首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined relationships between stable isotopes of carbon (delta(13)C) and oxygen (delta(18)O) in tree rings of Callitris columellaris F. Muell in the semi-arid Pilbara region of north-western Australia. To test the hypothesis that stomatal control of photosynthesis decreases during drier periods, we developed delta(13)C and delta(18)O chronologies spanning 1919-1999, and used a permutation regression approach to relate a 21-year running correlation between delta(13)C and delta(18)O to rainfall and temperature at Marble Bar and our study site. The relationship between delta(13)C and delta(18)O switched from being always negative before 1955 to being consistently positive after 1976, suggesting an increase in stomatal control of photosynthesis in recent decades. Changes in the delta(13)C-delta(18)O relationship reflected changes in rainfall, which has increased in the region by 30% since 1976. The correlation between delta(13)C and delta(18)O was positively related to the 21-year running mean of normalized rainfall anomalies at both the study site (P = 0.045, Adj. r(2) = 0.47) and Marble Bar (P = 0.046, Adj. r(2) = 0.48). In addition, the delta(13)C-delta(18)O correlation was negatively related (P = 0.047, Adj. r(2) = 0.61) to temperatures at Marble Bar. Our interpretation of the role of changes in climate affecting the relationship between tree-ring delta(13)C and delta(18)O is supported by evidence from the isotope composition of foliage samples: foliar delta(13)C and delta(18)O were negatively correlated with log stomatal conductance (delta(13)C, r = -0.41; delta(18)O, r = -0.42), whereas the correlation between foliar delta(13)C and delta(18)O was positive (r = 0.63, P = 0.027) after the summer wet period. Our data indicate that stomatal control of photosynthesis in Callitris adjusts to region-wide changes in climate and that, in a warmer and drier world, trees might adapt by increasing non-stomatal control of photosynthesis.  相似文献   

2.
Carbon isotope composition (delta13C) of branchlet tissue at nine canopy positions, and nitrogen concentration (N(mass)) at four canopy positions, were assessed in 8-year-old hoop pine (Araucaria cunninghamii Ait. ex D. Don) trees from 23 half-sib families, grown in six blocks of a progeny test in southeastern Queensland, Australia. There was considerable variation among sampling positions, families and blocks in both delta13C and N(mass). The delta13C was positively related to N(mass) only for samples from the upper outer crown (P < 0.005). Phenotypic correlations existed between tree growth and canopy delta13C. Branchlet delta13C of the inner and lower outer crown was positively related (P < 0.037) to tree height, but delta13C in branchlets of the upper outer crown was not related to tree height, or was related negatively (P < 0.045). There were significant differences in delta13C between hoop pine families for six canopy positions (upper canopy positions as well as lower canopy positions on the northern side), with heritabilities greater than 0.40. The significance of these findings is discussed in relation to water and light competition within the tree canopy of hoop pine.  相似文献   

3.
We report field observations of oxygen isotope ((18)O) discrimination during nocturnal foliage respiration ((18)Delta(R)) in branch chambers in two forest ecosystems: a Sitka spruce (Picea sitchensis (Bong.) Carr.) plantation in Scotland; and a beech (Fagus sylvatica L.) forest in Germany. We used observations and modeling to examine the impact of nocturnal stomatal conductance on the (18)O/(16)O (delta(18)O) signatures of foliage gas exchange at night. We found that nocturnal stomatal conductance can influence the delta(18)O signature by affecting: (1) the bidirectional diffusion of CO(2) into and out of the leaf (with isotopic equilibration); and (2) the (18)O enrichment of the foliage water with which the CO(2) equilibrates. Both effects were manifest in high apparent (18)Delta(R) values and enriched delta(18)O signatures of foliage water at night. The effects were more pronounced for Sitka spruce because of its higher nocturnal stomatal conductance and higher specific leaf water content compared to beech. We found that taking the effects of nocturnal stomatal conductance into account may change the sign of the delta(18)O signature of nocturnal foliage respiration, generally thought to decrease the delta(18)O of atmospheric CO(2). We conclude that nocturnal stomatal exchange can have a profound effect on isotopic exchange depending on species and environmental conditions. These effects can be important when using delta(18)O signatures of canopy CO(2) to distinguish foliage and soil respiration, and when modeling the delta(18)O signature of CO(2) exchanged between ecosystems and the atmosphere.  相似文献   

