首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Soil & Tillage Research》2007,92(1-2):57-67
Tillage, organic resources and fertiliser effects on soil carbon (C) dynamics were investigated in 2000 and 2001 in Burkina Faso (West Africa). A split plot design with four replications was laid-out on a loamy-sand Ferric Lixisol with till and no-till as main treatments and fertiliser types as sub-treatments. Soil was fractionated physically into coarse (0.250–2 mm), medium (0.053–0.250 mm) and fine fractions (< 0.053 mm). Particulate organic carbon (POC) accounted for 47–53% of total soil organic carbon (SOC) concentration and particulate organic nitrogen (PON) for 30–37% of total soil nitrogen concentration. The POC decreased from 53% of total SOC in 2000 to 47% of total SOC in 2001. Tillage increased the contribution of POC to SOC. No-till led to the lowest loss in SOC in the fine fraction compared to tilled plots. Well-decomposed compost and single urea application in tilled as well as in no-till plots induced loss in POC. Crop N uptake was enhanced in tilled plots and may be up to 226 kg N ha−1 against a maximum of 146 kg N ha−1 in no-till plots. Combining crop residues and urea enhanced incorporation of new organic matter in the coarse fraction and the reduction of soil carbon mineralisation from the fine fraction. The PON and crop N uptake are strongly correlated in both till and no-till plots. Mineral-associated N is more correlated to N uptake by crop in tilled than in no-till plots. Combining recalcitrant organic resources and nitrogen fertiliser is the best option for sustaining crop production and reducing soil carbon decline in the more stabilised soil fraction in the semi-arid West Africa.  相似文献   

2.
In recent years alternative farming practices have received considerable attention from Canadian producers as a means to improve their net return from grain and oilseed production. Enhancing the efficiency of nitrogen fertilizer use, including a pulse crop in the rotation, reducing tillage and pesticide use are seen as viable options to reduce reliance on fossil fuel, lower input costs and decrease the risk of soil, air and water degradation. The objective of this study was to determine the effects of 16 alternative management practices for a 2-year spring wheat (Triticum aestivum L.)–field pea (Pisum sativum L.) rotation on economic returns, non-renewable energy use efficiency, and greenhouse gas emissions. The alternative management methods for wheat consisted of a factorial combination of high vs. low soil disturbance one pass seeding, four nitrogen (N) fertilizer rates (20 kg N ha?1, 40 kg N ha?1, 60 kg N ha?1 and 80 kg N ha?1), and recommended vs. reduced rates of in-crop herbicide application. Alternative management practices for field pea were high vs. low soil disturbance one pass seeding. The resulting 16 cropping systems were evaluated at the whole farm level based on 4 years (two rotation cycles) of data from field experiments conducted on two Orthic Black Chernozem soils (clay loam and loam textures) in Manitoba, Canada. The highest net returns on the clay loam soil were for the high disturbance system with 60 kg N ha?1 applied to wheat and the recommended rates of in-crop herbicides. The lowest application rate of N, together with low disturbance seeding, provided the highest economic returns on the loam soil. Energy use efficiency was highest for the lowest rate of N application for both tillage systems. The highest rate of N fertilizer and recommended rates of in-crop herbicide produced little additional yield response, lower net returns, and higher GHG emissions. An increase in N fertilizer application from 20 kg ha?1 to 80 kg ha?1 increased whole farm energy requirements by about 40%, while reducing herbicide rates had negligible effects on grain yields and total energy input. Overall, as N fertilizer rate increased, the associated GHG emissions were not offset by an increase in carbon retained in the above-ground crop biomass. Moderate to high soil test NO3-N levels at experimental sites reduced the potential for positive yield responses to N fertilizer in this study, thus minimizing the economic benefits derived from N fertilizer application.  相似文献   

3.
Contradictory effects of simultaneous available organic C and N sources on nitrous oxide (N2O), carbon dioxide (CO2) and nitric oxide (NO) fluxes are reported in the literature. In order to clarify this controversy, laboratory experiments were conduced on two different soils, a semiarid arable soil from Spain (soil I, pH=7.5, 0.8%C) and a grassland soil from Scotland (soil II, pH=5.5, 4.1%C). Soils were incubated at two different moisture contents, at a water filled pore space (WFPS) of 90% and 40%. Ammonium sulphate, added at rates equivalent to 200 and 50 kg N ha?1, stimulated N2O and NO emissions in both soils. Under wet conditions (90% WFPS), at high and low rates of N additions, cumulative N2O emissions increased by 250.7 and 8.1 ng N2O–N g?1 in comparison to the control, respectively, in soil I and by 472.2 and 2.1 ng N2O–N g?1, respectively, in soil II. NO emissions only significantly increased in soil I at the high N application rate with and without glucose addition and at both 40% and 90% WFPS. In both soils additions of glucose together with the high N application rate (200 kg N ha?1) reduced cumulative N2O and NO emissions by 94% and 55% in soil I, and by 46% and 66% in soil II, respectively. These differences can be explained by differences in soil properties, including pH, soil mineral N and total and dissolved organic carbon content. It is speculated that nitrifier denitrification was the main source of NO and N2O in the C-poor Spanish soil, and coupled nitrification–denitrification in the C-rich Scottish soil.  相似文献   

