首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
天然气掺氢输送不仅能够有效解决弃风弃光、减少温室气体排放问题,还能够实现大规模、低成本的氢气输送,也是实现“双碳”目标的重要方式,但掺入氢气会对现有天然气管道系统及相关输送设备带来氢脆危险。基于天然气掺氢输送系统的结构组成,归纳了氢脆发生的机理,调研了天然气掺氢输送系统的管道及焊缝、阀门、压缩装置、存储装置、终端装置等发生氢脆的研究现状,概述了防止氢脆发生的应对措施,并对天然气掺氢输送系统的发展前景进行了展望。研究结果可为中国天然气掺氢输送的规模化与市场化发展、提高管道输氢技术与装备的研发水平提供参考,促进氢经济的安全发展。  相似文献   

2.
利用长输管道(尤其是现有的天然气管道)进行氢气输送,是发展规模氢能经济、加速实现能源转型战略的重要一环,但在高压氢气环境中,管道存在发生氢脆的潜在可能,严重影响了管道安全,并制约了氢气管道工业的发展。解释了氢脆现象的科学含义,澄清了诸多关于管道氢脆问题的误解及不明之处,详述了管道氢脆发生的条件、过程及机理,着重阐明了“气态环境氢脆”与“液态环境氢脆”的实质区别,并梳理了管道氢脆的独特特征和技术挑战。根据最新的相关研究成果及亲身的学术交流经验,指出了管道氢脆领域当下迫切需要解决的科学与技术问题,以期为天然气管道掺氢输送的安全运行提供技术发展路径。(图4,表2,参24)  相似文献   

3.
CO可抑制氢分子在管道内壁的吸附,有效降低输氢管道发生氢脆的风险,是保证在役管道安全输氢的潜在方式,但CO对氢脆指数的影响度与钢材的材料组织状态有关.以X80钢为研究对象,针对母材、预应变母材及两种根焊缝,通过在氮气、氢气、氢气+0.1%CO(分压,下同)3种环境中进行慢应变速率拉伸实验,研究不同状态管体的氢脆指数及C...  相似文献   

4.
天然气掺氢输送是长距离、大规模输送氢气的有效途径,但氢气换热物性有别于天然气,在役空冷器换热性能对掺氢天然气的适应性尚不明确。为评估天然气掺氢后空冷器的换热性能,建立在役水平鼓风式空冷器仿真模型,基于BWRS方程计算7~10 MPa、60~80℃、0~25%掺氢比下天然气的比热容及导热系数,并采用CFD技术分析不同工况下空冷器前后气体温差。结果表明:(1)掺入氢气将增大天然气的比热容及导热系数;(2)降低管输压力和空冷器日处理量、升高天然气初始温度、掺入氢气都将提高空冷器前后温差;(3)仅掺入氢气,在25%掺氢比以内,现有空冷器不经结构改造即可满足天然气的冷却需求;(4)掺氢输送时,可增大管输压力以稳定空冷器出口温度并提升管道输送能力。(图12,表2,参21)  相似文献   

5.
王宇辰  吴倩  刘欢  康泽天 《油气储运》2023,(11):1251-1260
在研究氢脆发生机理与损伤机制时,常采用慢应变速率拉伸试验、疲劳寿命试验等手段,以力学性能、疲劳寿命等为指标衡量金属的氢脆敏感性。对于典型管线钢材料,其在不足5 MPa的氢气压力下,或在氢气体积分数10%的掺氢天然气环境中,已经在慢应变速率拉伸等试验中表现出明显的韧性下降、裂纹加速扩展等氢损伤特征。为模拟钢在氢气环境中服役,试验中常采用气相充氢与电化学充氢方法,前者能够模拟多种气相对管线钢氢脆的作用,后者能够快速模拟管线钢长时间服役后氢原子的渗透情况。针对氢脆过程及机理总结并分析了3种主要的氢脆防控技术:(1)调控管线钢材料与加工工艺,优化其微观组织,增加扩散速率,减弱氢原子聚集现象;(2)引入气体抑制剂,通过竞争吸附的方法减缓氢分子在材料表面的吸附;(3)增设管道内涂层,使氢气与管线钢基体金属隔离。并基于此提出进一步优化管道氢脆防控技术的建议。(图1,表1,参59)  相似文献   