4.
Huang Z  Xu Z  Blumfield TJ  Bubb K 《Tree physiology》2008,28(7):997-1005
Foliar gas exchange and carbon (delta(13)C) and oxygen (delta(18)O) isotope ratios were measured in a young blackbutt (Eucalyptus pilularis Sm.) plantation subjected to four weed control treatments defined by the width of the weed-free strip maintained for the first 12 months after planting. Treatments were: 2-m-wide weed-free strip (50% of plot area, 2.0MWC), 1.5-m-wide weed-free strip (37.5% of plot area, 1.5MWC), 1-m-wide weed-free strip (25% of plot area, 1.0MWC) and no weed control (NWC). Our objectives were to determine (1) if decreasing the width of the weed control strip (decreasing herbicide use) affected growth and leaf photosynthesis of the plantation, and (2) the effects of the weed control regimes on variations in relative stomatal and biochemical limitations to photosynthesis. Trees in the 1.0MWC treatment had lower foliar light-saturated photosynthetic rate (A(sat)) than trees in the 2.0MWC treatment. An increase in metabolic limitation was responsible for the decrease in A(sat) in the 1.0MWC trees, which was also partly confirmed by the isotopic data. Compared with trees in the 1.0MWC, 1.5MWC and 2.0MWC treatments, A(sat) of NWC trees was significantly lower, a difference that was attributable mainly to stomatal limitation and to a lesser extent to biochemical limitation. The results support the conclusion that different weed control regimes cause differences in relative stomatal and biochemical limitations to plantation photosynthesis. This report contributes to a growing body of literature on competition for soil resources between trees and weeds. Our results highlight the usefulness of the stable isotopic method in supporting analysis of the response of net photosynthesis to varying intercellular CO(2) concentration for determining the relative stomatal and non-stomatal limitations to photosynthesis under experimental conditions in the field.  相似文献   

5.
The objectives of this study were: (1) to examine how foliar carbon isotope discrimination (Delta) and oxygen isotope composition (delta(18)O) are related to tree growth, ash mineral nutrient concentration and foliar nutrient concentration in 7-year-old clones of the F(1) hybrid between slash pine (Pinus elliottii Engelm.) and Caribbean pine (P. caribaea var. hondurensis Barr. et Golf.) in subtropical Australia; and (2) to evaluate the potential of using foliar Delta, ash mineral nutrient concentration and delta(18)O measurements for selecting F(1) hybrid pine clones with high water-use efficiency (WUE) and growth potential. There were significant differences in tree growth, foliar Delta, delta(18)O and ash mineral nutrient concentration among the eight clones tested. Significant negative linear relationships existed between tree growth and Delta, extrapolating to zero growth at Delta = 24-30 per thousand. There were strong genetic correlations (r = -0.83 to -0.96) between Delta and tree growth, particularly tree height. Significant non-genetic correlations (r = -0.62 to -0.80) existed between Delta and foliar K concentration. Foliar delta(18)O, ash mineral nutrient concentration and foliar nutrient concentration were unrelated to tree growth. In the F(1) hybrid pine clones, variation in tree WUE, as reflected by Delta, was largely attributed to a genetic effect on leaf photosynthetic capacity rather than on stomatal conductance, as reflected by foliar delta(18)O.  相似文献   

