首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-eight Rhizobium strains were isolated from the root nodules of faba bean (Vicia faba L.) collected from 11 governorates in Egypt. A majority of these strains (57%) were identified as Rhizobium leguminosarum bv. viciae (Rlv) based on analysis of a nodC gene fragment amplified using specific primers for these faba bean symbionts. The strains were characterized using a polyphasic approach, including nodulation pattern, tolerance to environmental stresses, and genetic diversity based on amplified ribosomal DNA-restriction analysis (ARDRA) of both 16S and 23S rDNA. Analysis of tolerance to environmental stresses revealed that some of these strains can survive in the presence of 1% NaCl and a majority of them survived well at 37 °C. ARDRA indicated that the strains could be divided into six 16S rDNA genotypes and five 23S rDNA genotypes. Sequence analysis of 16S rDNA indicated that 57% were Rlv, two strains were Rhizobium etli, one strain was taxonomically related to Rhizobium rubi, and a group of strains were most closely related to Sinorhizobium meliloti. Results of these studies indicate that genetically diverse rhizobial strains are capable of forming N2-fixing symbiotic associations with faba bean and PCR done using nodC primers allows for the rapid identification of V. faba symbionts.  相似文献   

2.
Soil populations of Rhizobium leguminosarum bv. viciae (Rlv) that are infective and symbiotically effective on pea (Pisum sativum L.) have recently been shown to be quite widespread in agricultural soils of the eastern Canadian prairie. Here we report on studies carried out to assess the genetic diversity amongst these endemic Rlv strains and to attempt to determine if the endemic strains arose from previously used commercial rhizobial inoculants. Isolates of Rlv were collected from nodules of uninoculated pea plants from 20 sites across southern Manitoba and analyzed by plasmid profiling and PCR-RFLP of the 16S-23S rDNA internally transcribed spacer (ITS) region. Of 214 field isolates analyzed, 67 different plasmid profiles were identified, indicating a relatively high degree of variability among the isolates. Plasmid profiling of isolates from proximal nodules (near the base of the stem) and distal nodules (on lateral roots further from the root crown) from individual plants from one site suggested that the endemic strains were quite competitive relative to a commercial inoculant, occupying 78% of the proximal nodules and 96% of the distal nodules. PCR-RFLP of the 16S-23S rDNA ITS also suggested a relatively high degree of genetic variability among the field isolates. Analysis of the PCR-RFLP patterns of 15 selected isolates by UPGMA indicated two clusters of three field isolates each, with simple matching coefficients (SMCs) ≥0.95. However, to group all field isolates together, the SMC has to be reduced to 0.70. Regarding the origin of the endemic Rlv strains, there were few occurrences of the plasmid profiles of field isolates being identical to the profiles of inoculant Rlv strains commonly used in the region. Likewise, the plasmid profiles of isolates from nodules of wild Lathyrus plants located near some of the sites were all different from those of the field isolates. However, comparison of PCR-RFLP patterns suggested an influence of some inoculant strains on the chromosomal composition of some of the field isolates with SMCs of ≥0.92. Overall, plasmid profiles and PCR-RFLP patterns of the isolates from endemic Rlv populations from across southern Manitoba indicate a relatively high degree of genetic diversity among both plasmid and chromosomal components of endemic strains, but also suggest some influence of chromosomal information from previously used inoculant strains on the endemic soil strains.  相似文献   

3.
Although Phaseolus vulgaris L. is native from the Americas and is currently cultured in diverse areas, very little is known about the diversity of symbiotic nitrogen fixing Rhizobium (mycrosymbiont) in many of those cultures. Therefore, the aim of this study was to assess the genetic diversity of Rhizobium present in nodules of P. vulgaris in the central region of Chile. A method to extract DNA from surface-sterilized nodules was applied to two populations of the same seed variety grown in different fields. The 16S rRNA and nifH genes were amplified directly from the DNA extracted. DGGE analysis and clone libraries showed a restricted genetic diversity of the microsymbiotic populations that nodulate P. vulgaris. Both molecular markers revealed the presence of a microsymbiont closely related to Rhizobium etli in all the plants from the soils studied, indicating that the populations of Rhizobium sp. nodulating P. vulgaris in the central region of Chile displayed an extremely low genetic diversity. The level of genetic diversity in microsymbiont populations in plants grown in soils with different origin suggested that other factors rather than the indigenous soil rhizobial populations play a major role in the selection of the symbiotic partner in P. vulgaris.  相似文献   

