首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Saplings of Fagus sylvatica and Picea abies were grown under conditions of intra and interspecific competition in a 2-year phytotron study under combinations of ambient and elevated ozone (+O3 which is 2 × O3, but <150 nl l−1) as well as carbon dioxide concentrations (+CO2 which is amb. CO2 + 300 μl CO2 l−1) in a full factorial design. Saplings were analysed for various mineral nutrients in different plant organs as well as biomass production and crown development. The study was based on the assumption that nutritional parameters important for growth and competitiveness are affected by stress defence under limiting nutrient supply. The hypotheses tested were (1) that nutrient uptake-related parameters (a) as well as efficiencies in nutrient use for above-ground competition (b) of beech rather than spruce are impaired by the exposure to elevated O3 concentrations, (2) that the efficiency in nutrient uptake of spruce is enhanced by elevated CO2 concentrations in mixed culture, and (3) that the ability to occupy above-ground space at low nutrient cost is co-determinant for the competitive success in mixed culture. Clear nitrogen deficiencies were indicated for both species during the 2-year phytotron study, although foliar nitrogen-biomass relationships were not so close for spruce than for beech. O3 stress did not impair nutrient uptake-related parameters of beech; thus hypothesis (1a). was not supported. A negative effect of elevated O3 (under amb. CO2) on the N and P based efficiencies in above-ground space occupation (i.e. lower crown volume per unit of N or P invested in stems, limbs and foliage) of beech supported hypothesis (1b). It appeared that ozone stress triggered a nutrient demand for stress defence and tolerance at the expense of above-ground competition (trade-off). Crown volume of beech under O3 stress was stabilized in monoculture by increased nutrient uptake. In general, the +CO2-treatment was able to counteract the impacts of 2 × O3. Elevated CO2 caused lower N and S concentrations in current-year foliage of both tree species, slightly higher macronutrient amounts in the root biomass of spruce, but did not increase the efficiencies in nutrient uptake of spruce in mixed culture. Therefore hypothesis (2) was not supported. At the end of the experiment spruce turned out to be the stronger competitor in mixed culture as displayed by its higher total shoot biomass and crown volume. The amounts of macronutrients in the above-ground biomass of spruce individuals in mixed culture distinctly exceeded those of beech, which had been strongly reduced by interspecific competition. The superior competitiveness of spruce was related to higher N and P-based efficiencies in above-ground space occupation as suggested in hypothesis (3). This article belongs to the special issue “Growth and defence of Norway spruce and European beech in pure and mixed stands”.  相似文献   

2.
European beech Fagus sylvatica and Norway spruce Picea abies are economically and ecologically important forest trees in large parts of Europe. Today, the beech forest reaches its northern distribution limit in south-eastern Norway and it is expected to expand northwards due to climate warming. This expansion will likely result in fundamental ecosystem changes. To increase our knowledge about the competitive balance between spruce and beech, we have investigated how beech and spruce litter affect spruce seedling emergence, growth and uptake of C and N. We did this in a seed-sowing experiment that included litter layer removal as well as reciprocal transplantations of litter layers between spruce and beech forests. Our results show that spruce seedling emergence was significantly impaired by both litter layer types, and especially so by the beech litter layer in the beech forest. The low seedling emergence in beech forests is concurrent with their lower light availability.  相似文献   

3.
Elevated O3 levels can strongly impair the health and vitality of forest ecosystems. Free-air exposure systems reveal that forest tree and stand growth can be reduced strongly under chronic O3 stress. Detailed knowledge of the effect of O3 exposure on photosynthesis, carbon sequestration, allometry and growth during chronic stress is available. However, knowledge of growth response after O3 reduction is scarce. Here, we analyse the growth of mature Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) in the free-air O3 fumigation experiment at Kranzberg Forest. We compare tree growth over a 9-year period (2008–2016) after exposure to O3 (2000–2007). During 2?×?O3 exposure, the annual basal area growth of Norway spruce and European beech decreased by 24 and 32%, respectively. After cessation of 2?×?O3 exposure, the annual basal area growth of Norway spruce and European beech not only recovered but exceeded the growth of the trees in the control condition by 14 and 24%, respectively. The growth resilience and resistance of trees previously exposed to 2?×?O3 towards drought stress and late frost was hardly lower than that of the trees in the control condition. The capacity for growth recovery even after long-term chronic O3 stress emphasizes the strong beneficial effect of air pollution control on the health of forest ecosystems and on the global land carbon sink.  相似文献   