4.
Irrigation management has an important influence on emissions of nitrous oxide (N2O) and nitric oxide (NO) from irrigated agricultural soils. In order to develop strategies to reduce the emission of these gases, a field experiment was carried out to compare the influence of different irrigation systems: furrow (FI) and drip-irrigation (DI), on N2O and NO emissions from a soil during the melon crop season. Two fertilizer treatments were evaluated for each irrigation regime: ammonium sulphate (AS) as a mineral N fertilizer, at a rate of 175 kg N ha?1; and a control without any N fertilizer (Control). On plots where the AS treatment was applied, drip irrigation reduced total N2O and NO emissions (by 70% and 33% respectively) with respect to values for furrow irrigation. This was probably due to the lower amount of water applied and the different soil wetting pattern associated with DI. Dry areas of the drip-irrigated plots emitted a similar amount of N2O to the wet areas (0.45 kg N2O-N ha?1) in the Control and greater quantities in the AS treatment (0.92 kg N2O-N ha?1 for dry and 0.70 kg N2O-N ha?1 for wet areas). We suggest that the N oxide pulses observed throughout the irrigation period on DI plots could have been the result of frequent increases in the soil wetting volume after the addition of water. Denitrification losses (from depths of 0–10 cm) were estimated at 11.44 kg N2O- N ha?1 for the AS treatment under FI and at 4.96 kg N2O-N ha?1 for DI. Under DI, nitrification was an important source of N2O, whereas denitrification was the most important source under FI. The addition of NH4+ and the use of DI enhanced the N2O/N2 ratio of gases produced through denitrification. The quantity of dissolved organic C (DOC) in the soil generally decreased with addition of NH4+.This work showed that, in comparison with furrow irrigation, drip irrigation is a method that can be used to save water and mitigate emissions of the atmospheric pollutants NO and N2O.  相似文献   

5.
Earlier research with endogeic and epigeic earthworm species in loamy arable soil has shown that both earthworm groups can increase nitrous oxide (N2O) emissions, provided that crop residue placement matches the feeding strategy of the earthworm ecological group(s). However, it is not yet clear whether these effects also occur in sandy soils which typically contain less soil organic matter and have low soil aggregation levels. Here, we aimed to quantify N2O emissions as affected by endogeic and/or epigeic earthworm species, and to relate changes in N2O emissions to earthworm-induced changes in soil properties in a sandy soil. A 90 day mesocosm study was conducted with sandy soil and 15N-labeled radish (Raphanus sativus cv. Adagio L.) residue applied on top. Treatments included: (i) no earthworm addition, (ii) addition of the endogeic species Aporrectodea caliginosa (Savigny), (iii) addition of the epigeic species Lumbricus rubellus (Hoffmeister), and (iv) both species combined. An additional treatment was included without earthworms and with residue manually incorporated into the soil. L. rubellus significantly increased cumulative N2O emissions from 228 to 859 μg N2O–N kg?1 (F1,12 = 83.12, P < 0.001), whereas A. caliginosa did not affect N2O emissions. In contrast to earlier studies in loamy soil, no positive interaction between both species with regard to N2O emissions was found. This was probably related to high competition for organic resources in the relatively poor soil and a low potential for stable soil aggregate formation (and associated anaerobic microsites) by endogeic worms in sandy soil. 15N isotope analysis revealed that the activity of L. rubellus significantly increased (F1,12 = 6.20, P = 0.028) the recovery of 15N in the 250–8000 μm size fraction, indicating incorporation of crop residues into the mineral soil. When residues were manually incorporated, N2O emissions were significantly (P < 0.008) lower (509 μg N2O–N kg?1) than when incorporated by L. rubellus. The high N2O emissions in the presence of L. rubellus, when compared to manual mixing, suggest a stimulation of microbial activity and/or changes in the microbial community composition. Insights on the earthworm effects on N2O emission from such soils are discussed.  相似文献   