4.
A diazotrophic bacterial strain denominated 11B isolated from the rhizosphere of a banana plant (Musa spp.) was characterized morphologically, biochemically, and phylogenetically, whereas the symbiotic potential of the strain was assessed through tests of host range, interstrain nodulation competitiveness, and capacity to synthesize indole-3-acetic acid (IAA) and solubilize phosphate. Based on morphological and physiological–biochemical properties, as well as 16S ribosomal deoxyribonucleic acid (rDNA) sequence and phylogenetic analysis, the strain 11B belonged to the genus Rhizobium with 100.0% sequence similarity with Rhizobium tropici CAF440. The optimum growth temperature and pH for strain 11B are 28°C and 7.2, respectively. This strain was able to produce IAA, solubilize phosphate, and fix large amounts of nitrogen (N2) and form effective nodules on the legumes Acaciella angustissima, Gliricidia sepium, Leucaena leucocephala, Lysiloma acapulcensis, and Phaseolus vulgaris. The rhizobial strain 11B was used successfully as a biofertilizer in agriculturally important legumes, forest trees, and agroindustrial plants.  相似文献   

5.
《Soil biology & biochemistry》2012,44(12):2384-2396
We investigated the diversity of rhizobia isolated from different indigenous legumes in Flanders (Belgium). A total of 3810 bacterial strains were analysed originating from 43 plant species. Based on rep-PCR clustering, 16S rRNA gene and recA gene sequence analysis, these isolates belonged to Bradyrhizobium, Ensifer (Sinorhizobium), Mesorhizobium and Rhizobium. Of the genera encountered, Rhizobium was the most abundant (62%) and especially the species Rhizobium leguminosarum, followed by Ensifer (19%), Bradyrhizobium (14%) and finally Mesorhizobium (5%). For two rep-clusters only low similarity values with other genera were found for both the 16S rRNA and recA genes, suggesting that these may represent a new genus with close relationship to Rhodopseudomonas and Bradyrhizobium. Primers for the symbiotic genes nodC and nifH were optimized and a phylogenetic sequence analysis revealed the presence of different symbiovars including genistearum, glycinearum, loti, meliloti, officinalis, trifolii and viciae. Moreover, three new nodC types were assigned to strains originating from Ononis, Robinia and Wisteria, respectively. Discriminant and MANOVA analysis confirmed the correlation of symbiosis genes with certain bacterial genera and less with the host plant. Multiple symbiovars can be present within the same host plant, suggesting the promiscuity of these plants. Moreover, the ecoregion did not contribute to the separation of the bacterial endosymbionts. Our results reveal a large diversity of rhizobia associated with indigenous legumes in Flanders. Most of the legumes harboured more than one rhizobial endosymbiont in their root nodules indicating the importance of including sufficient isolates per plant in diversity studies.  相似文献   

6.
Although rhizobia for common bean (Phaseolus vulgaris L.) are established in most Brazilian soils, understanding of their genetic diversity is very poor. This study characterized bean strains from two contrasting ecosystems in Brazil, the Northeast Region, with a semi-arid climate and neutral soils and the South Region, with a humid subtropical climate and acid soils. Seedlings of the cultivars Negro Argel and Aporé were used to trap 243 rhizobial isolates from 12 out of 14 sites. An analysis of ERIC-PCR products revealed enormous variability, with 81% of the isolates representing unique strains considering a level of 70% of similarity. In general, there was no effect of either the bean cultivar, or the ecosystem on rhizobial diversity. One-hundred and one strains showing genetic relatedness (ERIC-PCR) less than 70% were further analyzed using restriction fragment length polymorphism (RFLP) of the 16 S rDNA cleaved with five restriction enzymes. Twenty-five different profile combinations were obtained. Rhizobium etli was the predominant species, with 73 strains showing similar RFLP profiles, while 12 other strains differed only by the profile with one restriction enzyme. Fifty strains were submitted to sequencing of a 16 S rDNA fragment, and 34 clustered with R. etli, including strains with RFLP-PCR profiles similar to those species or differing by one restriction enzyme. However, other strains differing by one or two enzymes were genetically distant from R. etli and two strains with identical profiles showed higher similarity to Sinorhizobium fredii. Other strains showed higher similarity of bases with R. tropici, R. leguminosarum and Mesorhizobium plurifarium, but some strains were quite dissimilar and may represent new species. Great variability was also verified among the sequenced strains in relation to the ability to grow in YMA at 40 °C, in LB, to synthesize melanin in vitro, as well as in symbiotic performance, including differences in relation to the described species, e.g. many R. etli strains were able to grow in LB and in YMA at 40 °C, and not all R. tropici were able to nodulate Leucaena.  相似文献   