4.
In single‐tree selection, trees removed by harvest or lost through mortality are replaced by ingrowth from the seedling/sapling bank. Because the level of ingrowth is governed not only by the recruitment rate of new seedlings, but also by mortality and growth rates within the seedling/sapling stratum, knowledge of how these processes are related to the tree stratum is important for successful application of single‐tree selection. Therefore, Norway spruce (Picea abies (L.) Karst.) regeneration (0.1 m ≤ height ≤ 2.0 m) was measured on seventy 100 m2 circular subplots at each of two sites in central and northern Sweden. Both sites had previously been selectively logged, but the time elapsed since the last harvest was at least 30 yrs. Basal area of trees of at least 2 m height within three different radii from the subplot centres was measured. Measurements on regeneration included height and leader length. Influence of local stand basal area on density and growth of regeneration was analysed by ordinary least‐squares linear regression for each of four height intervals. Regeneration was significantly aggregated at both sites, but number of Norway spruce seedlings and saplings per circular subplot was not correlated to local stand basal area. Out of 36 regressions, only eight showed a significantly (p < 0.05) negative correlation between seedling and sapling height growth and local stand basal area. In five of these cases, removal of one point (subplot) made p > 0.05. The results suggest that density and growth of Norway spruce regeneration in selectively logged uneven‐aged Norway spruce stands is affected more by ground conditions than by local stand basal area.  相似文献   

5.
Second-year Norway spruce seedlings [Picea abies (L.) Karst.] grown in containers were divided into three fertilization levels in August [5, 15 and 25 mg nitrogen (N) seedling?1]. The resulting foliar concentrations of N were 11.0, 13.1 and 15.8 g kg?1, respectively. Seedling height (mean 26.0 cm) did not differ among treatments. The next spring, the seedlings were tested in two experiments. (1) The seedlings were transplanted into pots containing sandy soil in the greenhouse, where they were fertilized with either pure water or nutrient solution (22 mg N l?1). (2) The outplanting performance of the autumn-fertilized seedlings was tested on a sandy field. In the greenhouse experiment, the autumn fertilization level affected height growth and root egress of the seedlings significantly, but less than fertilization with a nutrient solution after planting. In the field experiment, during the first season after transplanting shoot growth of the seedlings increased with the level of autumn fertilization. After the second and third seasons, the seedling stem volume was highest with the highest level of autumn fertilization. These results suggest that, by improving the preplanting nutrient status of seedlings, the growth of shoot, stem diameter and root biomass can be enhanced after planting, especially on nutrient-poor soils. However, heavier autumn fertilization than that used here may yield a greater and more persistent increment in growth.  相似文献   

6.
We present a field study on the drought effects on total soil respiration (SRt) and its components, i.e., “autotrophic” (SRa: by roots/mycorrhizosphere) and “heterotrophic” respiration (SRh: by microorganisms and soil fauna in bulk soil), in a mature European beech/Norway spruce forest. SRa and SRh were distinguished underneath groups of beech and spruce trees using the root exclusion method. Seasonal courses of SRa and SRh were studied from 2002 to 2004, with the summer of 2003 being extraordinarily warm and dry in Central Europe. We (1) analyzed the soil temperature (T s) and moisture sensitivity of SRa and SRh underneath both tree species, and (2) examined whether drought caused differential decline of SRa between spruce and beech. Throughout the study period, SRa of beech accounted for 45–55% of SRt, independent of the soil water regime; in contrast, SRa was significantly reduced during drought in spruce, and amounted then to only 25% of SRt. In parallel, fine-root production was decreased during 2003 by a factor of six in spruce (from 750 to 130 mg l−1 a−1), but remained at levels similar to those in 2002 in beech (about 470 mg l−1 a−1). This species-specific root response to drought was related to a stronger decline of SRa in spruce (by about 70%) compared to beech (by about 50%). The sensitivity of SRa and SRh to changing T s and available soil water was stronger in SRa than SRh in spruce, but not so in beech. It is concluded that SRa determines the effect of prolonged drought on the C efflux from soil to a larger extent in spruce than beech, having potential implications for respective forest types. This article belongs to the special issue "Growth and defence of Norway spruce and European beech in pure and mixed stands."  相似文献   