6.
Field experiments were conducted during successive rainy seasons in 2006 in the Chau Thanh district of southern Vietnam to evaluate the effects of an inoculant plant growth promoter product called “BioGro” and N fertiliser rates on yield and N and P nutrition of rice. The results indicated that inoculation with BioGro, containing a pseudomonad, two bacilli and a soil yeast, significantly increased grain and straw yields and total N uptake in both seasons, as well as grain quality in terms of percentage N. Nitrogen fertilisation increased grain and straw yields as well as total N and P uptakes significantly in both cropping seasons. The estimated grain yield response to added N was quadratic in nature with and without added BioGro. In the first crop, BioGro out-yielded the control up to 90 kg urea N ha?1 whilst in the second season the beneficial effect of BioGro was observed up to 120 kg urea N ha?1, indicating either an interaction of the inoculant with higher yielding seasonal conditions or a cumulative effect of BioGro application. In the first season, the estimated N rate for maximum grain yield was 103 kg N ha?1 with BioGro while it was 143 kg N ha?1 without BioGro. The maximum estimated grain yields were 3.21 and 3.18 t ha?1 with and without BioGro, respectively. This information indicates that BioGro was able to save 40 kg N ha?1 with an additional rice yield of 30 kg ha?1 in the season. In the second rainy season, the estimated N rates for maximum grain yields were 94 and 97 kg N ha?1 with and without BioGro, respectively. The estimated maximum grain yields were 3.49 and 3.25 t ha?1 with and without BioGro, respectively. The two seasons’ combined results indicate that application of BioGro improved the efficiency of N use by rice significantly, saving 43 kg N ha?1 with an additional rice yield of 270 kg ha?1 in two consecutive seasons at the experimental site. The extra efficiency was shown by the fact that the same yield of rice was obtained with about 40 and 60 kg less fertiliser-N that the maximum yields with urea alone in the two successive harvests on the same plots.  相似文献   

7.
Soils in Mexico are often contaminated with hydrocarbons and addition of waste water sludge and earthworms accelerates their removal. However, little is known how contamination and subsequent bioremediation affects emissions of N2O and CO2. A laboratory study was done to investigate the effect of waste water sludge and the earthworm Eisenia fetida on emission of N2O and CO2 in a sandy loam soil contaminated with the polycyclic aromatic hydrocarbons (PAHs): phenanthrene, anthracene and benzo(a)pyrene. Emissions of N2O and CO2, and concentrations of inorganic N (ammonium (NH4+), nitrite (NO2?) nitrate (NO3?)) were monitored after 0, 5, 24, 72 and 168 h. Adding E. fetida to the PAHs contaminated soil increased CO2 production rate significantly 2.0 times independent of the addition of sludge. The N2O emission rate from unamended soil expressed on a daily base was 5 μg N kg?1 d?1 for the first 2 h and increased to a maximum of 325 μg N kg?1 d?1 after 48 h and then decreased to 10 μg N kg?1 d?1 after 168 h. Addition of PAHs, E. fetida or PAHs + E. fetida had no significant effect on the N2O emission rate. Adding sludge to the soil sharply increased the N2O emission rate to >400 μg N kg?1 d?1 for the entire incubation with a maximum of 1134 μg N kg?1 d?1 after 48 h. Addition of E. fetida, PAHs or PAHs + E. fetida to the sludge-amended soil reduced the N2O emission rate significantly compared to soil amended with sludge after 24 h. It was found that contaminating soil with PAHs and adding earthworms had no effect on emissions of N2O. Emission of N2O, however, increased in sludge-amended soil, but addition of earthworms to this soil and contamination reduced it.  相似文献   

