首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Botrytis spp. associated with neck rot disease were isolated from New Zealand onions. The fungi were identified using molecular sequences of the ribosomal internal transcribed spacer (ITS) and intergenic spacer (IGS) regions, and the glyceraldehyde-3-phosphate dehydrogenase (G3PDH) gene. Analyses of the sequences showed that the majority of the isolates gathered in 2005–07 were B. aclada. A new high resolution melting analysis (HRMA) assay was developed that allowed fast and simple discrimination between B. aclada and other Botrytis spp. causing onion neck rot in New Zealand. To further verify these results, Botrytis isolates from New Zealand onions, stored in the International Collection of Microorganisms from Plants (ICMP), were also examined. Only a single isolate from the ICMP collection was B. aclada while two isolates were B. byssoidea, one B. squamosa and another closely related to Botryotinia porri. Identification of the remaining Botrytis isolates was more difficult; while IGS and ITS sequences indicated a close relationship to B. allii or B. byssoidea, a previously unreported intron insertion was observed at the 3′ end of the ribosomal small subunit gene in these isolates. No evidence of heterogeneity was observed in the G3PDH gene sequences, as might have been expected of the allodiploid B. allii, but the G3PDH sequence ruled out B. byssoidea as the identity of these isolates.  相似文献   

2.
Effects of various herbicides on mycelial growth of strains of Botrytis cinerea. Pers. and Pénicillium expansum Link, sensitive or resistant to certain fungicides Of seventy herbicides tested, thirty-eight were slightly toxic to B. cinerea (CI50, concentration giving 50% inhibition of the speed of mycelial growth, exceeding or equal to 100g of herbicide/ml of nutrient solution) and, of those, ten had no effect even at 1000 g/ml. The most active products (CI50 less than 10 g/ml) were Chlorthiamid, dichlobénil, nitrofen, propyzamide and phenolic derivatives (DNOC, ioxynil, PCP). In most cases P. expansum was less sensitive than B. cinerea except to endothal, propachlor, prynachlor and certain substituted ureas. Strains resistant to the benzimidazole fungicides (carbendazim, thiabendazole etc.) show increased sensitivity to certain carbamade herbicides (barban, chlorbufam etc.), this indicates the existence of a negative cross resistance between these groups of antimitotic pesticides. Strains resistant to the cyclic-imide fungicides (iprodionc, procymidone, vinclozolin) and to various aromatic compounds (biphenyl. chloroneb, dicloran etc.) may also be resistant to bipyridilium, dinitroanilinc and diphenylethcr herbicides, to chlorthamid. dichlobénil and oxadiazon. This cross resistance between pesticides with different biochemical modes of action has yet to be explained.  相似文献   

3.
4.
Various morphological and physiological characteristics, such as mycelial colour and appearance, mycelial growth rates, sporulation, pathogenicity on different hosts, activity of cell-wall degrading enzymes, competitive ability and osmotic sensitivity of five dicarboximide-resistant isolates of Botrytis cinerea were compared to those of their sensitive parent strains. There were only small reductions in mycelial growth rates of resistant strains as compared to the sensitive ones, whereas all of them showed greatly reduced rates of sporulation. With only one exception, the pathogenicity of the resistant isolates was reduced by varying extents compared with the sensitive parent strains. While the proteolytic activity of resistant strains tended to be higher, the activities of peclolytic enzymes were often lower than those of the sensitive isolates. In competition tests, resistant conidia often completely disappeared after a few passages on untreated plants. In only one of the resistant isolates tested so far was dicarboximide resistance related to a high osmotic sensitivity.  相似文献   

5.
Treatments with dicarboximide fungicides provided only 20 to 40% control of grey mould on grape (cv. Moscato d'Asti) in vineyards where benzimidazole and dicarboximide resistant strains ofBotrytis cinerea Pers. constituted about 50% of the fungal population and a high disease pressure existed. The percentage of dicarboximide resistant strains increased after treatment. Fungicide combinations of a benzimidazole with diethofencarb, sprayed twice per season or once alternated with a dicarboximide, provided satisfactory control of grey mould and decreased the percetage of benzimidazole resistant strains. A combination of thiram and procymidone controlled grey mould, but increased dicarboximide resistance in the population.  相似文献   