7.
The molecular characterization of 62 rhizobial isolates obtained from root-nodules of Arachis hypogaea growing in north-western Morocco was performed. Bacteria were firstly characterized by restriction of the 16S-rDNA region, and phylogeny was inferred from 16S gene sequences. Phylogenetically, isolates were grouped with species belonging to the Bradyrhizobium and Rhizobium genera. A high degree of variability was detected among isolates in terms of their nitrogen-fixing ability. This is, to our knowledge, the first study on genetic diversity and symbiotic effectiveness of rhizobia isolated from peanut nodules grown in Morocco. This characterization provides a basis for the selection of peanut-nodulating rhizobia which may have applications in the formulation of appropriate inocula to improve peanut crop yield on Moroccan soils.  相似文献   

8.
We have evaluated the genetic diversity and phylogeny of alfalfa rhizobia, originating from different types of soils in Serbia and their ability to establish an effective symbiosis with alfalfa (Medicago sativa L.). A collection of 65 strains isolated from root nodules of alfalfa were characterized by rep-PCR analysis, partial and complete 16S rDNA gene and recA gene sequencing, as well as atpD gene sequencing and DNA–DNA hybridizations. The results of the sequence analyses revealed that Sinorhizobium meliloti is the dominant species in alfalfa nodules. Only one strain was identified as Sinorhizobium medicae, two strains as Rhizobium tibeticum and one strain as Rhizobium sp. Despite the fact that the majority of strains were identified as S. meliloti, a high genetic diversity at strain level was detected. Almost all isolates shared the ability to nodulate and fix nitrogen with M. sativa, except 11 of them, which were incapable of fixing nitrogen with this species. About 50% of the isolates showed values of symbiotic effectiveness (SE) above 50%, while 10% of the strains were highly effective with SE values above 70%. Some of the strains which were highly effective in nitrogen fixation at the same time could intensively solubilize phosphates, offering a possibility for multipurpose inoculum development. This was the first genetic study of rhizobia isolated from this region and also the first report of natural presence of R. tibeticum in root nodules of M. sativa.  相似文献   

9.
Summary The competitive ability of inoculated and indigenous Rhizobium/Bradyrhizobium spp. to nodulate and fix N2 in grain legumes (Glycine max, Vigna unguiculata, Phaseolus vulgaris) and fodder legumes (Vicia sativa, Medicago sativa, and Trifolium subterraneum) was studied in pots with two local soils collected from two different fields on the basis of cropping history. The native population was estimated by a most-probable-number plant infectivity test in growth pouches and culture tubes. The indigenous rhizobial/bradyrhizobial population ranged from 3 to 2×104 and 0 to 4.4×103 cells g-1 in the two soils (the first with, the second without a history of legume cropping). Inoculated G. max, P. vulgaris, and T. subterraneum plants had significantly more nodules with a greater nodule mass than uninoculated plants, but N2 fixation was increased only in G. max and P. vulgaris. A significant response to inoculation was observed in the grain legume P. vulgaris in the soil not previously used to grow legumes, even in the presence of higher indigenous population (>103 cells g-1 soil of Rhizobium leguminosarum bv phaseoli). No difference in yield was observed with the fodder legumes in response to inoculation, even with the indigenous Rhizobium sp. as low as <14 cells g-1 soil and although the number and weight of nodules were significantly increased by the inoculation in T. subterraneum. Overall recovery of the inoculated strains was 38–100%, as determined by a fluorescent antibody technique. In general, the inoculation increased N2 fixation only in 3 out of 12 legume species-soil combinations in the presence of an indigenous population of rhizobial/bradyrhizobial strains.  相似文献   