6.
We assessed the effects of ambient tropospheric ozone on annual tree-ring growth, delta(13)C in the rings, leaf gas exchange and visible injury in three ozone-sensitive woody plant species in southern Switzerland. Seedlings of Populus nigra L., Viburnum lantana L. and Fraxinus excelsior L. were exposed to charcoal-filtered air (CF) and non-filtered air (NF) in open-top chambers, and to ambient air (AA) in open plots during the 2001 and 2002 growing seasons. Ambient ozone exposures in the region were sufficient to cause visible foliar injury, early leaf senescence and premature leaf loss in all species. Ozone had significant negative effects on net photosynthesis and stomatal conductance in all species in 2002 and in V. lantana and F. excelsior in 2001. Water-use efficiency decreased and intercellular CO(2) concentrations increased in all species in response to ozone in 2002 only. The width and delta(13)C of the 2001 and 2002 growth rings were measured for all species at the end of the 2002 growing season. Compared with CF seedlings, mean ring width in the AA and NF P. nigra seedlings was reduced by 52 and 46%, respectively, in 2002, whereas in V. lantana and F. excelsior, ring width showed no significant reductions in either year. Although delta(13)C was usually more negative in CF seedlings than in AA and NF seedlings, with the exception of F. excelsior in 2001, ozone effects on delta(13)C were significant only for V. lantana and P. nigra in 2001. Among species, P. nigra exhibited the greatest response to ozone for the measured parameters as well as the most severe foliar injury and was the only species to show a significant reduction in ring width in response to ozone exposure, despite significant negative ozone effects on leaf gas exchange and the development of visible foliar injury in V. lantana and F. excelsior. Thus, significant ozone-induced effects at the leaf level did not correspond to reduced tree-ring growth or increased delta(13)C in all species, indicating that the timing of ozone exposure and severity of leaf-level responses may be important in determining the sensitivity of tree productivity to ozone exposure.  相似文献   

7.
Prasolova NV  Xu ZH 《Tree physiology》2003,23(10):675-684
Genetic variation in branchlet nutrient (N, P, K, Na, Ca, Mg, Mn and Fe) concentrations and mineral concentration (sum of branchlet P, K, Na, Ca, Mg, Mn and Fe concentrations) of 8-9-year-old hoop pine (Araucaria cunninghamii Ait. ex D. Don) half-sib families was assessed for four canopy positions at a wet site (23 families) and two canopy positions at an N- and water-limiting dry site (22 families) in relation to tree growth and associated branchlet carbon (delta13C) and oxygen (delta18O) isotope composition in southeast Queensland, Australia. Branchlet nutrient and mineral concentrations varied significantly among families and with canopy position and site. Depending on the canopy position sampled, the hoop pine family effect accounted for 0 to 13.8% of the total variation in branchlet N concentration, and for 0 to 30.3% of the total variation in branchlet mineral concentration at the wet site. The corresponding values for the family effect at the dry site were 0-13.3% for branchlet N concentration and 0-25.7% for branchlet mineral concentration. There were significant variations in branchlet P, K, Ca and Mg concentrations at both sites, and these variations differed with canopy position. Relationships between family means of branchlet N concentration and tree growth or delta13C or delta18O varied with canopy position at both sites. At the wet site, there were significant positive correlations between branchlet mineral concentration in the upper-outer or upper-inner canopy and tree height (r = 0.26 and 0.37, P < 0.01) and between branchlet mineral concentration and delta13C (r = 0.24, P < 0.01) in the upper-inner canopy, and a significant negative correlation between branchlet mineral concentration and delta13C (r = -0.21, P < 0.05) in the upper-outer canopy. At the dry site, branchlet mineral concentrations in the upper-inner and upper-outer canopy were significantly correlated with branchlet delta13C (r = -0.28 and -0.51, P < 0.01), and branchlet N concentration in the upper-inner canopy was significantly correlated with tree growth (r = 0.29, P < 0.01). A significant correlation between branchlet delta18O (an index of stomatal conductance) and branchlet mineral concentration at the dry site (r = 0.39, P = 0.020) indicated that stomatal conductance might be a factor regulating the variation in branchlet mineral concentration of the hoop pine families. Both branchlet N concentration and mineral concentration at particular canopy positions assist in selecting hoop pine families with improved tree growth and N- and water-use efficiency in environments where both N deficiency and a limited water supply are major factors affecting plantation productivity.  相似文献   