8.
《Soil & Tillage Research》2007,96(1-2):348-356
Agricultural soils can be a major sink for atmospheric carbon (C) with adoption of recommended management practices (RMPs). Our objectives were to evaluate the effects of nitrogen (N) fertilization and cropping systems on soil organic carbon (SOC) and total N (TN) concentrations and pools. Replicated soil samples were collected in May 2004 to 90 cm depth from a 23-year-old experiment at the Northwestern Illinois Agricultural Research and Demonstration Center, Monmouth, IL. The SOC and TN concentrations and pools, soil bulk density (ρb) and soil C:N ratio were measured for five N rates [0 (N0), 70 (N1), 140 (N2), 210 (N3) and 280 (N4) kg N ha−1] and two cropping systems [continuous corn (Zea mays L.) (CC), and corn–soybean (Glycine max (L.) Merr.) rotation (CS)]. Long-term N fertilization and cropping systems significantly influenced SOC concentrations and pools to 30 cm depth. The SOC pool in 0–30 cm depth ranged from 68.4 Mg ha−1 for N0 to 75.8 Mg ha−1 for N4. Across all N treatments, the SOC pool in 0–30 cm depth for CC was 4.7 Mg ha−1 greater than for CS. Similarly, TN concentrations and pools were also significantly affected by N rates. The TN pool for 0–30 cm depth ranged from 5.36 Mg ha−1 for N0 to 6.14 Mg ha−1 for N4. In relation to cropping systems, the TN pool for 0–20 cm depth for CC was 0.4 Mg ha−1 greater than for CS. The increase in SOC and TN pools with higher N rates is attributed to the increased amount of biomass production in CC and CS systems. Increasing N rates significantly decreased ρb for 0–30 cm and decreased the soil C:N ratio for 0–10 cm soil depth. However, none of the measured soil properties were significantly correlated with N rates and cropping systems below 30 cm soil depth. We conclude that in the context of developing productive and environmentally sustainable agricultural systems on a site and soil specific basis, the results from this study is helpful to strengthening the database of management effects on SOC storage in the Mollisols of Midwestern U.S.  相似文献   

9.
The treatment of manures may improve their agricultural value and environmental quality, for instance with regards to greenhouse gases mitigation and enhancement of carbon (C) sequestration. The present study verified whether different pig slurry treatments (i.e. solid/liquid separation and anaerobic digestion) changed slurry composition. The effect of the slurry composition on N2O and CO2 emissions, denitrification and soil mineral nitrogen (N), after soil incorporation, was also examined during a 58-day mesocosm study. The treatments included a non-treated pig slurry (NT), the solid fraction (SF), and the liquid fraction (LF) of a pig slurry and the anaerobically digested liquid fraction (DG). Finally, a non-fertilized (N0) and a treatment with urea (UR) were also present.The N2O emissions measured represented 4.8%, 2.6%, 1.8%, 1.0% and 0.9% of N supplied with slurry/fertilizer for NT, LF, DG, SF and UR, respectively. Cumulative CO2 emissions ranged from 0.40 g CO2-C kg?1 soil (0.38 Mg CO2-C ha?1) to 0.80 g CO2-C kg?1 soil (0.75 Mg CO2-C ha?1). They were highest for SF (56% of C applied), followed by NT (189% of C applied), LF (337% of C applied) and DG (321% of C applied). Ammonium was detected in the soil for all treatments only at day one, while nitrate concentration increased linearly from day 15 to day 58, at a rate independent of the type of slurry/fertilizer applied. The nitrate recovery at day 58 was 39% of the N applied for NT, 19% for SF, 52% for LF, 67% for DG, and 41% for UR. The solid fraction generally produced higher potential denitrification fluxes (75.3 for SF, 56.7 for NT, 53.6 for LF, 47.7 for DG and 39.7 mg N2O + N2-N kg?1 soil for UR). The high variability of actual denitrification results obfuscated any treatment effect.We conclude that treatment strongly affects slurry composition (mainly its C, fibre and NH4+ content), and hence N2O and CO2 emission patterns as well as denitrification processes and nitrate availability. In particular, the solid fraction obtained after mechanical separation produced the most pronounced difference, while the liquid fraction and the anaerobically digested liquid fraction did not show significant difference with respect to the original slurry for any of the measured parameters. Combining data from the different fractions we showed that separation of slurry leads to reduced N2O emissions, irrespective of whether the liquid fraction is digested or not. Furthermore, our results suggested that the default emission factor for N2O emissions inventory is too low for both the non-treated pig slurry and its liquid fraction (digested or not), and too high for the separated solid fraction and urea.  相似文献   

