetic acid content of the silage. The re‐ensiling of sorghum silage increased effluent loss by 71·2%, and reduced DM digestibility by 5·35%. The use of inoculant did not influence the quality of sorghum silage.  相似文献   

9.
Leymus chinensis is an important grass in China and Russia. Six lactic acid bacteria (LAB) strains (LB, LPL1, LPL2, LPL3, LCL and WH) from L. chinensis silage were screened and identified and their effects on fermentation quality were investigated. All six strains were grown at 6·5% NaCl and pH 4·00. Strains LPL1, LPL2 and LPL3 were identified as Lactobacillus plantarum, and LB, WH and LCL were classified as Lactobacillus brevis, Weissella hellenica and Lactobacillus casei respectively. The six isolated strains and a commercial inoculant (Lactobacillus buchneri) were added to L. chinensis for ensiling at densities of 500 and 600 kg m?3. The control was sprayed with the same volume of distilled water. The effects of the strains on fermentation quality after 45 d ensiling and aerobic stability during 8 d of exposure to air were evaluated. The 600 kg m?3 silage had lower pH, butyric acid, ammonia nitrogen content and coliform bacteria counts than the 500 kg m?3 density silage (< 0·05). The six isolated strains decreased pH, butyric acid content and increased lactic acid content, and all inoculants increased L. chinensis silage aerobic stability except LCL (< 0·05). The fermentation quality of L. chinensis silage increased with higher ensiling density. The LAB strains improved the fermentation quality, and high‐quality silage could be obtained at low ensiling density with the addition of the LAB strains. The strains improved the aerobic stability; Lb. buchneri and Lb. brevis showed the best performance.  相似文献   

10.
The aim was to evaluate the effects of adding a novel Lactobacillus buchneri strain and a commercial inoculant on the fermentation and aerobic stability of sugar cane silages (Saccharum spp.). In the first experiment samples were collected from sugar cane silage at 5, 20, 40 and 80 d after ensilage in experimental silos and microorganisms belonging to the Lactobacillus genus were isolated and identified, with a wild strain of L. buchneri, UFLA SIL 72, being selected as an inoculant. In the second experiment sugar cane was inoculated with either the novel bacteria or a commercial inoculant at the moment of ensiling and compared with a control silage prepared without an inoculant. Experimental silos were opened at 0, 3, 10, 30, 60 and 90 d of ensilage and their chemical composition measured. The silages opened after 90 d were also assessed for aerobic stability. The addition of L. buchneri resulted in a higher concentration of acetic acid and reduced populations of yeasts in silage compared to the other silage treatments, and a lower ethanol concentration in the silage. The novel L. buchneri isolate and the commercial inoculant also improved aerobic stability of the sugar cane silages. It was concluded that the addition of the novel inoculants L. buchneri UFLA SIL 72 to sugar cane silage can be recommended.  相似文献   

11.
This study attempted to separate the effects of forage source and field microbiota on silage fermentation quality and aerobic stability. Single samples of grass, red clover and maize were used. Field microbiota was obtained by centrifugation of microbial suspensions of the three samples. The intact forages were dried and sterilized by heating at 60°C for 3 h + 103°C for 15 h, inoculated in a 3 (forage) × 3 (inoculum) design and reconstituted to a dry‐matter level of 400 g kg?1 before ensiling. After ensiling for 71 d, subsamples were subjected to an 8‐d aerobic stability test, which included temperature and pH measurements. Bacterial community analysis was performed on samples before and after ensiling by 16S rRNA gene amplicon sequencing. Forage source had a marked effect on the levels of lactic acid, acetic acid, ammonia‐N and 2,3‐butanediol, but microbiota source only affected the acetic acid concentration. The forage and microbiota as well as their interactions affected silage stability variables. The maize microbiota improved silage stability, whereas silages made from the maize forage had the poorest stability. Bacterial community analysis revealed higher abundance of lactic acid bacteria on the maize forage, with Lactococcus and Leuconostoc being the dominant genera. These preliminary results suggested that fermentation quality is mainly affected by forage source, whereas the aerobic stability is affected by both forage and field microbiota.  相似文献   