8.
The stable oxygen isotope ratio (delta(18)O) of tree-ring cellulose is jointly determined by the delta(18)O of xylem water, the delta(18)O of atmospheric water vapor, the humidity of the atmosphere and perhaps by species-specific differences in leaf structure and function. Atmospheric humidity and the delta(18)O of water vapor vary seasonally and annually, but if the canopy atmosphere is well mixed, atmospheric characteristics should be uniform among co-occurring trees. In contrast, xylem water delta(18)O is determined by the delta(18)O of water being drawn from the soil, which varies with depth. If co-occurring trees draw water from different soil depths, this soil-water delta(18)O signal would be manifest as differences in delta(18)O among the trees. We examined the variation in tree ring delta(18)O, over eight decades during the 20th Century, among three species co-occurring in natural forest stands of the northern Rocky Mountains in the USA. We sampled 10 Douglas-firs (Pseudotsuga menziesii (Mirb.) Franco var. glauca), 10 ponderosa pines (Pinus ponderosa Laws.) and seven western white pines (Pinus monticola Dougl.). As expected, variation in atmospheric conditions was recorded in the delta(18)O of the cellulose produced in a given year, but observed climatic correlations with delta(18)O were weak. Significant correlations with June climate data included: daily maximum temperature (r = 0.29), daily minimum temperature (r = -0.25), mean temperature (r = 0.20), mean daily precipitation (r = -0.54), vapor pressure deficit (r = 0.32) and solar radiation (r = 0.44). Lagged effects were observed in Douglas-fir and western white pine. In these species, the delta(18)O of a given annual ring was correlated with the delta(18)O of the previous ring. Ponderosa pine showed no significant autocorrelation. Although the species means were correlated among years (r = 0.67 to 0.76), ponderosa pine was consistently enriched in delta(18)O relative to the other species; differences were close to 2 per thousand and they are steadily increasing. Relative to the mean for the three species, ponderosa pine is becoming steadily more enriched (-1.0 per thousand). In contrast, Douglas-fir is being steadily depleted and western pine is intermediate, with an enrichment of 0.5 per thousand. Because all trees were exposed to the same atmospheric conditions, the differences in delta(18)O observed between species are likely due either to differences in the depth of water extraction or leaf function. If the former, presumably ponderosa pine has steadily taken up more water from near the soil surface and Douglas-fir has shifted uptake to a greater depth. If the latter, we suggest the pronounced changes in leaf-water delta(18)O are a result of changes in leaf structure and function with tree size and age.  相似文献   

9.
Recent studies have shown that stomata respond to changes in hydraulic conductance of the flow path from soil to leaf. In open-grown tall trees, branches of different heights may have different hydraulic conductances because of differences in path length and growth. We determined if leaf gas exchange, branch sap flux, leaf specific hydraulic conductance, foliar carbon isotope composition (delta13C) and ratios of leaf area to sapwood area within branches were dependent on branch height (10 and 25 m) within the crowns of four open-grown ponderosa pine (Pinus ponderosa Laws.) trees. We found no difference in leaf gas exchange or leaf specific hydraulic conductance from soil to leaf between the upper and lower canopy of our study trees. Branch sap flux per unit leaf area and per unit sapwood area did not differ between the 10- and 25-m canopy positions; however, branch sap flux per unit sapwood area at the 25-m position had consistently lower values. Branches at the 25-m canopy position had lower leaf to sapwood area ratios (0.17 m2 cm-2) compared with branches at the 10-m position (0.27 m2 cm-2) (P = 0.03). Leaf specific conductance of branches in the upper crown did not differ from that in the lower crown. Other studies at our site indicate lower hydraulic conductance, sap flux, whole-tree canopy conductance and photosynthesis in old trees compared with young trees. This study suggests that height alone may not explain these differences.  相似文献   