7.
Correlations between root growth capacity (RGC), at the time of planting, and field performance were studied for Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings. Before planting a gradient in seedling viability was generated through exposure to low root temperatures and different winter storage regimes. The hypothesis that high RGC values would improve field performance was to some extent verified for pine seedlings while no correlations could be registered for spruce. Reasons for these results are discussed.  相似文献   

8.
It was hypothesized that soil respiration can be affected by canopy composition. Hence, admixture of trees as a common forest management practice may cause significant change in the carbon cycling. This study was conducted in a mixed spruce-beech stand at Solling forest in central Germany to investigate the effect of canopy composition on soil respiration. The canopy cover was classified in four major canopy classes (pure beech, pure spruce, mixed and gap), and the area under each canopy class was identified as a sub-plot. Soil respiration in each sub-plot (n=4) was measured monthly from Jun 2005 to July 2006. Results show significant difference in annual soil respiration between the beech (359 g·m−2·a−1 C) and gap (211 g·m−2·a−1 C) sub-plots. The estimation of the total below-ground carbon allocation (TBCA) based on a model given by Raich and Nadelhoffer revealed considerably higher root CO2 production in the beech sub-plot (231 g·m−2·a−1 C) compare to the gap sub-plot (51 g·m−2·a−1 C). The contribution of the root respiration to the total soil respiration was higher in the soil under the beech canopy (59%) compared with the soil in the gap (29%). The findings suggested that the condition under the beech canopy may cause more desirable micro-site for autotrophic respiration and consequently higher CO2 release into the atmosphere.  相似文献   

9.
Seedlings of Norway spruce (Picea abies (L.)) were grown at 335 and 1000 μl CO2 1?1 for 118 days in growth rooms at different irradiance levels. Photon flux density ranging from 8.6 to 34.6 mol m?2 day?t (PAR) was given either as constant light or as alternating levels in intervals of two or six hours. CO2 enrichment increased the plant dry weight from 36% to 105% by increasing photon flux density from 8.6 to 25.9 mol m?2 day?1. At constant light the dry weight apparently reached its maximum at a photon flux density of 25.9 mol m?2 day?t. At the lower radiation levels alternating in CO2 enriched air gave slightly higher dry weights compared to constant light levels. At the highest radiations the effect on dry weight was the opposite. High CO2 concentration and 300 μmol m?2 s?1 constant light (25.9 mol m?2 day?1) gave the best growth and quality of plants. Top, root, stem and foliage weight were proportionally affected. Shoot length was enhanced by CO2 enrichment. Shoot weight per cm was substantially increased both by CO2 enrichment and increasing photon flux density.  相似文献   

10.
In Central Europe, the conversion of pure Norway spruce stands (Picea abies [L.] Karst.) into mixed stands with beech (Fagus silvatica L.) and other species like e.g. Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) is accomplished mainly by underplanting of seedlings beneath the canopy of overstorey spruce trees after partial cutting treatments what means exposure to shade and below-ground root competition by the overstorey to the seedlings. Particularly about the second factor, our knowledge is limited. Therefore, we carried out a below-ground competition exclusion experiment by root trenching and investigated the effects on soil resources, growth, and biomass partitioning of underplanted beech and Douglas fir saplings under target diameter and strip cutting treatments. The exclusion of overstorey root competition by trenching increased the soil water potential in the second year that had a fairly dry growing season and led to significantly higher foliar concentrations of most nutrients, particularly in Douglas fir, indicating an amended nutrient supply. Both improvements were accompanied by an increase in length and diameter increment of the underplanted saplings, appearing in both species only after having surpassed a species-specific threshold light value (Douglas fir 16% of above canopy radiation, beech 22%). We also found significant interactions between trenching and light for specific fine root length and further biomass and morphological parameters. Judged by the much steeper increase in height and diameter growth with increasing light after release from below-ground competition, Douglas fir saplings appeared to be more sensitive to root competition than beech saplings what conforms to older findings for beech. According to our results, a strip cutting seems to be more appropriate than a target diameter cutting treatment to replace a pure spruce stand by a mixed stand with beech and Douglas fir.  相似文献   