10.
A phylogenetic analysis of the archaeal community in the soil of the former Lake Texcoco showed that some of the clones identified were affiliated to Archeae that reduce nitrate (NO3?) to nitrite (NO2?) and NO2? to unknown products under aerobic conditions. Previous research suggested that this indeed might occur when an easily decomposable C-substrate is available, but little is known about the factors that control the possible processes involved. The sandy clay loam soil with pH 10 and electrolytic conductivity 56 dS m?1 was spiked with 1000 mg glucose-C kg?1 soil (GLUCOSE pre-treatment), 200 mg NO3?-N kg?1 soil (NITRATE pre-treatment), or left unamended (CONTROL pre-treatment) and conditioned for eight days. Pre-treated soil was then added with 1000 mg glucose-C kg?1 soil and 200 mg NO3?-N kg?1 soil and amended with ammonium (NH4+) (AMM treatment) and l-glutamine (GLUT treatment), acetylene (C2H2) (ACE treatment), oxygen (O2) (OXI treatment), left untreated (CON treatment) or sterilized. No abiotic factors affected concentrations of NH4+, NO2? or NO3?. In the CONTROL pre-treatment, concentration of NO3? decreased 170 mg N kg?1 soil within 72 h, in the GLUCOSE pre-treatment with 182 mg N kg?1 soil within 2 h and in the NITRATE pre-treatment with 272 mg N kg?1 soil within 168 h. Mean concentration of NO2? was 3.2 mg N kg?1 soil in unamended soil, 5.7 mg N kg?1 soil in the CONTROL pre-treatment, but >20 mg kg?1 soil in the GLUCOSE pre-treatment and ≥40 mg kg?1 in the NITRATE pre-treatment. The application of NO3? and glucose increased the mean concentration of NH4+ compared to the unamended soil independently of pre-treatment. It was found that microorganisms in the alkaline saline soil of the former Lake Texcoco can reduce concentrations of NO3? while releasing NO2? under aerobic conditions when an easy decomposable substrate is available without it being directly related to microbial activity and this being more outspoken when glucose or nitrate were previously added.  相似文献   

11.
《Soil & Tillage Research》2007,92(1-2):199-206
Long-term tillage and nitrogen (N) management practices can have a profound impact on soil properties and nutrient availability. A great deal of research evaluating tillage and N applications on soil chemical properties has been conducted with continuous corn (Zea Mays L.) throughout the Midwest, but not on continuous grain sorghum (Sorghum bicolor (L.) Moench). The objective of this experiment was to examine the long-term effects of tillage and nitrogen applications on soil physical and chemical properties at different depths after 23 years of continuous sorghum under no-till (NT) and conventional till (CT) (fall chisel-field cultivation prior to planting) systems. Ammonium nitrate (AN), urea, and a slow release form of urea were surface broadcast at rates of 34, 67, and 135 kg N ha−1. Soil samples were taken to a depth of 15 cm and separated into 2.5 cm increments. As a result of lime applied to the soil surface, soil pH in the NT and CT plots decreased with depth, ranging from 6.9 to 5.7 in the NT plots and from 6.5 to 5.9 in the CT plots. Bray-1 extractable P and NH4OAc extractable K was 20 and 49 mg kg−1 higher, respectively, in the surface 2.5 cm of NT compared to CT. Extractable Ca was not greatly influenced by tillage but extractable Mg was higher for CT compared to NT below 2.5 cm. Organic carbon (OC) under NT was significantly higher in the surface 7.5 cm of soil compared to CT. Averaged across N rates, NT had 2.7 Mg ha−1 more C than CT in the surface 7.5 cm of soil. Bulk density (Δb) of the CT was lower at 1.07 g cm−3 while Δb of NT plots was 1.13 g cm−3. This study demonstrated the effect tillage has on the distribution and concentration of certain chemical soil properties.  相似文献   

12.
The distribution, density and biomass of earthworms were investigated at the copper polluted site, Hygum (Denmark). In 1994, shortly after farming of the area was abandoned, only four earthworm species were present and their distribution was restricted to areas where copper concentration did not exceed 200 mg kg?1 dry soil. Sixteen years later (in 2010), without any agricultural activity, ten species of earthworms were found, in particular, epigeic species were present where soil copper concentrations reached >1000 mg kg?1 dry soil.  相似文献   