6.
Dicarboximide-resistant strains of Botrytis cinerea were isolated from natural substrates and also produced in the laboratory. All these strains exhibited a similar degree of resistance to the dicarboximide fungicides iprodione and vinclozolin, and this resistance persisted in the absence of the fungicides. The natural frequency of resistance to both chemicals was approximately three in 107 conidia but could be enhanced by up to 1000 times after a single exposure to sub-lethal concentrations of either chemical. Mycelium of the resistant strains was able to infect fruit and vegetables to a similar extent as that of sensitive strains, although infection of carrot roots was markedly less aggressive. The resistant strains were separable into two groups according to their growth habit on culture media. Both groups were relatively slow growing and showed a marked lack of sporulation compared with most sensitive strains. This lack of sporulation may account for the apparent failure of resistant strains to increase rapidly in strawberry plantations that had received dicarboximide sprays in successive seasons.  相似文献   

7.
After chemical mutagenesis with N-methyl-N-nitrosoguanidine (MNNG) two phenotypes that were highly or moderately resistant to fenhexamid, were isolated from a wild-type strain of Botrytis cinerea, at a mutation frequency of 0.9 × 10–5. Resistance factors, based on EC50 values, were 460–570 and 10–15, respectively. The mutation(s) for resistance to fenhexamid did not affect the sensitivity of mutant strains to the benzimidazole benomyl, the phenylpyridinamine fluazinam, the anilinopyrimidine cyprodinil, the guanidine iminoctadine or to the sterol-biosynthesis-inhibiting fungicides fenarimol, fenpropimorph and tridemorph. On the contrary, an increased sensitivity (EC50 ratios of 0.2–0.6) of fenhexamid-resistant strains to the phenylpyrrole fludioxonil and the dicarboximide iprodione was observed. Study of fitness parameters of fenhexamid-resistant isolates of both phenotypic classes showed that these mutation(s) had no effect on mycelial growth and sensitivity to high osmolarity, but they did affect one or more of some other characteristics, such as sporulation, conidial germination and sclerotia production. In tests on cucumber seedlings under greenhouse conditions, all highly fenhexamid-resistant isolates tested presented decreased infection ability compared with the wild-type. Preventive applications of a commercial formulation of fenhexamid, Teldor 50 WP, were effective against lesion development on cotyledons by the wild-type, but ineffective, even in high concentrations, against disease caused by the fenhexamid-resistant isolates. The risk of resistance problems arising during commercial use of fenhexamid is discussed.  相似文献   

8.
Tomato and strawberry are the most important protected crops in Lebanon and are seriously affected by grey mould disease, caused by Botrytis cinerea. In the present study, the fungicide sensitivity assays revealed medium to high frequencies of B. cinerea isolates resistant to benzimidazoles, dicarboximides, and anilinopyrimidines on tomato and strawberry. Fludioxonil- and boscalid-resistant mutants were uncommonly found at generally low frequency on both crops. Resistance to fenhexamid was detected in only one site on tomato but in most sites on strawberry with high frequencies, and the occurrence of resistance to QoI fungicides was ascertained on both crops. The majority of the tested isolates (>90%) exhibited multiple fungicide resistance, and isolates resistant to the seven antibotrydial fungicide classes were detected on strawberry in three locations. A high level of resistance was shown by B. cinerea mutants resistant to boscalid, fenhexamid, and QoI fungicides, while two levels of moderate and high resistance to anilinopyrimidines were identified. Genetic analysis revealed point mutations in the target genes commonly associated with resistance in B. cinerea isolates, with all mutants resistant to dicarboximides, fenhexamid, boscalid, and QoI fungicides carrying single-nucleotide polymorphims in BcOS1 (I365S/N, Q369P, and N373S), Erg27 (F412V/I), SdhB (H272R/Y), and cytb (G143A) genes, respectively. The general incorrect use of fungicides has caused the development and spread of fungicide resistance as a widespread phenomenon on protected tomato and strawberry in Lebanon. The implementation of appropriate antiresistance strategies is highly recommended.  相似文献   