11.
Growth of regenerating trees in different light environments was studied for the mountainous, mixed-species forests in the Carpathian Mountains of Romania. The primary species in these mixtures were silver fir (Abies alba Mill.), European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). Seedlings/saplings of these species were selected and measured in different stands from two different geographical locations. Regenerating trees were measured for height and diameter growth during the summer of 2002. For each seedling/sapling, percentage of above canopy light (PACL) and stand basal area (BA) were used to assess available and occupied growing space respectively. Regeneration growth was compared against these two variables and regression relationships were developed. Using these models, we predicted the dynamics of regeneration as both growth and species composition. Our results showed that in low-light environments (PACL<20–35%; BA>30 m2/ha), shade tolerant fir and beech clearly outcompeted the spruce. Therefore, in dense stands, spruce could be eliminated by the shade tolerant species. For intermediate levels of cover (PACL=35–70%; BA=15–35 m2/ha) the spruce grew at comparable rates as the beech and fir. All three species showed similar growth rates in open conditions (PACL>80–90%; BA<15–20 m2/ha) with the spruce having a tendency to outgrow the others. However, in terms of establishment, such conditions favor spruce and inhibit fir and beech.  相似文献   

12.
Many forest soils in Finland are poor in boron (B), especially otherwise fertile (nitrogen-rich) soils and peatlands. Boron deficiency causes growth disorders affecting young Norway spruce (Picea abies) stands. We studied the effects of B fertilization on the growth and morphology of Norway spruce seedlings. Boron was applied in a nursery and/or after planting in a nursery-field and on a reforestation site, both known to be low in B. The B applied in the nursery increased foliar B concentration in a linear relationship to the amount of B fertilizer but did not affect seedling growth and morphology. Even the highest foliar B concentration (approx. 400 mg kg?1) did not have harmful effects on the seedlings. Therefore, B fertilization in the nursery can be used for increasing B storage in needles. Boron fertilization at planting increased foliar B concentration in the first season. Afterward, the concentration decreased but remained above the deficiency limit for at least 4–5 years. In the B-poor nursery-field, nonfertilized seedlings began to produce multiple leaders in the second year. On the reforestation site, fewer multiple leaders were found. At the nursery-field site, height growth was stimulated by B fertilization at planting. In conclusion, 200–400 mg m?2 (2–4 kg ha?1) of B applied at planting has longer-lasting effects on seedling B status than does B fertilization applied in the nursery, and can improve seedling quality and growth in the first years after planting on B-poor sites.  相似文献   

13.
The effect of nitrogen fertilization on fungistatic phenolic compounds in fine roots of beech and Norway spruce growing in afforestation plots was analysed. The plots were situated at two sites in Switzerland on acidic soil with low base saturation. For 9 years, the trees have been treated with dry ammonium nitrate to give 0, 10, 20, 40, 80, 160 kg N ha?1 year?1, respectively. The phenolic compounds responded differently to fertilization. Fine roots of beech showed a significant decrease of (?)‐epicatechin and piceatannol with increasing nitrogen fertilization. The concentration of protocatechuic acid was increased with fertilization. Roots of fertilized Norway spruce showed significantly decreased concentrations of 4‐hydroxyacetophenone and piceatannol. The mycelial growth of three isolates each of Heterobasidion annosum s.l. and Cylindrocarpon destructans was tested on agar media containing various phenolic compounds in concentrations found in fine roots of Norway spruce (Picea abies) and beech (Fagus sylvatica). All three H. annosum isolates were inhibited by p‐coumaric acid and (?)‐epicatechin. Two isolates were inhibited by another four phenolic compounds (p‐hydroxybenzoic acid, 4‐hydroxyacetophenone, piceatannol and protocatechuic acid), one by (+)‐catechin. Two of three C. destructans isolates were inhibited by all phenolic compounds except for (+)‐catechin which affected only one isolate, one isolate did not respond at all.  相似文献   

14.