6.
作为一种绿色、清洁的燃料(或能源载体),氢在实现净零排放目标上将发挥重要作用.在建设以氢能为基础的规模经济中,氢的高效、安全运输是关键的一环.氢的管道运输具有运载量大、效率高、经济实惠等优势,如果能够利用现有天然气管网实现氢的运输,则可以进一步降低成本,促进氢的规模经济的发展,但高压氢气管道或天然气/氢气混输管道存在氢脆失效的风险.阐述了氢能与氢经济发展的背景以及管道运输的巨大意义,讨论了氢气管道发生氢脆的热力学条件、氢的渗透与扩散行为、氢致失效的机理和失效形式等,证明了管线钢在管输条件下氢分子发生解离吸附的热力学可行性,分析了氢气管道存在发生氢脆或其他氢致失效形式的风险.当前,氢气管道发生氢致失效的研究具有相当大的发展空间,进一步的研究将主要集中在原子尺度测量与计算模拟方面.  相似文献   

7.
为研究天然气管道掺氢输送对离心压缩机气动性能和稳定工作范围的影响,以川气东送管道的GE PCL503压缩机为研究对象进行三维几何建模,采用RANS方法对该压缩机进行三维仿真模拟并与文献实验数据进行对比,验证了数值仿真模型的准确性。基于三维仿真模型研究了不同掺氢比、进口温度对离心压缩机气动性能和喘振裕度的影响。结果表明:随着天然气掺氢比的提高,压缩机的总压比和喘振裕度随之下降,当掺氢比达到20%时,喘振裕度降低19.78%,压比下降6.44%。在近喘振工况下,泄漏涡轨迹前移,泄漏涡强度得到增强,进而扩大了压力面低速区域面积,进一步加快了泄漏流与主流、压力面二次流的掺混,加剧了压力面流动分离和下游通道堵塞程度,其是导致掺氢比增加后压缩机稳定工作范围减少的主要原因。在10%掺氢比下,当进口温度由288 K升至323 K时,对于相同的体积流量,离心压缩机的总压比降低4.27%,等熵效率下降0.65%,喘振裕度增加13.03%,能量流量下降17.4%。研究结果可为天然气掺氢输送压缩机的设计及安全运行提供理论基础。(图10,表6,参22)  相似文献   

8.
中俄东线天然气管道具有超大口径、高钢级(X80)、高压力等级的特点,处于地质活跃的北部冻土与半冻土带,沿线易发生地质灾害,由此而来的非设计载荷会导致管道整体应力水平超过管道应变能力,给管道结构完整性与安全运行带来巨大挑战,采用高精度检测方法测量管道运行期间的应力是对管道进行安全评价的关键。针对中俄东线天然气管道的实际服役状况,在利用超声LCR波检测管道应力理论及方法的基础上,测量了超声LCR波在X80钢弹性变形及塑性变形中的传播时间,探究了超声LCR波在X80钢弹性变形及塑性变形中的传播规律。在中俄东线天然气管道投产运行之初,形成可靠适用的管道应力测量工程应用技术,为其今后运维中的安全评估提供了技术储备。(图5,参19)  相似文献   

9.
针对X80管线钢研发与应用现状以及目前存在的问题,综述了影响X80管线钢性能的主要因素、研究进展以及发展X80钢管道面临的技术挑战。详细分析了X80管线钢的冶金特征与组织结构,概述了X80管线钢的焊接工艺、焊接冶金学特征及性能,总结了X80管线钢的机械性能和力学特征。具体讨论了X80管线钢在服役环境中的失效机制,包括腐蚀、氢致开裂、焊缝区失效、应变失效等,并以此为基础,探讨了发展X80钢管道需要克服的技术挑战,以保障油气安全、高效输送以及能源管道的可持续发展。(图1,表8,参86)  相似文献   

10.
关于输气管道氢致裂纹的研究   总被引:3,自引:1,他引:2  
潘家华 《油气储运》1997,16(12):1-4
输气管道用钢氢致裂纹的研究源于两个方面:输送压力的提高,造成硫化氢的分压P_(H_2S)的提高,使得氢致裂纹问题突出;世界范围内的天然气需求量增加,许多含硫化氢较高的气田正在开发之中,客观上促进了此项研究和抗氢致裂纹钢材研究的开展。认为减少氢致裂纹发生的可能性,应在两个大的方面采取措施:①输送介质脱硫、脱水;避开产生氢致裂纹的输送温度;输送介质的pH值应大于5。②提高管材起裂时最低氢含量C_(th)控制锰Mn和磷P含量,以减少管材偏析。  相似文献   