10.
We tested the hypothesis that branch hydraulic conductivity partly controls foliar stable carbon isotope ratio (delta13C) by its influence on stomatal conductance in Pinus monticola Dougl. Notching and phloem-girdling treatments were applied to reduce branch conductivity over the course of a growing season. Notching and phloem girdling reduced leaf-specific conductivity (LSC) by about 30 and 90%, respectively. The 90% reduction in LSC increased foliar delta13C by about 1 per thousand (P < 0.0001, n = 65), whereas the 30% reduction in LSC had no effect on foliar delta13C (P = 0.90, n = 65). Variation in the delta13C of dark respiration was similar to that of whole-tissues when compared among treatments. These isotopic measurements, in addition to instantaneous gas exchange measurements, suggested only minor adjustments in the ratio of intercellular to atmospheric CO2 partial pressures (ci/ca) in response to experimentally reduced hydraulic conductivity. A strong correlation was observed between stomatal conductance (gs) and photosynthetic demand over a tenfold range in gs. Although ci/ca and delta13C appeared to be relatively homeostatic, current-year leaf area varied linearly as a function of branch hydraulic conductivity (r2 = 0.69, P < 0.0001, n = 18). These results suggest that, for Pinus monticola, adjustment of leaf area is a more important response to reduced branch conductivity than adjustment of ci/ca.  相似文献   

11.
Panek JA  Waring RH 《Tree physiology》1995,15(10):657-663
The natural abundance of stable carbon isotopes in the annual rings of forest trees is used as a tracer of environmental changes such as climate and atmospheric pollution. Although tree-ring delta(13)C varies by about 2 per thousand from year to year, variability within the foliage can be as high as 6 per thousand. Recent studies have shown that branch length affects stomatal response, which influences the integrated foliar delta(13)C signal. To improve the ability of delta(13)C to predict climate differences, we examined the relationship between branch length and foliar delta(13)C in Pseudotsuga menziesii (Mirb.) Franco from four sites across a steep climate gradient in Oregon. The transect spanned the boundary between the ranges of the coastal variety, P. menziesii var. menziesii (three sites), and the Rocky Mountain variety, P. menziesii var. glauca (one site). At the most maritime site, branch length explained 76% of within-site variation of 5 per thousand, whereas at the harshest site, branch length accounted for only 15% of this variation. We considered the possibility that cavitation in the water-conducting xylem obscures the branch length effect in the harsher climates. Cavitation, as measured by dye perfusion, was most extensive at sites where the branch length effect in the coastal variety was weakest. Trees at the site with the most substantial cavitation displayed seasonal xylem refilling. Branch length standardization significantly improved the relationship between delta(13)C and climate. With standardization to constant length, delta(13)C values were significantly related to the degree that climatic variables, as modeled with a forest growth simulation model, constrain transpiration (R(2) = 0.69, P < 0.0001). Without standardization, the R(2) was 0.27. We conclude that sampling standard length branches or tree rings from trees of similar shape and size is desirable when seeking correlations between isotopic composition and climate.  相似文献   

12.
We tested the hypothesis that forest age influences the carbon isotope ratio (delta13C) of carbon reservoirs and CO2 at local and regional levels. Carbon isotope ratios of ecosystem respiration (delta13C(R)), soil respiration (delta13C(R-soil)), bulk needle tissue (delta13C(P)) and soil organic carbon (delta(13)C(SOC)) were measured in > 450-, 40- and 20-year-old temperate, mixed coniferous forests in southern Washington, USA. Values of delta13C(R), delta13C(R-soil), delta13C(P) and delta13C(SOC) showed consistent enrichment with increasing stand age. Between the youngest and oldest forests there was an approximately 1 per thousand enrichment in delta13C(P) (at similar canopy levels), delta13C(SOC) (throughout the soil column), delta13C(R-soil) (during the wet season) and delta13C(R) (during the dry season). Mean values of delta13C(R) were -25.9, -26.5 and -27.0 per thousand for the 450-, 40- and 20-year-old forests, respectively. Both delta13C(R-soil) and the difference between delta13C(R) and delta13C(R-soil) were more 13C enriched in older forests than in young forest: delta13C(R) - delta13C(R-soil) = 2.3, 1.1 and 0.5 per thousand for the 450-, 40- and 20-year-old forests, respectively. Values of delta(13)C(P) were proportionally more depleted relative to delta13C(R): delta13C(R) - delta13C(P) = 0.5, 2.2 and 2.5 per thousand for the 450-, 40- and 20-year-old forests, respectively. Values of delta13C(P) were most 13C-enriched at the top of the canopy and in the oldest forest regardless of season (overall values were -26.9, -28.7 and -29.4 per thousand for the 450-, 40- and 20-year-old forests, respectively). Values of delta13C(SOC) from shallow soil depths were similar to delta13C(P) values of upper- and mid-canopy needles. All delta13C data are consistent with the hypothesis that a decrease in stomatal conductance associated with decreased hydraulic conductance leads to increased CO2 diffusional limitations in older coniferous trees. The strong associations between delta13C(P) in needles with delta13C(R) and delta13C(R-soil) at the forest level suggest that 13C observations scale between leaf and ecosystem levels.  相似文献   