The effects of air-filled porosity (AFP) and organic matter concentration (OMC) of soil on the growth of Norway spruce [Picea abies (L.) Karst.] seedlings were studied in a greenhouse experiment. One-year-old seedlings were planted into 250 pots filled with five different growth media based on low-humified sphagnum peat and fine sand. The media were mixed to achieve five levels of OMC (1, 25, 50, 75 and 97% by mass). Five AFP levels (5, 10, 20, 30 and 40%) were applied to the mixtures of growth media during irrigation. The growth attributes of the seedlings were measured after seedlings had grown in the greenhouse for 15 weeks. The shoot height and mass growth as well as root mass were significantly higher in 20, 30 and 40% AFP than in 5 and 10% AFP (p<0.05). The longest shoots were produced in growth media with 25, 50 and 75% OMC (p<0.05). The effect of OMC on root mass, while significant (p=0.03), was less pronounced than the effect on height growth and mass of the shoots (p<0.001). The results indicate that, for good seedling growth in pots in greenhouse conditions, AFP should be 20-40% and OMC 25-75% in the growth medium.  相似文献   

15.
Morphology and vertical distribution patterns of spruce and beech live fine roots (diameter ≤2 mm) were studied using a soil core method in three comparable mature stands in the Solling: (1) pure beech, (2) pure spruce and (3) mixed spruce–beech. This study was aimed at determining the effects of interspecific competition on fine root structure and spatial fine root distribution of both species. A vertical stratification of beech and spruce fine root systems was found in the mixed stand due to a shift in beech fine roots from upper to lower soil layers. Moreover, compared to pure beech, a significantly higher specific root length (SRL, P<0.05) and specific surface area (SSA, P<0.05) were found for beech admixed with spruce (pure beech/mixed beech SRL 16.1–23.4 m g−1, SSA 286–367 cm2 g−1). Both indicate a flexible ‘foraging’ strategy of beech tending to increase soil exploitation and space sequestration efficiency in soil layers less occupied by competitors. Spruce, in contrast, followed a more conservative strategy keeping the shallow vertical rooting and the root morphology quite constant in both pure and mixed stands (pure spruce/mixed spruce SRL 9.6/7.7 m g−1, P>0.10; SSA 225/212 cm2 g−1, P>0.10). Symmetric competition belowground between mixed beech and spruce was observed since live fine roots of both species were under-represented compared to pure stand. However, the higher space sequestration efficiency suggests a higher competitive ability of beech belowground.  相似文献   

16.
One‐year‐old container‐grown seedlings were planted in spring on clear cut areas: the Norway spruce (Picea abies) on a moist upland site (Myrtillus‐type) and Scots pine (Pinus sylvestris) on a dryish upland site (Vaccinium‐type). While still in the nursery, half of the seedlings of each species had been inoculated during the previous summer, with a uninucleate Rhizoctonia sp., a root dieback fungus. At outplanting all the seedlings appeared healthy and had a normal apical bud, although the height of the inoculated seedlings was less than that of the uninoculated control seedlings. At the end of the first growing season after planting, the mortality of inoculated Scots pine and Norway spruce seedlings was 25 and 69%, respectively. After two growing seasons the mortality of inoculated seedlings had increased to 38% for Scots pine and 93% for Norway spruce. The mortality of control seedlings after two growing seasons in the forest was 2% for Scots pine and 13% for Norway spruce. After outplanting the annual growth of inoculated seedlings was poor compared with the growth of control seedlings. These results show that, although Rhizoctonia‐affected seedlings are alive and green in the nursery, the disease subsequently affects both their survival and growth in the forest.  相似文献   