11.
氢能是公认的清洁能源,将氢气掺入天然气管道进行输送,是大规模输送氢气的有效途径。氢气的物性与天然气差异大,天然气中掺入氢气后天然气气质会发生改变。综述了世界各国在天然气管输系统混氢输送过程中混氢天然气的互换性、天然气管道混氢工艺系统适应性、管道设备安全性等研究进展。结合中国输气管网的实际情况,建议:(1)研究不同地区、不同类型燃具对混氢天然气燃气互换性的要求,评估混氢天然气对民用、工业用户等终端用户的潜在影响;(2)分析不同输量、季节、混氢量下管道运行参数,并探讨不同型号压缩机工况点变化规律及燃气轮机的适应性;(3)考虑含氢量、氢气-甲烷分层流等因素,改进气体组分在线/离线色谱分析系统;(4)结合CFD模拟及实验等方法,开展计量设备修正研究;(5)揭示混氢天然气泄漏扩散特性规律,针对不同泄漏场景优化燃气泄漏检测设备空间布置及安装方式,完善应急预案;(6)开展高钢级管道混氢输送适应性分析,保障管道本体安全。  相似文献   

12.
高强度管道钢氢致开裂门槛应力测定   总被引:2,自引:0,他引:2  
采用恒载荷和慢应变速率动态拉实验方法。测定了X80管道钢在不同充氢条件下的氢致开裂门槛应力和断裂应力,测试结果表明,X80管道钢在0.5mol/L H2SO4 0.25g/L As2O3溶液中充氢时,试样中可扩散氢浓度(C0)和充气电流的方根(√i)呈线性关系,不同充氢条件下慢应变速率拉伸时断裂应力均随氢浓度升高而下降,恒载荷下氢致滞后断裂门槛应力随氢浓度的对数而呈线性下降。  相似文献   

13.
随着中国对能源转型及氢能利用发展需求的日渐迫切,X80高强管线钢将面临在氢气环境中运行的风险。对管道而言,其在服役过程中同时存在静载荷和循环载荷,并且循环载荷与氢的交互作用更为复杂,因此评估管线钢临氢性能时要同时考虑拉伸性能和疲劳性能。通过高压氢气环境中的拉伸实验及疲劳裂纹扩展实验,分析了氢对X80钢拉伸及疲劳性能的影响,获得了量化氢压作用的X80管线钢疲劳裂纹扩展模型。结果表明:氢对X80管线钢的拉伸性能无明显影响;氢压越高,疲劳裂纹扩展速率越高,氢压3 MPa时的疲劳裂纹扩展速率为氮气环境中的10倍,氢对X80管线钢的疲劳裂纹扩展影响显著;当X80管线钢处于氢气环境中时,钢材的疲劳性能将成为管道安全设计和完整性评价的关键指标。(图8,表3,参27)  相似文献   

14.
氢能是碳中和目标下新能源重要发展方向之一。中国对于天然气长输管道混氢输送的适应性研究较多,但在终端管网中应用尚缺乏全面系统的分析。调研了国内外混氢天然气在终端应用的互换性、设备材料适配性、安全性等方面的研究现状,结果表明:混氢天然气对民用燃具、终端管道材料有较好的适配性,但面向终端用户使用还需要在互换性、介质分层、泄漏检测、加臭、计量等方面进一步开展研究。根据终端管网特点及供气需求,提出相关建议:(1)结合具体天然气组分、燃具工况,对混氢天然气进行互换性分析;(2)提高输送压力,消除高层建筑物立管附加压力的影响,并开展极限工况下介质分层研究;(3)对连接件密封性能进行全面分析,结合氢气泄漏扩散特性,优化泄漏检测设备及加臭剂的布置;(4)亟待建立终端混氢天然气计量标准体系;(5)加快终端管网氢气分离装置及技术的适应性调整。研究结果可为混氢天然气在终端管网中的应用及氢能产业链的发展提供参考。(参70)  相似文献   

15.
为了满足能源战略的需要,在中俄东线天然气管道工程中采用大口径(外径1 422 mm)、高压力(12 MPa)、高钢级(X80)管道进行超大输量天然气输送。随着管径、输送压力、钢级、设计系数的不断提高及环境温度的降低,管道整体式绝缘接头的设计制造难点成为研究重点。为此,通过对外径1 422 mm X80管道整体式绝缘接头的研制、高寒地区整体式绝缘接头关键技术的研究及大型水压+弯矩试验装置建造等技术创新,填补了国内空白,形成了外径1 422 mm X80管道低温整体式绝缘接头设计与制造成套技术与装备,对中俄东线天然气管道工程建设具有重要意义。(图5,表3,参20)  相似文献   