9.
BACKGROUND: Botrytis cinerea Pers.: Fr. is a high‐risk pathogen for fungicide resistance development that has caused resistance problems on many crops throughout the world. This study investigated the fungicide sensitivity profile of isolates from kiwifruits originating from three Greek locations with different fungicide use histories. Sensitivity was measured by in vitro fungitoxicity tests on artificial nutrient media. RESULTS: Seventy‐six single‐spore isolates were tested for sensitivity to the SDHI fungicide boscalid, the QoI pyraclostrobin, the anilinopyrimidine cyprodinil, the hydroxyanilide fenhexamid, the phenylpyrrole fludioxonil, the dicarboxamide iprodione and the benzimidazole carbendazim. All isolates from Thessaloniki showed resistance to both boscalid and pyraclostrobin, while in the other two locations the fungal population was sensitive to these two fungicides. Sensitive isolates showed EC50 values to boscalid and pyraclostrobin ranging from 0.9 to 5.2 and from 0.04 to 0.14 mg L?1 respectively, while the resistant isolates showed EC50 values higher than 50 mg L?1 for boscalid and from 16 to > 50 mg L?1 for pyraclostrobin. All QoI‐resistant isolates carried the G143A mutation in cytb. Sensitivity determinations to the remaining fungicides revealed in total eight resistance phenotypes. No isolates were resistant to the fungicides fenhexamid and fludioxonil. CONCLUSION: This is the first report of B. cinerea field isolates with resistance to both boscalid and pyraclostrobin, and it strongly suggests that there may be a major problem in controlling this important pathogen on kiwifruit. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
The molecular basis of resistance to benzimidazole fungicides with laboratory and field mutant isolates of Botrytis cinerea was investigated. After chemical mutagenesis with N-methyl-N-nitrosogouanidine (NMNG) two different benzimidazole-resistant phenotypes were isolated on media containing carbendazim or a mixture of carbendazim and diethofencarb. The mutant isolates from the fungicide-mixture-containing medium were moderately resistant to carbendazim with wild-type tolerance to diethofencarb while mutant isolates from carbendazim-containing medium were highly resistant to carbendazim but sensitive to diethofencarb. The studied field isolates were highly resistant to benzimidazoles and sensitive to diethofencarb. Study of fitness characteristics of benzimidazole highly-resistant isolates showed that the resistance mutation(s) had no apparent effect on fitness-determining parameters. Contrary to this, the moderately benzimidazole-resistant strains, with no increased diethofencarb sensitivity, had a significant reduction in certain ecological fitness-determining characteristics. Analysis of the sequence of the β-tubulin gene revealed two amino acid replacements in the highly benzimidazole-resistant mutants compared to that of the wild-type parent strain. One was the glutamic acid (GAG) to alanine (GCG) change at position 198 (E198A), identified in both laboratory and field highly benzimidazole-resistant isolates, a mutation previously implicated in benzimidazole resistance. The second was a novel benzimidazole resistance mutation of glutamic acid (GAG) to glycine (GGG) substitution at the same position 198 (E198G), identified in a highly benzimidazole-resistant laboratory mutant strain. Molecular analysis of the moderately benzimidazole-resistant strains revealed no mutations at the β-tubulin gene. A novel diagnostic PCR-RFLP assay utilising a BsaI restriction site present in the benzimidazole-sensitive (E198) but absent in both resistant genotypes (E198G and E198A) was developed for the detection of both amino acid replacements at the β-tubulin gene.  相似文献   

11.
Botrytis cinerea infects waxflower (Chamelaucium spp.) flowers and can induce them to abscise from their petioles before disease becomes evident. Botrytis cinerea infection of flowers was studied on two waxflower cultivars by light and electron microscopy. Pot‐grown waxflower flowers were harvested, inoculated with aqueous suspensions of B. cinerea conidia, incubated at 20–22°C and >95% RH and examined within 96 h post‐inoculation (hpi). Conidial germination on petals started 4 hpi, penetration via germ tube tips was 6 hpi and protoappressoria were formed 8 hpi. Germination on petals approximately doubled every 4–6 h to 18 hpi. Conidial germination was ca. 50% at 22–24 hpi. Botrytis cinerea infected most waxflower flower organs, including petals, anthers and filaments, stigma and hypanthium, within 24 hpi. Hyaline and lobate appressoria were observed 36 hpi. Infection cushions on stamen bases were formed 36 hpi by saprophytic hyphae that originated from anthers. This infection process can give rise to tan‐coloured symptoms typical of botrytis disease that radiate from this part of the flower. Subcuticular hyphae were present at high density near stamen bases and evidently resulted from multiple penetrations from single infection cushions. The subcuticular hyphae grew within the hypanthium and towards the centre of the floral tube. When flower abscission occurred, floral tube tissues close to the abscission zone remained uninfected. This observation infers possible transmission of a signal (e.g. ethylene) upon B. cinerea infection. Thus, B. cinerea causes flower abscission apparently as a defence response.  相似文献   