13.
We used whole-tree, open-top chambers to expose 13-year-old loblolly pine (Pinus taeda L.) trees, growing in soil with high or low nutrient availability, to either ambient or elevated (ambient + 200 micromol mol-1) carbon dioxide concentration ([CO2]) for 28 months. Branch growth and morphology, foliar chemistry and gas exchange characteristics were measured periodically in the upper, middle and lower crown during the 2 years of exposure. Fertilization and elevated [CO2] increased branch leaf area by 38 and 13%, respectively, and the combined effects were additive. Fertilization and elevated [CO2] differentially altered needle lengths, number of fascicles and flush length such that flush density (leaf area/flush length) increased with improved nutrition but decreased in response to elevated [CO2]. These results suggest that changes in nitrogen availability and atmospheric [CO2] may alter canopy structure, resulting in greater foliage retention and deeper crowns in loblolly pine forests. Fertilization increased foliar nitrogen concentration (N(M)), but had no consistent effect on foliar leaf mass (W(A)) or light-saturated net photosynthesis (A(sat)). However, the correlation between A(sat) and leaf nitrogen per unit area (N(A) = W(A)N(M)) ranged from strong to weak depending on the time of year, possibly reflecting seasonal shifts in the form and pools of leaf nitrogen. Elevated [CO2] had no effect on W(A), N(M) or N(A), but increased A(sat) on average by 82%. Elevated [CO2] also increased photosynthetic quantum efficiency and lowered the light compensation point, but had no effect on the photosynthetic response to intercellular [CO2], hence there was no acclimation to elevated [CO2]. Daily photosynthetic photon flux density at the upper, middle and lower canopy position was 60, 54 and 33%, respectively, of full sun incident to the top of the canopy. Despite the relatively high light penetration, W(A), N(A), A(sat) and R(d) decreased with crown depth. Although growth enhancement in response to elevated [CO2] was dependent on fertilization, [CO2] by fertilization interactions and treatment by canopy position interactions generally had little effect on the physiological parameters measured.  相似文献   

14.
Overstory conditions influence understory microclimate and resource availability, leading to gradients in evaporative demand and moisture availability that influence seedling water relations. Partial canopies may either reduce seedling moisture stress by ameliorating environmental conditions, or increase moisture stress by reducing soil moisture availability. This study used stable isotope ratios of oxygen (δ18O) and carbon (δ13C) and mass-based foliar nitrogen concentrations to investigate changes in transpiration (E), stomatal conductance (gs) and intrinsic water use efficiency (iWUE) of pine seedlings across an overstory gradient from open canopy gap environments to closed canopy forest. Foliar δ18O increased sharply from basal areas of 0–10 m2 ha−1 in Pinus banksiana, Pinus resinosa, and Pinus strobus seedlings, followed by a more gradual increase with further increases in basal area. Foliar δ13C followed a similar, but less pronounced pattern in P. banksiana and P. strobus seedlings, and had no apparent relationship with overstory basal area in P. resinosa seedlings. The slope of the δ18O:δ13C relationship was positive for every species. Foliar nitrogen concentrations were not correlated with overstory basal area. These results suggest seedling E declined as overstory basal area increased due to reductions in gs, while iWUE increased slightly from open gaps to partial canopy environments. Open gap environments appear to provide sufficient moisture to sustain high leaf-level gas exchange rates in the species we studied, while relatively small increases in overstory basal area apparently promote rapid declines in gs, leading to greatly reduced seedling water loss and small increases in iWUE.  相似文献   