10.
Chickpea (Cicer arietinum L.) nodulation variants of two cultivars ICC 4948 and ICC 5003 were used as trap plants to isolate 385 native rhizobia from CCS Haryana Agricultural University, Hisar farm soil. After authentication and considering growth characteristics, selected 110 rhizobia revealed immense molecular diversity using the profiles of DNA fragments generated by Polymerase chain reaction (PCR) with enterobacterial repetitive intergeneric consensus (ERIC) sequences. Low nodulating variants of cvs ICC 4948 and ICC 5003 were able to trap more numbers of rhizobial genotypes, namely seven as compared four to five by high nodulating variants of these cultivars. Overall eight rhizobial genotypes were trapped by the chickpea cultivars. Rhizobial isolates from same nodule or same plants were present in the same or different clusters and few isolates showed 100% similarity also. Based on nodules from a plant, nodulation variant or cultivar, rhizobia could not be differentiated and no exclusive cluster was formed by either rhizobial isolates from low or high nodulating variants of both the cultivars. Two most efficient rhizobial isolates LN 707b and LN 7007 were characterized by amplification and sequencing of 16S rRNA gene. Rhizobial isolate LN 707b showed more than 98% similarity with Mesorhizobium sp SH 2851 and Mesorhizobium mediterraneum. Another isolate LN 7007 showed more than 99% similarity with the sequence of 16S r RNA gene of Mesorhizobium sp STM 398, and M. mediterraneum. So the chickpea rhizobia from Northern Indian subcontinent are proposed to be kept under M. mediterraneum strain LN707b and LN 7007.  相似文献   

11.
The aim of this work was to investigate the genetic diversity, symbiotic effectiveness, drought tolerance, and indole acetic acid production of indigenous rhizobial populations in the Parque Chaqueño of Argentina able to nodulate Prosopis alba, the dominant forest tree of this region. The populations were sampled at five locations from the Arid, Semi-arid, and Humid Chaco in the Parque Chaqueño region. A set of rhizobial strains able to nodulate P. alba was obtained and selected based on their molecular diversity. Data obtained by BOX-PCR indicated that the highest molecular variability was observed in rhizobial isolates from Semi-arid Chaco. High level of indolic compound production and tolerance to osmotic treatment were significantly (p?≤?0.05) correlated with water restrictions of the environments where the strains belonged. A small set of rhizobial strains that stimulate P. alba growth was selected from a large group of strains. The strains were identified by 16S rDNA sequencing as belonging to the genera Mesorhizobium, Bradyrhizobium, and Ensifer. To our knowledge, this is the first report of P. alba nodulation by strains other than Mesorhizobium chacoense, which was already described for the Parque Chaqueño.  相似文献   

12.
Abstract

Symbiotic nitrogen fixation potential in common bean is considered to be low in comparison with other grain legumes. However, it may be possible to improve the nitrogen fixation potential of common bean using efficient rhizobia. In order to improve osmotic stress tolerance of a drought-sensitive common bean cultivar (COCOT) consumed in Tunisia, plants were inoculated either by the reference strain Rhizobium tropici CIAT 899 or by inoculation with rhizobia isolated from native soils Rhizobium gallicum 8a3. Fifteen days after sowing, osmotic stress was applied by means of 25 mM mannitol (low stress level) or by 75 mM mannitol (high stress level). Fifteen days after treatment plants were harvested and different physiological and biochemical parameters were analysed. Results showed no significant differences between the studied symbioses under control conditions. However after exposure to osmotic stress our results showed better tolerance of COCOT to osmotic stress when inoculated with the native R. gallicum 8a3. This can be partially explained by better water-use efficiency in both leaves and nodules, better relative water content in nodules and better efficiency in utilization of rhizobial symbiosis as compared with COCOT-CIAT 899 symbiosis. Hence, the present study suggested the better use of native soil isolated strains for the inoculation of common bean in order to improve its performance and nitrogen fixation potential under stressful conditions.  相似文献   

13.
We examined the bean rhizobia community other than the predominant species Rhizobium etli present in soils of a region that is part of the range occupied by the host in Northwest Argentina, which showed Rep and 16S rDNA RFLP polymorphism. Two populations represented by isolates T29N3L and T44N22P were found to be distinct chromosomal genotypes and closely related to species Rhizobium tropici and Agrobacterium rhizogenes. Their symbiotic genes were analyzed and found to cluster with those from R. tropici as well as with rhizobia isolated from leguminous trees. Three nodulation metabolites produced by T44N22P were detected which are tetra- and pentameric chitocompounds, N-methylated, O-carbamoylated, and N-substituted either by a C18:0 or C18:1 acyl chain at their non-reducing end, and all them sulphated at the reducing end. Isolates T29N3L and T44N22P exhibited broad host range but unlike T29N3L, only T44N22P was able to efficiently nodulate Medicago truncatula.  相似文献   