12.
A new series of compounds with high contra-selective activity against benomyl-resistant fungal strains was found among ring-substituted N-phenyl-anilines. Hydrophobic substitution in one of the benzene rings, together with the secondary amine character of the molecule, are important factors for high fungitoxicity. The sensitivities of benomyl-resistant isolates to some representatives of the N-phenylanilines equal or even surpass their sensitivity to diethofencarb or MDPC. The negative cross-resistance with benzimdazole fungicides is valid for strains of Botrytis cinerea, Venturia nashicola and Venturia inaequalis. The strains of B. cinerea with double insensitivity to benzimidazoles and phenyl-carbamates are insensitive also to N-phenylanilines. However, the similarly double-insensitive strain of V. nashicola was found to be just as sensitive to the N-phenylanilines tested as the strain resistant only to benzimidazoles. The latter result revealed an important bonus compared with diethofencarb. Preventive application of one of the most active representatives of the N-phenylanilines to young cucumber plants was effective against infection with benomyl-resistant isolates of B. cinerea. Moderate apical translocation after root-dipping was also observed.  相似文献   

13.
The strains of Botrytis cinerea or Ustilago maydis selected on fenarimol, triarimol, or triadimefon were also resistant to the other inhibitors of sterol C-14 demethylation; the sterol composition of the strains was normal. Among the isolates of U. maydis resistant to dodemorph, fenpropidin, fenpropimorph and tridemorph, some were resistant to the 15-azasteroid A 25822B and did not contain ergosterol. The other strains remained sensitive to A 25822B and had a normal sterol composition. All the resistant isolates and the wild-type were inhibited to the same extent by nystatin and pimaricin.  相似文献   

14.
After nitrosoguanidine- or UV-mutagenesis, three different benzimidazole-resistant phenotypes were isolated on media containing benomyl or a mixture of carbendazim and diethofencarb from wild-type strains of Botrytis cinerea Pers. ex Fr. and Ustilago maydis (D.C.) Corda. Mutants of B. cinerea with moderate (MBr) or low (LBr) resistance to benzimidazoles and high resistance to diethofencarb (Dr) were isolated from the fungicide-mixture-containing medium in low frequency (7–1 × 10?8). Only benzimidazole-resistant strains highly sensitive to diethofencarb (HBrDs) were identified on benomyl-containing medium at a frequency of 6.6 × 10?6. Fitness-determining characteristics such as sporulation, germination and germ-tube elongation, were found to be reduced significantly in the mutants of B. cinerea that were resistant to both benzimidazoles and diethofencarb. However, pathogenicity of a MBrDr mutant strain on cucumber seedlings was equal to that of the wild type and a carbendazim + diethofencarb mixture was found to control grey mould caused by the wild type, but was not effective when the plant cotyledons were infected by the mutant strain. Three benzimidazole-resistant phenotypes (HBrDs, HBrDr, MBrDr) were isolated easily in U. maydis from a benomyl-containing medium. In contrast with B. cinerea, only one-tenth of the benzimidazole-resistant strains were sensitive to diethofencarb. Genetic analysis of benzimidazole resistance in U. maydis showed that the three benzimidazole-resistant phenotypes were due to three allelic mutations in a single gene and one of them was responsible for the negative cross-resistance between benzimidazoles and diethofencarb.  相似文献   

15.
The objective of this work was to estimate the risk of a decrease in the efficacy of biocontrol as a result of selection pressure exerted by biocontrol agents on Botrytis cinerea, focusing on pyrrolnitrin, an antibiotic identified in diverse biocontrol agents having an effect on B. cinerea. To evaluate a possible decrease in sensitivity to pyrrolnitrin, 10 successive generations of five isolates of B. cinerea were produced in vitro in the presence of a sublethal dose (10 μg L?1) of the antibiotic. For one isolate, a significant reduction in the sensitivity to pyrrolnitrin at the fifth generation was observed with a resistance factor of c. 11. The production of 10 additional generations for four of these isolates, with increasing doses of pyrrolnitrin (100–4000 μg L?1), resulted in the development of variants of B. cinerea with high levels of resistance to the antibiotic (RF > 1000) and a reduced sensitivity in vitro to a pyrrolnitrin‐producing bacterium. Reverse adaptation of resistant variants after 10 additional generations in the absence of selection pressure was not observed, suggesting stability of the resistance. Comparison of the pyrrolnitrin‐resistant generations and their sensitive parental isolates for mycelial growth, sporulation and aggressiveness on plant tissues revealed that the high level of resistance to pyrrolnitrin resulted in a high fitness cost. Mycelial growth was reduced between 1·7 to 3·6 times and sporulation reduced 3·8 to 6·6 times that of sensitive parental isolates. Similarly, aggressiveness was 7 to 10 and 3 to 10 times lower for resistant isolates on tomato and apple, respectively. This study provides evidence that a fungal plant pathogen is able to gradually build up resistance to an antibiotic produced by a biocontrol agent.  相似文献   