15.
The objectives of this study were: (1) to quantify the genetic variation in foliar nutrient concentration in relation to foliar carbon isotope composition (δ13C) and tree growth of 122 clones of ca. 4-year-old F1 hybrids between slash pine (Pinus elliottii Engelm var. elliottii) and Caribbean pine (P. caribaea var. hondurensis Barr. et Golf.) grown at two experimental sites with different water and nutrient availability in southeast Queensland, Australia and (2) to examine the potential of using foliar nutrient concentration of the 4-year-old tree canopies for selecting elite F1 hybrid pine clones with improved nutrient-use efficiency (NUE) and water-use efficiency (WUE), and ultimately enhanced tree growth under ambient growing conditions. There were significant differences in foliar nutrient concentrations between two canopy positions (upper outer and lower outer canopy) sampled, between summer and winter, and between the two sites. This highlights that foliar nutrient concentrations are influenced by sampling and environment. Significant genetic variations in foliar nutrient concentrations were detected between the clones, between the female parents, and between the male parents of the clones in both sampling seasons at both sites. Depending on the nutrient concerned, canopy position, season, and site sampled, the clones accounted for 4.7–33.9% of the total variation in foliar nutrient concentrations, the clone female parents for 0–25.1% and the clone male parents for 0–28.6%. The site-by-clone interactions were statistically significant for foliar N, P, Mg, Cu, Zn, Mn, Fe and mineral concentrations at the upper outer canopy in summer, and for foliar N concentration in winter. There were significant, positive correlations between clone means of foliar δ13C and N concentration at the upper outer canopy in summer for the wet site, while clone foliar δ13C was also positively related to clone foliar N concentration at both canopy positions in summer for the dry site. This suggests that clone WUE as reflected in foliar δ13C may be improved by selecting elite clones with higher foliar N concentration and increased photosynthesis, leading to enhanced tree growth when both water and N are the major growth-limiting factors. This is supported by the positive correlation detected between clone tree height and foliar N concentration at the upper outer canopy for both sites. Thus, foliar nutrient (particularly N) concentration, together with foliar δ13C, may be useful for assisting in selection of exotic pine clones with improved NUE and WUE, and enhanced tree growth under the nutrient- and water-limiting environments.  相似文献   

16.
Oksanen E 《Tree physiology》2003,23(9):603-614
Physiological responses of 4-year-old potted saplings of an O3-tolerant clone of Betula pendula Roth to short-term ozone (O3) exposure (one growing season) were compared with those of 6-year-old open-soil-grown trees of the same clone fumigated with O3 for six growing seasons. In the 2001 growing season, both groups of plants were exposed to ambient (control) and 1.6x ambient (elevated) O3 concentration under similar microclimatic conditions in a free air O3 exposure facility. Growth, net photosynthesis, stomatal conductance, stomatal density, visible foliar injury, starch and nutrient concentrations, bud formation and differences in O3 responses between lower, middle and upper sections of the canopy were determined. The potted saplings were unaffected by elevated O3 concentration, whereas the open-soil-grown trees showed a 3-38% reduction in shoot growth, a 22% reduction in number of overwintering buds, a 26-65% decrease in autumnal net photosynthesis, 30% and 20-23% reductions in starch and nitrogen concentrations of senescing leaves, respectively, and disturbances in stomatal conductance. The greater O3 sensitivity of open-soil-grown trees compared with potted saplings was a result of senescence-related physiological factors. First, a lower net photosynthesis to stomatal conductance ratio in open-soil-grown trees at the end of the season promoted O3 uptake and decreased photosynthetic gain, leading to the onset of visible foliar injuries. Second, decreased carbohydrate reserves may have resulted in deleterious carry-over effects arising from the reduced formation of over-wintering buds. Finally, the leaf-level O3 load was higher for open-soil-grown trees than for potted saplings because of slower leaf senescence in the trees. Thus, O3 sensitivity in European white birch increases with increasing exposure time and tree size.  相似文献   