12.
Aerobic spoilage by yeasts and moulds is a major cause of reduced nutritional value of silage and increases the risk of potential pathogenic microorganisms. Recent studies have shown that inoculation with Lactobacillus buchneri inhibits yeast growth and reduces the susceptibility to aerobic spoilage of various ensiled forages. The aim of this study was to determine whether these effects are retained when L. buchneri is added in combination with homofermentative lactic acid bacteria. In three experiments, silages were produced from perennial ryegrass [240–421 g kg−1 dry matter (DM)] inoculated with L. buchneri or L. buchneri plus a mixture of Pediococcus pentosaceus and Lactobacillus plantarum (inoculant PL). Uninoculated silage and silage inoculated with PL alone served as controls. Silages were examined for pH and DM loss in the course of ensilage and chemical and microbiological composition and aerobic stability after 3–4 months. L. buchneri plus PL and PL alone increased the initial rate of pH decline. L. buchneri alone and L. buchneri plus PL enhanced aerobic stability and, in general, reduced yeast and mould counts. In addition, these inoculants increased the final pH and DM loss and the concentrations of acetic acid and 1,2-propanediol (or propionic acid and 1-propanol instead of 1,2-propanediol), and decreased the concentration of lactic acid. The effects of L. buchneri on fermentation products increased with decreasing DM content. In silages of less than 270 g kg−1 DM, L. buchneri increased the ammonia-N concentration. It is suggested that this was associated with the relatively high final pH resulting from the high metabolic activity of L. buchneri in these silages.  相似文献   

13.
A model for the prediction of the silage quality was tested in several large farms in northeast Germany. The model uses data and information on the fresh grass and the application of silage additives at ensiling to evaluate the “ensilability.” During clamp filling, the model analyses information on the filling performance, activity of compacting machines and hermitic covering of the clamp and evaluates the “ensiling technique.” Both “ensilability” and “ensiling technique” are assessed as “good,” “medium” or “bad” and pooled in “silage evaluation grades” 1–5. In the present model version, the predicted silage net energy lactation (NEL) and crude protein (CP) content is between 3% (for the best grade 1) and 15% (for the weakest grade 5) lower than the fresh grass NEL and CP content. In our experiments, all the grass silage production systems were characterized by “good” “ensilability” and “ensiling technique.” Under those circumstances, the experimental results indicated a closer numerical relation between fresh grass and measured silage NEL and CP content than between predicted silage and measured silage NEL and CP content. The results reveal that the model prediction calculation should be changed compared to the present version. If “ensilability” and “ensiling technique” are evaluated as “good,” the predicted silage NEL and CP content should be forecasted in a range between 0% and 3% decrease compared to fresh grass.  相似文献   

14.
Sorghum [Sorghum bicolor (L.) Moench] is an ensilable tropical plant known as a good alternative to maize crops in regions with scarce rainfall. The objective of this trial was to obtain prediction models based on nutritional contents and end products of sorghum silage fermentation as related to the dry-matter composition of fresh plants before ensiling. Eleven different sorghum cultivars (including silage, graniferous and sweet types) were used. Twenty-five sorghum plots were harvested between 80 and 120 days of growth. Fifty plastic buckets were used as experimental microsilos and opened between 60 and 90 days of storage. Statistical modelling was used to create a prediction equation that could explain the impact of fresh sorghum composition on the chemical and nutritional composition of its silage. A complex model was detected by stepwise multiple regression to predict the difference of in vitro dry-matter digestibility (IVDMD) before and after ensiling, but a simpler model, which involved only the sum of water-soluble carbohydrate (fWSC) and hemicellulose (fHemi) concentrations in the dry matter of fresh forage, was considered to more usable. It had an acceptable coefficient of determination (0.51). The higher amount of WSC and Hemi in fresh sorghum linearly decreased the difference between IVDMD before and after the ensiling process. A WSC concentration of 125.4 g/kg DM in fresh sorghum is recommended for an ideal silage fermentation when considering pH and lactic acid levels, although ethanol levels continued to increase.  相似文献   