16.
Mutants of Botrytis cinerea with moderate and high resistance to pyraclostrobin, a Qo inhibitor of mitochondrial electron transport at the cytochrome bc 1 complex, were isolated at a high mutation frequency, after nitrosoguanidine mutagenesis and selection on medium containing pyraclostrobin and salicylhydroxamate (SHAM), a specific inhibitor of cyanide-resistant (alternative) respiration. Oxygen uptake in whole cells was strongly inhibited in the wild-type strain by pyraclostrobin and SHAM, but not in the mutant isolates. Cross-resistance studies with other Qo and Qi inhibitors (QoIs and QiIs) of cytochrome bc 1 complex of mitochondrial respiration showed that the mutation(s) for resistance to pyraclostrobin also reduced the sensitivity of mutant strains to other QoIs as azoxystrobin, fluoxastrobin, trifloxystrobin and picoxystrobin, but not to famoxadone and to the QiIs cyazofamid and antimycin-A. An increased sensitivity of pyraclostrobin-resistant strains to the carboxamide boscalid, an inhibitor of complex II, and to the anilinopyrimidine cyprodinil, a methionine biosynthesis inhibitor, was observed. Moreover, no effect of pyraclostrobin resistance mutation(s) on fungitoxicity of the hydroxyanilide fenhexamid, the phenylpyrrole fludioxonil, the benzimidazole benomyl, and to the phenylpyridinamine fluazinam, which affect other cellular pathways, was observed. Study of fitness parameters in the wild-type and pyraclostrobin-resistant mutants of B. cinerea showed that most mutants had a significant reduction in the sporulation, conidial germination and sclerotia production. Experiments on the stability of the pyraclostrobin-resistant phenotype showed a reduction of resistance, mainly in moderate resistant strains, when the mutants were grown on inhibitor-free medium. However, a rapid recovery of the resistance level was observed after the mutants were returned to a selective medium. Studies on the competitive ability of mutant isolates against the wild-type parent strain, by applications of a mixed conidial population, showed that, in vitro, all mutants were less competitive than the wild-type strain. However, the competitive ability of high resistant mutants was higher than the moderate ones. Pathogenicity tests on cucumber seedlings showed that all mutant strains tested exhibited an infection ability similar with the wild-type parent strain. Preventive applications of the commercial product of F-500 25EC (pyraclostrobin) were effective against lesion development on cotyledons by the wild-type, but ineffective, even at high concentrations, against disease caused by the pyraclostrobin-resistant isolates. Boscalid (F-510 50WG) was found equally effective against the disease caused by the wild-type or pyraclostrobin-resistant mutants. This is the first report indicating the appearance of B. cinerea strains resistant to QoI fungicides by the biochemical mechanism of site modification and the risk for field resistance.  相似文献   

17.
A series of pyridylcarbamates showed high potency against cucumber gray mould (Botrytis cinerea Pers.). The most potent compound, propargyl-N-(6-ethyl-5-iodo-2-pyridyl)carbamate was effective against an isolate sensitive to benzimidazole and dicarboximide fungicides as well as against an isolate resistant to both types of compound. QSAR analyses and molecular modelling studies were carried out to investigate the structural requirements for highly active compounds and the structural feature of the binding site of each strain. Significantly different QSAR equations were obtained only for substituents at the 6-position of the pyridine ring. An ethyl-sized pocket or an ethyl terminal recognition was suggested in the case of the sensitive or resistant isolate respectively. These results could explain the phenomenon of negatively correlated cross-resistance between benzimidazoles and N-phenylcarbamate fungicides. Substituent effects at the 5- or 2-position were governed by steric factors. Substituent effects at the 3-position were explained by steric hindrance or by conformational effects. The propargyl-substituted compound above was the most desirable one from the viewpoint of QSAR.  相似文献   