17.
To assess the influence of stream water on leaf gas exchange and water potential in different sized boxelder trees (Acer negundo L.), we compared these characteristics in trees growing beside a perennial stream and a nearby ephemeral stream in a montane-riparian forest in northern Arizona. Patterns of tree water use were quantified by stable isotope analysis (delta(18)O). Physiological characteristics were similar for large and small trees. Similarity between sites in predawn and daytime water potentials and xylem delta(18)O indicated that stream water was not a physiologically important water source. Seasonal and site variations in light-saturated net photosynthetic rate were significantly related to leaf-to-air vapor pressure deficit (r = -0.691) and foliar nitrogen concentration (r = 0.388). Although deep water was the dominant water source, surface soil water was utilized following precipitation, especially by small trees. We conclude that net carbon gain and severity of water stress are only weakly coupled to stream water availability.  相似文献   

18.
The effects of post-planting weed control intensity on the cover and composition of ground vegetation, and on growth, survival and foliar nutrient concentrations of 4-year old bare-rooted Scots pine (Pinus sylvestris L.) seedlings were studied over a 15-year period with experimentation on former arable land. Weed control treatments with terbuthylazine and glyphosate were carried out 1?C3 times during successive years, either as overall or as spot applications. The vegetation cover and the shading effect of vegetation decreased with increasing weed control intensity. The more intensive the weed control was, the better was the afforestation result in terms of tree seedling growth and survival. Overall application repeated three times increased seedling survival by 79 percentage points, and their final height, breast height, diameter, and stand volume after 15 years were increased by 183, 19, 15, and 822%, respectively. Weed control did not affect the foliage nutrient concentrations, except for magnesium. However, increase in weed control intensity was reflected in larger needle size 5 years after planting.  相似文献   

19.
Forest gap in alpine forests may redistribute the hydrothermal conditions in winter and growing season, which may affect the releases of copper and zinc in foliar litter during decomposition. However, the details of this process are largely unknown. Foliar litters of willow (Salix paraplesia), larch (Larix mastersiana), fir (Abies faxoniana), azalea (Rhododendron lapponicum), birch (Betula albosinensis) and cypress (Sabina saltuaria) were selected in an alpine forest of eastern Tibetan Plateau. The litterbags were placed on the forest floor from gap center, canopy gap edge and expanded gap edge to closed canopy. Zinc and copper contents were studied as litter decomposition proceeded. After one year of decomposition, zinc accumulated in all foliar litters regardless of gap positions, but copper accumulated in the litters of fir, azalea and cypress. Separately, copper was released from all foliar litters in winter, whereas zinc in litters of larch, azalea, birch and cypress was released in winter. Moreover, both copper and zinc accumulated during the growing season regardless of litter species. Nevertheless, higher accumulation rates were observed under closed canopy compared with other gap positions. These results suggest that forest gap slows the releases of copper and zinc in foliar litter during forest regeneration in these cold biomes.  相似文献   

20.
An approach is detailed for calculating historical rates of CO(2) uptake and water loss of leaves from measurements of leaf delta(13)C composition and climatic information. This approach was applied to investigate leaf gas exchange metabolism of woody taxa during the past 200 years of atmospheric CO(2) increase and in response to the longer-term atmospheric CO(2) increases plants experienced over the Pleistocene. Reconstructed net assimilation rates and water use efficiencies increased in response to increasing atmospheric CO(2) concentrations in both sets of material, whereas stomatal conductance, showing the combined responses of changes in stomatal density and leaf assimilation rates, was generally less responsive. Woody temperate taxa maintained a nearly constant c(i)/c(a) ratio in response to the increase in atmospheric CO(2) concentrations over both timescales, in part, as a result of changes in stomatal density. The reconstructed leaf-scale physiological responses to past global climatic and atmospheric change corroborated those anticipated from experimental work indicating the adequate capacity of experiments, at least at the scale of individual leaves, to predict plant responses to future environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号