15.
Barley varieties of differing fungal disease resistance were grown in triplicate plots at Lacombe and Lethbridge, Alberta with the disease resistant variety (FR) sprayed with a foliar fungicide to maximize differences in field fungal disease. Both varieties were harvested at soft dough and ensiled in minisilos to assess differences in fungal contamination on ensiling properties, nutritional quality, aerobic stability and associated bacterial and fungal microbiomes. Data were analysed as repeated measures with the effect of treatment × time (duration of ensiling or aerobic exposure) included in the model. The percentage leaf area diseased by net form net blotch was higher (p < 0.05) in the untreated barley cv. Sundre (UN, 59.1% leaf area affected at Lacombe and 25.2% at Lethbridge) than in the FR barley cv. Chigwell (0.7% leaf area affected at Lacombe and 0.1% at Lethbridge). Fungal resistant barley had a lower (p < 0.01) acid and neutral detergent fibre content. Relative abundance of Xanthomonadales was higher (p = 0.02) for FR than UN, while Lactobacillales dominated the bacterial microbiome after 60 day of ensiling in both silages. Bacillales dominated both FR and UN after 21 day of aerobic exposure. Fungal resistant fresh barley forage had a tendency (p = 0.10) for a greater relative abundance of Pleosporales, while UN had higher (p < 0.01) Hypocreales. Mould counts were lower (p = 0.01) for FR than UN after 7 day of ensiling. Fungal resistant barley had minimal influence on the fungal community that contributed to the aerobic deterioration of barley silage.  相似文献   

16.
Forage choice and intake by ruminants depend on various factors. This study aimed to determine the effects of compaction, delayed sealing and aerobic exposure on forage choice and short‐term dry‐matter intake (DMI) of maize silage by goats. Whole‐crop maize (277 g/kg dry matter [DM]) in 120‐L silos was compacted at either low (194 kg DM/m3) or high (234 kg DM/m3) density, and sealed immediately at day 0 or with a delay at day 2 or day 4 post‐filling, making a total of six treatments. After ensiling for at least 175 days, silages were exposed to air for 6 days. In 2‐day intervals, silages were sampled for chemical analyses and were vacuum‐stored for use in preference trials. During the experimental phase, each possible two‐way combination of the aerobically exposed silages (days 0, 2, 4 and 6 post‐opening) of the treatments and lucerne hay was offered as free choice to goats (n = 5) for 3 hr. Exposing silages to air for >4 days post‐opening caused strong avoidance and lowest intakes. Under the conditions of the study, aerobic exposure after ensiling had a more pronounced effect on silage preference and short‐time DMI than compaction and delayed sealing. Increasing fibre fractions, a deteriorating microbial status and poor silage sensory properties, probably caused by a combination of different fermentation products, can be considered for decrease in preference.  相似文献   

17.
The composition of baled silage frequently differs from that of comparable conventional silage. A factorial experiment was conducted with three wilting treatments (0, 24 or 48 h) × three ensiling systems [unchopped grass in bales, unchopped grass in laboratory silos (LS), precision-chopped grass in LS] × six stages of ensiling to (i) confirm that the fermentation of unchopped grass in LS could be used as an adequate model for baled silage fermentation, (ii) quantify the differences between baled silage and silage made from precision-chopped herbage across a range of dry-matter contents and (c) quantify the fermentation dynamics within the various treatments. The onset of fermentation as evidenced by the accumulation of fermentation products and the decline in pH were slower ( P  < 0·05) in baled silage compared with silage made from precision-chopped herbage. Furthermore the pH ( P  < 0·001) and overall concentration of fermentation acids ( P  < 0·01) were lower while ammonia-N concentration was generally higher in baled silage, making it more conducive to the activities of Clostridia , Enterobacteria and yeast. Numbers of Enterobacteria were higher ( P  < 0·001) in baled silage in the early stages of ensilage and persisted in baled silage at the end of the storage period. The implications of a slower onset of fermentation in baled herbage are greater in farm practice, as the fermentation would be further restricted by a more extensive wilting of the herbage prior to ensiling.  相似文献   