18.
The volatile metabolites of the headspace gas of onion bulbs inoculated with three different pathogens, Erwinia carotovora ssp. carotovora, Fusarium oxysporum and Botrytis allii, were profiled using gas chromatography/mass spectrometry. Differences in the number and amount of volatile metabolites were observed. Two hundred and fifty three volatile metabolites were detected in bulbs inoculated with three pathogens or sterile distilled water. On day three, 202 volatile metabolites were observed, compared to 166 on day six. Of the 253 compounds, however, only 59 occurred relatively consistently over replications, of which 25 compounds were specific to one or more pathogens, including 10 that were unique to a pathogen. Metabolites such as 1-Oxa-4,6-diazacyclooctane-5-thione and 4-mercapto-3-(methylthio)--(thio-lactone)-crotonic acid were exclusive to onions inoculated with F. oxysporum. Acetone, acetic acid-hydrazide, propylcarbamate, 1-bromo-1-propene, thiirane, 1-(methylthio)-E-1-propene and 1-ethenyl-4-ethyl-benzene were specific to B. allii. 3-bromo-furan was specific to E. carotovora ssp. carotovora. Sterile water-inoculated bulbs produced 3,3-dioxy-1,2-propanediol-tetranitrate. Highest amount of sulfurs was found in pathogen-inoculated, while highest amounts of terpenes, aromatics and aliphatics were found in sterile distilled water-inoculated bulbs. The possible use of these differences in the volatile metabolites for detecting and discriminating diseases of onion in storage is discussed.  相似文献   

19.
Botrytis cinerea, the grey mould agent, is one of the most important pathogens of grapevine, due to the great yield losses caused and the economic costs related to disease control. Ground cover plants are assumed to have a role in the complex epidemiology of the pathogen, even if no information on the genetic variability of the strains is available. In this study, a molecular epidemiology approach, based on the comparative analysis of the nucleotide sequences of multiple genes (ITS1-ITS2, G3PDH, NEP1, NEP2, BC-hch, and sdhB), was used to evaluate whether B. cinerea isolated from herbaceous species contributes to grey mould diffusion on grapevines. From 330 samples collected in two vineyards in Lombardy, Italy, 63 B. cinerea strains were isolated from tissues of grapevine with symptoms (50 strains) and spontaneous ground cover plants (13 strains). Capsella bursa-pastoris, Cardamine impatiens, Lamium purpureum, and Crepis tectorum were identified as novel B. cinerea hosts. Sequence analysis and phylogeny showed that the same genotypes were present on both grapevines and herbaceous plants, with no fitness (estimated from growth and sporulation on potato dextrose agar) or pathogenicity (on grapevine leaves and berries, and tomato leaves) penalties. This confirms that ground cover plants can be a source of inoculum for B. cinerea on grapevine. Moreover, phylogenetic analysis of the BC-hch gene allowed the identification of two genetically distinct clusters, characterized by vegetative incompatibility and different distributions of the mating types, fitness, and pathogenicity. Therefore, B. cinerea seems to be composed of two diverging subpopulations that do not differ for host specialization.  相似文献   

20.
In a survey of New Zealand vineyards at harvest 1985, isolates of Botrytis cinerea resistant to benzimidazole and to dicarboximide fungicides were common. The mean frequency of resistance in the major vine-growing districts ranged from 8 to 41% for benzimidazoles, and from 51 to 59% for dicarboximides. All benzimidazole-resistant isolates showed high levels of resistance (EC50 greater than 100 mg/l carbendazim based on radial growth response), and all dicarboximide-resistant isolates showed low levels of resistance. Two subgroups of dicarboximide-resistant isolates were recognized, distinguished in the first instance by their osmotic response. Low-level resistant isolates, which formed a dense margin on osmotically amended medium, exhibited an EC50 for mycelial growth on iprodione of c. 3-2 mg/l; ultra-low-level resistant isolates, which formed a fibrillose margin on osmotically amended medium identical to that of sensitive isolates, exhibited an EC50 of c. 1-3 mg/1. In agar culture, radial growth rate, and conidial and sclerotial production of both subgroups were similar to those of sensitive isolates. Virulence (lesion size) and conidial production on grape berries were highest in sensitive isolates, intermediate in ultra-low-level dicarboximide-resistant isolates, and lowest in low-level dicarboximide-resistant isolates. Evidence is presented indicating that ultra-low-level dicarboximide-resistant strains have progressively replaced low-level dicarboximide-resistant strains in the vineyard population. The presence of dicarboximide-resistant strains was linked with a partial loss of fungicide efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号