13.
Forests are the largest C sink (vegetation and soil) in the terrestrial biosphere and may additionally provide an important soil methane (CH4) sink, whilst producing little nitrous oxide (N2O) when nutrients are tightly cycled. In this study, we determine the magnitude and spatial variation of soil–atmosphere N2O, CH4 and CO2 exchange in a Eucalyptus delegatensis forest in New South Wales, Australia, and investigate how the magnitude of the fluxes depends on the presence of N2-fixing tree species (Acacia dealbata), the proximity of creeks, and changing environmental conditions. Soil trace gas exchange was measured along replicated transects and in forest plots with and without presence of A. dealbata using static manual chambers and an automated trace gas measurement system for 2 weeks next to an eddy covariance tower measuring net ecosystem CO2 exchange. CH4 was taken up by the forest soil (?51.8 μg CH4-C m?2 h?1) and was significantly correlated with relative saturation (Sr) of the soil. The soil within creek lines was a net CH4 source (up to 33.5 μg CH4-C m?2 h?1), whereas the wider forest soil was a CH4 sink regardless of distance from the creek line. Soil N2O emissions were small (<3.3 μg N2O-N m?2 h?1) throughout the 2-week period, despite major rain and snowfall. Soil N2O emissions only correlated with soil and air temperature. The presence of A. dealbata in the understorey had no influence on the magnitude of CH4 uptake, N2O emission or soil N parameters. N2O production increased with increasing soil moisture (up to 50% Sr) in laboratory incubations and gross nitrification was negative or negligible as measured through 15N isotope pool dilution.The small N2O emissions are probably due to the limited capacity for nitrification in this late successional forest soil with C:N ratios >20. Soil–atmosphere exchange of CO2 was several orders of magnitude greater (88.8 mg CO2-C m?2 h?1) than CH4 and N2O, and represented 43% of total ecosystem respiration. The forest was a net greenhouse gas sink (126.22 kg CO2-equivalents ha?1 d?1) during the 2-week measurement period, of which soil CH4 uptake contributed only 0.3% and N2O emissions offset only 0.3%.  相似文献   

14.
《Soil & Tillage Research》2007,92(1-2):96-103
Soil loss due to crop harvesting (SLCH) has been established as an important soil erosion process that has significantly contributed to soil degradation in highly mechanised agriculture. This has stimulated the need to investigate the importance of this process of erosion under low input agriculture where, until now, only water and tillage erosion are known as important phenomena causing soil degradation. This study was conducted in Eastern Uganda with the following objectives: (1) to assess the amount of soil lost due to the harvesting of cassava roots and sweet potato tubers under low input agriculture, (2) to look into the factors that influence variations in these soil losses, and (3) to estimate the amount of plant nutrients lost due to SLCH for cassava and sweet potato. Soil sticking to roots and tubers was washed and the soil suspension oven dried to estimate the amount of soil lost after harvesting. Mean annual soil loss for cassava was 3.4 tonnes ha−1 and for sweet potato was 0.2 tonnes ha−1. Ammonium acetate lactate extractable soil nutrient losses for cassava were N = 1.71 kg ha−1 harvest−1, P = 0.16 kg ha−1 harvest−1, K = 1.08 kg ha−1 harvest−1 and for sweet potato were N = 0.14, P = 0.01 kg ha−1 harvest−1, K = 0.15 kg ha−1 harvest−1. Difference in soil loss due to crop harvesting for cassava and sweet potato could be due to: (1) smaller yields of sweet potato leading to smaller soil losses on an area basis, (2) smoother skin and less kinked morphology of sweet potato that allowed less soil to adhere, and (3) the fact that sweet potato is planted in mounds which dry out faster compared to the soil under cassava. Soil moisture content at harvesting time and crop age were significant factors that explained the variations in the soil lost at cassava harvesting. Soil loss under cassava justifies the need to conduct further investigations on this process of soil erosion under low input agriculture.  相似文献   

15.
South-eastern Spain, and in particular the coastal areas of Granada and Malaga, feature a large area under subtropical crops, with orchards established on terraces built along the slopes of the mountainous areas. The climate, characterized by periodically heavy rainfall, variable in space and time, and with the common agricultural practice of leaving the taluses with bare soil, are the main factors encouraging soil erosion, runoff, and subsequent transport of pollutants. Over a two-year period, six plant covers were applied [(Thymus mastichina (Th), Lavandula dentata (La), native spontaneous vegetation (Sv), Anthyllis cytisoides (An), Satureja obovata (Sa), Rosmarinus officinalis (Ro)] in comparison to a control of bare soil (Bs) to determine the effectiveness of the covers in reducing soil erosion, runoff, and potential pollution risk by agricultural nutrients (N, P, and K) and heavy metals. Also, carbon losses were monitored in the transported sediments by runoff and in eroded soils. For this purpose, 16 m2 erosion plots (4 m × 4 m) were laid out in the taluses of the terraces. When the yearly data were compared, the control plot (Bs) showed significantly higher soil erosion and runoff rates (26.4 t ha? 1 yr? 1 and 55.7 mm yr? 1, respectively) than the treatments with plant covers. The plant covers studied registered the following results in runoff: Ro > Sa > An > Th  La > Sv (41.7, 38.2, 35.5, 16.9, 16.1, and 12.4 mm yr? 1, respectively) while annual soil erosion gave the following results: Sa > An > Ro > Th > Sv > La (18.0, 13.5, 13.4, 5.5, 4.4, and 3.2 Mg ha? 1 yr? 1, respectively). This means that Sv reduced runoff and soil-erosion rates compared to Bs by not less than 78 and 83%, respectively. Nevertheless, La and Th plots were also very effective plant covers in reducing runoff and soil erosion (71.2 and 87.8; 69.5 and 79.2%, respectively) in comparison with the Bs plot. The heaviest nutrient losses in runoff and eroded soils were found in Bs and the lowest in the La, Th, and Sv plots. Bs and Ro plots registered the highest carbon losses (829.9 and 652.1 kg ha? 1, respectively), the lowest carbon-loss rates being measured in La, Sv, and Th plots (145.2, 140.3, and 109.3 kg ha? 1, respectively). The results indicate that heavy metals (Mn, Cr, Co, Ni, Cu, Zn, Mo, Cd, and Pb) in these types of agroecosystems may also be a potential pollutant due to transport by agricultural runoff. There was a major reduction of heavy-metal transport by plant covers in relation to the control of bare soil. The results of this research support the recommendation of using plant covers with multiple purposes (aromatic–medicinal–culinary) on the taluses of subtropical-crop terraces in order to reduce erosion and pollution risk.  相似文献   