18.
The use of forage brassicas, such as kale, in diets of ruminants is typically constrained by the presence of anti-metabolites that break down in the rumen to cause detrimental effects after absorption including haemolytic anaemia and tissue damage. Ensilage of kale before feeding may provide conditions that favour the degradation of potentially toxic anti-metabolites, thereby improving the nutritive value of the feed. An experiment was conducted with eighty Scottish Blackface housed lambs, in which four levels of kale silage were used to replace grass silage and in which the forage component comprised around 60% of the finishing diet. Productivity of lambs was not affected other than to increase the killing-out percentage of the lambs. Glucosinolate concentrations in kale were markedly reduced by the ensiling process. Haematological parameters, such as packed cell volume, haemoglobin concentration and the presence of Heinz−Ehrlich bodies, were not significantly affected by replacing grass silage with kale silage. Similarly, there were no significant effects arising from the dietary treatments on the blood plasma components, gamma-glutamyl transpeptidase, blood urea nitrogen, tri-iodothyroxine and thyroxine, which are conventional measures of glucosinolate toxicity.
The results indicated that the ensilage of kale reduces its toxicity and hence removes constraints on the maximum inclusion levels in the diet. Also, it was possible to reduce the potential contamination of carcasses with soil by lambs not grazing the crop and thus keeping fleeces clean.  相似文献   

19.
Aerobic stability is an important feature in the evaluation of silages. The aims were to investigate the chemical and microbiological changes that occur in sugar-cane (Saccharum spp.) silage after aerobic exposure, to identify the major species of yeasts associated with the aerobic deterioration process and to select lactic acid bacteria (LAB) strains that can improve the aerobic stability of this silage. Fourteen wild LAB strains belonging to Lactobacillus plantarum, L. brevis and L. hilgardii were evaluated using experimental silos. Silage samples were collected at 0, 96 and 216 h after aerobic exposure to determinate the DM, WSC, pH, products of fermentation, to evaluate the silage temperatures and to identify yeast species associated with the aerobic deterioration of silage. The strains tested were able to modify the fermentative and chemical parameters and the diversity of yeasts species of silage after aerobic exposure. There was no association between the facultative or obligatory heterofermentative fermentation patterns and the increased aerobic stability of silage. Aerobic stability of sugar-cane silages was associated with high acetic acid and 1,2-propanediol concentrations. L. hilgardii UFLA SIL51 and UFLA SIL52 strains promoted an increase in aerobic stability of silage.  相似文献   

20.
Implications of silage hygienic quality for animal production were investigated on forty‐five dairy farms in South West England. Samples of grass and maize silages and of total mixed rations (TMR) were obtained together with information on silage technology, herd size and animal production. Samples were analysed for mycotoxins, bacteria, yeasts, moulds and chemical composition. Thirteen mycotoxins were assayed, but none were detected in the samples of grass silage. However, mycotoxins were found in 0·9 of all maize and other silage samples, with deoxynivalenol and zearalenone predominating. There was no relationship between total mycotoxin concentration and mean lactation milk yield per cow. Enterobacteria counts tended to be higher in maize silage than in grass silage and higher still in TMR – a cause for concern. There were no relationships between mould counts and mycotoxin concentrations in silages, implying that mycotoxins may have been produced in the field pre‐ensiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号