14.
Common bean (Phaseolus vulgaris) is native to the Americas, and Rhizobium etli is the dominant microsymbiont in both the Mesoamerican and the Andean centers of genetic diversification. Wild common beans are not found in Brazil, although the legume has been cropped in the country throughout time and all but one of the rhizobial species that nodulate it (Rhizobium gallicum) have been broadly detected in Brazilian soils. However, the majority of the effective rhizobial strains isolated so far from field-grown plants belong to R. tropici. This study describes the analysis of symbiotic and non-symbiotic genes of 15 effective R. tropici strains, isolated from four geographically distant regions in Brazil. With RFLP-PCR of the 16S and 23S rRNA genes and sequence analysis of 16S rRNA, two clusters were observed, one related to R. tropici type A and another to type B strains. Diversity in ribosomal genes was high, indicating that type A strains might represent a new species. High intraspecies diversity was also observed in the rep-PCR analysis with BOX, ERIC and REP primers. However, in the RFLP-PCR analysis of nifH and nodC genes, all R. tropici showed unique combinations of profiles, which might reflect an evolutionary strategy to maximize N2 fixation.  相似文献   

15.
《Applied soil ecology》2003,22(3):211-223
A legume introduced into a new area will only form nodules and fix nitrogen if compatible rhizobia are present in the soil. Using 25 (60 in the case of Sesbania sesban) soils sampled from tropical areas of Africa, Asia and Latin America, we examined the nodulation of four agroforestry tree species (Calliandra calothyrsus, Gliricidia sepium, Leucaena leucocephala and S. sesban), their symbiotic interactions with the native rhizobial populations, and some of the ecological indicators of rhizobial population dynamics. Rhizobial population sizes estimated by the legume species ranged from undetectable numbers to 3.16×104 cells per g of soil depending on the trap host species. Although C. calothyrsus had the highest nodulation rate in the soils used, inoculation tests showed L. leucocephala to be the most promiscuous species while G. sepium had the most effective symbiosis. S. sesban was the most specific for both nodulation and symbiotic effectiveness. Symbiotic effectiveness did not bear any close relationship with specific soil parameters, but rhizobial numbers were highly correlated with soil acidity, particle size and exchangeable bases. Soil acidity was also the main factor that was highly correlated with genetic diversity among the rhizobial populations.  相似文献   

16.
In 1993 and 1994, 12 bacterial isolates were isolated from root nodules of cicer milkvetch (Astragalus cicer). In the tests for nodulation of A. cicer by these bacterial isolates, five were found to form hypertrophic structures, while only two formed true nodules. These true nodules were formed in a sterilized soil system. This system might be able to act as a DNA donor to provide residual DNA to other microbes in the soil. The rhizobial isolates were thought to have lost genetic material crucial to nodulation during the isolation process. This hypothesis was supported by an experiment in which isolate B2 was able to nodulate A. cicer in vermiculite culture after being mixed with heat-killed rhizobia, Rhizobium leguminosarum bv. trifolii and R. loti. The nodulation would not occur in vermiculite culture system without the heat-killed rhizobia. Based on the biochemical data, the B2 and 9462L, which formed true nodules with A. cicer, were closely related. The rhizobia type cultures that nodulate A. cicer include Bradyrhizobium japonicum, Rhizobium leguminosarum bv. trifolii, R. leguminosarum bv. viceae, and R. loti. All of these rhizobia were from different cross-inoculation groups. The B2 and 9462L isolates could only nodulate Medicago sativa, Phaseolus vulgaris, and Melilotus officinalis, but not these species within the genus from which they were isolated: Astragalus. The traditional cross-inoculation group concept obviously does not fit well in the classification of rhizobia associated with Astragalus. The rhizobia isolated from A. cicer can be quite different, and the rhizobia able to renodulate A. cicer also quite diverse. Received: 27 June 1996  相似文献   