16.
After reforesting pasture land, it is often observed that soil carbon stocks decrease. The present work reports findings from a site near Canberra, Australia, where a pine forest (Pinus radiata) was planted onto a former unimproved pasture site. We report a number of detailed observations seeking to understand the basis of the decline in soil C stocks. This is supported by simulations using the whole-ecosystem carbon and nitrogen cycling model CenW 3.1. The model indicated that over the first 18 years after forest establishment, the site lost about 5.5 t C ha?1 and 588 kgN ha?1 from the soil. The C:N ratio of soil organic matter did not change in a systematic manner over the observational period. Carbon and nitrogen stocks contained in the biomass of the 18-year old pine stand exceeded that of the pasture by 88 t C ha?1 and 393 kgN ha?1. An additional 6.1 t C ha?1 and 110 kgN ha?1 accumulated in above-ground litter. These changes, together with the vertical distribution of carbon and nitrogen in the soil, agreed well with the observation at the site. It was assumed that over 18 years, there was also a loss of 86 kgN ha?1 from the ecosystem because of normal gaseous losses during nitrogen turn-over and a small amount of nitrogen leaching. Those losses could not be replenished in the pine system without symbiotic biological nitrogen fixation, and there were no fertiliser additions. A simple mass balance approach indicated that the amount of nitrogen accumulating in plant biomass and the litter layer plus the assumed nitrogen loss from the site matched the amount of nitrogen lost from the soil organic nitrogen pool. This reduction in soil nitrogen, together with an unchanged C:N ratio, provided a simple and internally consistent explanation for the observed reduction of soil carbon after reforestation. It supports the general notion that trends in soil carbon upon land-use change can often be controlled by the possible fates of available soil nitrogen.  相似文献   

17.
Wheat production (Triticum aestivum L.) has increased across the world during last century with the intensification of agriculture. Phosphorus (P) fertilization is a common practice to improve wheat growth in Argentina. We investigate whether indigenous arbuscular mycorrhizal colonization (AMC) of hard red spring wheat is controlled by shoot P content (SPc) or by available soil P in an agricultural soil from the southeastern Argentine Pampas. In the field, AMC was monitored four times during two growing seasons of a conventional wheat crop. Treatments were: without P supply, annual supply of 11 and 22 kg P ha−1 during the last 5 years, and 164 kg P ha−1 applied once 5 years before the experiment. In the glasshouse, AMC was assessed three times in wheat growing in pots filled with the soil from unfertilized plots; treatments were: P (0 and 20 mg P pot−1), and nitrogen (N) fertilization (0 and 150 mg N pot−1). A range of soil P between 6 and 60 mg P kg−1 was obtained and the AMC ranged from 1% to 67% of root length colonized under both field and glasshouse conditions. P supplied annually increased growth and SPc but decreased AMC. N fertilization did not affect growth or AMC. Variations in SPc did not account for AMC. Variability in AMC was best accounted for local current soil available P content (r2 = 0.59). A linear-plateau relationship between soil P and indigenous AMC was established in wheat plants growing under contrasting environmental and experimental (field and glasshouse) conditions. Indigenous AMC was depressed by available soil P in the range 0–27 mg P kg−1 (a decrease of 2.8% mg P−1 kg−1). Above 27 mg P kg soil−1, AMC was stabilized at about 10%. Grain yield increased with fertilization and the highest relative shoot dry matter in field was obtained at 15.5 mg P kg soil−1. The soil P range that ensures high wheat production without deterring indigenous AMC is discussed.  相似文献   