16.
H2在管线钢表面吸附并解离是H原子在钢基体中渗透扩散的前提条件,掺氢天然气管道内H2的存在增加了管道氢脆风险。基于分子动力学模拟与第一性原理计算方法,开展了管线钢表面H2吸附行为研究,得到不同掺氢比例下CH4与H2混合气的竞争吸附规律,明确了管线钢近壁面CH4的存在对H2解离行为的影响机制。研究发现:对于纯气体组分,CH4与H2均具有近壁吸附特性;对于CH4/H2混合组分,CH4具有优先吸附性,显著降低了管线钢表面H2的吸附浓度;通过第一性原理计算方法,发现CH4与H2在管线钢表面的吸附类型不同,CH4的存在不能阻止H2在管线钢表面的化学分解吸附行为,但可以有效降低H2分子出现在管线钢近壁面的概率...  相似文献   

17.
X80管道钢在空气中拉伸致塑性变形大于1%后卸载,充氢至饱和再空拉,其屈服应力小于卸载前的流变应力,该差值就是氢引起的附加应力。试验表明,氢致附加应力随氢浓度的升高而线性升高。氢致附加应力能协助外应力促进塑性变形。  相似文献   

18.
《油气储运》2001,20(4)
随着"西气东输"等长输管道的规划建设,如何防止高压天然气管道的氢致裂纹(HIC)和硫化氢脆(SSC)是目前大家普遍关注的问题。国外大口径高压干线天然气管道一般采用抗HIC的合金管材,钢级达到X70、X80或X90,甚至开始研制X100或X120钢管,而我国的制管技术设备比较落后,还不能制造大口径、适合高压天然气管道使用的X70级合金钢管材。象"西气东输"这样的高压天然气管道,普遍的碳钢管材很难满足设计要求。国内已研制开发的热喷玻璃釉涂料就能很好地解决上述问题。该涂料采用新型无机玻璃物质复合材料,在高温条件下喷涂到钢管的内外表面上,形成玻璃与金属的复合防腐涂层。涂层表面光滑平整,耐蚀性、耐磨性优异,同时可以经受80~100kg/mm2的压力变化,是天然气管道理想的内外壁防腐和内减阻涂层材料。采用该涂料涂敷后的碳钢钢管静态实验中抗HIC性能良好,可大幅度降低天然气管道的工程造价。目前,热喷玻璃釉技术已进入工业化应用阶段。 钱成文提供  相似文献   

19.
为了研究管径增大对天然气管道安全可靠性的影响,分析管径1 422 mm、X80管道方案的可行性,基于管道风险评估理论,从止裂韧性、潜在危害影响范围、临界缺陷尺寸、刺穿抗力、失效概率、个体风险及运行风险等方面,对比分析了0.72设计系数下管径1 422 mm、X80管道与0.72和0.8设计系数下的1 219 mm、X80管道的风险水平。结果表明:在同等运行条件下,与设计系数为0.8和0.72、管径1 219 mm、X80管道相比,设计系数为0.72、管径1 422 mm、X80管道临界缺陷尺寸和刺穿抗力有所提高,外腐蚀和设备撞击引起的管道失效概率有所下降,潜在危害影响区域半径增大,对应的失效后果可能增加,总体风险水平相应提高,但相差不大。研究结果可为大输量管道方案优选提供决策依据,为管径1 422 mm、X80管道工程设计与建设提供技术支撑。  相似文献   

20.
【目的】调压系统作为连接长输管道与城镇燃气管网的关键环节之一,在实现“氢进万家”中发挥着重要作用,然而氢气与天然气的物性差异会影响调压的工艺控制效果。【方法】采用纯氢/掺氢天然气减压调压实验与调压动态模拟相结合的方式,以稳压精度、响应时间、适用度函数作为判定减压调压系统稳压效果的依据,对掺氢比、流量波动周期、下游流量变化幅度、管输压力及PID参数进行了敏感性分析。【结果】(1)系统波动越频繁、气体流速越大,导致系统受到扰动后波动幅度越大,减压调压系统越不易实现稳压,需对管输纯氢或者掺氢天然气的高流速运动进行限制。(2)调压系统流量有正弦变化的波动,以稳压精度±1.5%为要求,开展减压调压实验时,PID比例参数、积分参数设定在1~2范围时,可基本实现纯氢/掺氢天然气在城镇燃气管道压力范围内的调压。(3)当管输气体流速相同时,纯氢的瞬时波动较天然气更为明显,控制系统的响应时间、适应度函数均随掺氢比的增大而逐渐增加;纯氢的压力瞬时波动可达到纯甲烷的1.15倍,控制系统的响应时间、适应度函数也分别增大为纯甲烷的1.13倍、2.68倍,当氢气与甲烷为相同比例参数、积分参数时,含氢气体更难实现稳压...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号