17.
The symbiosis between the soil bacteria Rhizobium, Sinorhizobium, Azorhizobium, Mesorhizobium or Bradyrhizobium and leguminous plants is characterised by a specific multistep signal exchange. Only when a compatible rhizobial strain encounters its leguminous host, nodules will be formed on the roots of the host. During infection of this nodule, the microsymbiont evolves into a bacteroid form which, when provided with plant-derived carbon sources, is able to convert atmospheric nitrogen to ammonia that subsequently is supplied to the plant. The developmental programme underlying nodule organogenesis and functioning has been studied intensively for several decades. In this review, several observed plant phenotypes resulting from an ineffective symbiosis between plants and mutant rhizobial strains are represented. Besides the influence of the bacterial nodulation, nitrogen fixation and surface polysaccharide genes on symbiosis, the role of other genes important for the formation of effective nitrogen fixing nodules will be explained.  相似文献   

18.
Phaseolus vulgaris is a legume extensively cultivated in Spain, León province being the most important producer. This province produces selected varieties of common bean highly appreciated by their quality that warrants a Protected Geographic Indication (PGI). In this work we analysed the rhizobia present in nodules of the variety “Riñón” in several soils from León province in order to select native rhizobial strains to be used as biofertilizers. The analysis of rrs and housekeeping genes of these strains showed that they belong to two phylogenetic groups within Rhizobium leguminosarum (I and II). Although the group II strains were most abundant in nodules, very effective strains were also found in group I. Strains LCS0306 from group I and LBM1123 from group II were the best nitrogen fixers among all strains isolated and were selected for field experiments. The field research showed that the biofertilization of common bean with native and selected rhizobial strains can completely replace the fertilization with chemical N fertilizers. The biofertiliser designed in such way, was valid for the whole agroecological area, regardless the specific properties of each soil and microclimatic conditions. This conclusion can be generalised as a strategy for the development of biofertilisers in different agroecological conditions worldwide.  相似文献   

19.
Root-nodule bacteria that nodulate the legume genus Lotononis are being investigated to develop new forage species for agriculture. Bacteria isolated from nodules of Lotononis angolensis were fast-growing, highly mucoid and pink-pigmented, and on the basis of 16S rRNA phylogeny <94% related to other genera in the Alphaproteobacteria. Root-nodule bacteria isolated from other Lotononis species (L. bainesii, L. solitudinis and L. listii) resembled the more common dry, slow-growing, pink-pigmented rhizobia previously described for L. bainesii. These isolates could be attributed to the Methylobacterium genus, although not to the type species Methylobacterium nodulans. Further differences were uncovered with nodulation studies revealing that nodule isolates from L. angolensis were effective at nitrogen fixation on their host plant, but could nodulate neither L. bainesii nor L. listii. Reciprocal tests showed isolates from L. bainesii, L. listii and L. solitudinis were incapable of nodulating L. angolensis effectively. Nodule morphology for L. bainesii, L. angolensis and L. listii was characteristically lupinoid, with little structural divergence between the species, and with nodules eventually enclosing the entire root.  相似文献   

20.
A hydroponic experiment with six treatments, i.e., 0% seawater (control), 10% seawater, 25% seawater, 0% seawater + N (7.5 mmol L-1 NaNO3), 10% seawater + N (7.5 mmol L-1 NaO3), and 25% seawater + N (7.5 mmol L-1 NaNO3), was carried out to study the effect of nitrogen addition on the growth and physiological and biochemical characteristics of Jerusalem artichoke (Helianthus tuberosus) seedlings under seawater stress. The 10% seawater stress treatment had the least effect on plant growth while at 25% seawater growth was significantly inhibited. The malondialdehyde content and electrolyte leakage in leaves under 10% seawater were similar to those of the control, but significantly higher under the 25% seawater stress. The activities of superoxide dismutase, peroxidase and catalase in the leaves increased concomitantly with increasing seawater concentration and time. Proline and soluble-sugars in the leaves and Na^+, K^+, and Cl- contents in shoots and roots increased significantly with the concentration of seawater increasing. Nitrogen addition resulted in increasing fresh and dry weights of shoots and roots compared with seawater treatment without N. Nitrogen supplementation also significantly enhanced the activities of antioxidant enzymes in leaves. Addition of N to seawater enhanced the contents of proline and soluble-sugars in the leaves and K^+ and total-N in the aerial parts and roots of H. tuberosus, but it resulted in declined concentrations of Na^+ and Cl- in the aerial parts and roots. Nitrogen addition ameliorated the toxicity of seawater by improving the antioxidative enzymes, accumulating of proiine and soluble-sugars, and altering the distribution of inorganic ions in H. tuberosus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号