18.
Little is know on the impact of biosolids application on soil organic matter (SOM) stability, which contributes to soil C sequestration. Soil samples were collected in 2006 at plow layer from fields that received liquid and dry municipal biosolids application from 1972 to 2004 at the cumulative rate of 1416 Mg ha−1 in mined soil and 1072 Mg ha−1 in nonmined soil and control fields that received chemical fertilizer at Fulton County, western Illinois. The biosolids application increased the soil microbial biomass C (SMBC) by 5-fold in mined soil and 4-fold in nonmined soil. The biosolids-amended soils showed a high amount of basal respiration and N mineralization, but low metabolic quotient, and low rate of organic C and organic N mineralization. There was a remarkable increase in mineral-associated organic C from 6.9 g kg−1 (fertilizer control) to 26.6 g kg−1 (biosolids-amended) in mined soil and from 8.9 g kg−1 (fertilizer control) to 23.1 g kg−1 (biosolids-amended) in nonmined soil. The amorphous Fe and Al, which can improve SOM stability, were increased by 2–7 folds by the long-term biosolids application. It is evident from this study that the biosolids-modified SOM resists to decomposition more than that in the fertilizer treatment, thus long-term biosolids application could increase SOM stability.  相似文献   

19.
V.O. Polyakov  R. Lal 《Geoderma》2008,143(1-2):216-222
Soil organic carbon (SOC) is an important component of the global carbon cycle. Its dynamics depends upon various natural and anthropogenic factors including soil erosion. A study on Miamian silty clay loam soil in central Ohio was conducted to investigate the effect of soil erosion on SOC transport and mineralization. Runoff plots 10, 20 and 30 m long on a 7% slope under natural rainfall were used. Total soil loss, evolution of CO2 from the displaced aggregates of various fractions, and total SOC concentrations were determined. It was shown that the primary ways of SOC loss resulted from two processes: 1) mechanical preferential removal of SOC by overland flow and 2) erosion-induced mineralization. Significant amounts of SOC mobilized by erosion at the upper part of the slope during the season (358 kg ha? 1) could be lost to the atmosphere within 100 days (15%) and transported off site (44%). Breakup of initial soil aggregates by erosive forces was responsible for increased CO2 emission. During the initial 20 days of incubation the amount of CO2 released from coarse size sediment fractions (0.282 g C kg? 1 soil d? 1) was 9 times greater than that in fine fractions (0.032 g C kg? 1 soil d? 1) due to the greater initial amount of SOC and its exposure to the environment. Sediment size distribution as well as its residence time on the site was the primary controllers of CO2 loss from eroded soil.  相似文献   

20.
The forest–savanna transition zone is widely distributed on nutrient-poor oxisols in Central Africa. To reveal and compare the nutrient cycle in relation to soil microbes for forest and savanna vegetation in this area, we evaluated seasonal fluctuations in microbial biomass carbon (MBC), nitrogen (MBN), and phosphorus (MBP) for 13 months as well as soil moisture, temperature, soil pH levels, and nutrients for both vegetation types in eastern Cameroon. Soil pH was significantly lower in forest (4.3) than in savanna (5.6), and soil N availability was greater in forest (87.1 mg N kg−1 soil) than in savanna (32.9 mg N kg−1 soil). We found a significant positive correlation between soil moisture and MBP in forest, indicating the importance of organic P mineralization for MBP, whereas in savanna, we found a significant positive correlation between soil N availability and MBP, indicating N limitation for MBP. These results suggest that for soil microbes, forest is an N-saturated and P-limited ecosystem, whereas savanna is an N-limited ecosystem. Additionally, we observed a significantly lower MBN and larger MB C:N ratio in forest (50.7 mg N kg−1 soil and 8.6, respectively) than in savanna (60.0 mg N kg−1 soil and 6.5, respectively) during the experimental period, despite the rich soil N condition in forest. This may be due to the significantly lower soil pH in forest, which influences the different soil microbial communities (fungi-to-bacteria ratio) in forest versus savanna, and therefore, our results indicate that, in terms of microbial N dynamics, soil pH rather than soil substrate conditions controls the soil microbial communities in this area. Further studies should be focused on soil microbial community, such as PLFA, which was not evaluated in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号