17.
Abstract

Pine weevil (Hylobius abietis L.) damage to seedlings after overstorey removal was investigated in a survey study in six shelterwoods in the south–central part of Sweden. The shelterwoods predominantly consisted of Scots pine, except at one site where the shelter trees mainly consisted of Norway spruce. Before final cutting, 10 plots were laid out at each site and measurements of shelter trees and marked seedlings were taken. The seedlings were examined during the 2 years after final cutting. The study showed that removal of shelter trees increases the risk of severe damage by pine weevil and the variable that was most strongly correlated with the risk was the seedling root collar diameter. Both Scots pine and Norway spruce seedlings were severely damaged by pine weevil, and most of the feeding occurred during the first year after cutting. The amount of debarked area was significantly larger for Scots pine than for Norway spruce seedlings. Vitality (growth of the leading shoot before final cutting) of the seedlings also affected the probability of damage. Seedlings with high vitality were less damaged by pine weevil than seedlings with low vitality. For Scots pine the shelterwood density before final cutting was correlated to the intensity of pine weevil feeding after cutting. In conclusion, after the final cutting of a pine or spruce shelterwood, pine weevils will probably invade the area. To avoid serious damage, Norway spruce and Scots pine seedlings should have reached a diameter of at least 10–12 mm.  相似文献   

18.
Allocation of biomass and nutrient elements including Nitrogen to above and belowground compartments of beech seedlings (Fagus sylvatica L.) treated by labeled nitrogen fertilizer in the form of 15NH4 and 15NO3 were investigated at the end of two successive growing seasons. Pot cultured beech seedlings were grown at a green house on intact soil cores sampled from three adjacent stands including beech, Norway spruce and mixed beech-spruce cultures of Solling forest, Germany. Comparing biomass allocation and nutrients concentrations of the seedlings between the control and 15N-fertilized treatments revealed no significant effect of N fertilization on nutrients uptake by seedlings over the experiment. The form of N input influenced its movement into plant pools. It was demonstrated that beech seedlings take up nitrogen mainly in the form of nitrate, which is then reduced in the leaves, although the differences between the retention of NO3 ?-N and NH4 +-N in plants were not statistically significant. Percent recoveries of 15N in trees were typically greater after 15NO3 than after 15NH4 additions. It was indicated that immobilization of 15N tracer in fine roots was a slower process comparing other plant compartments such as stem and coarse roots, but a powerful sink for N during the course of study.  相似文献   

19.
Interactive effects of elevated atmospheric CO2 and soil N fertility on above- and below-ground growth, mycorrhizal colonization, and water relations of juvenile ponderosa pine (Pinus ponderosa Dougl. ex Laws.) were investigated. One-year-old seedlings were planted in undisturbed field soil within open-top chambers which permitted creation of atmospheres with 700 μl l−1, 525 μl l−1, or ambient CO2 concentrations. High and medium soil N treatments were imposed by incorporating sufficient (NH4)2SO4 to increase total N by 200 μg g−1 and 100 μg g−1, respectively, while unamended soil, which had a total N concentration of approximately 900 μg g−1, constituted the low N treatment. Following each of two consecutive field growing seasons, whole seedlings of every combination of CO2 and N treatment were harvested to permit assessment of shoot and root growth and quantification of ectomycorrhizal development. Late in the second growing season, a simulated drought episode was imposed by withholding irrigation during which predawn and midday xylem water potential and soil water potential were measured. The initial harvest revealed that coarse and fine root weights were increased by CO2 enrichment during the first growing season. This result was most apparent in the 525 μl l−1 CO2 treatment and high soil N, which produced the greatest root volume as well. Shoot/root ratio decreased with increasing CO2 at the first harvest. After two growing seasons, elevated CO2 increased seedling diameter, shoot and root volume, and shoot and coarse root weight, again most prominently in high N. Unlike the initial results, however, stimulation of seedling growth by the 700 μl l−1 CO2 atmosphere exceeded that in 525 μl l−1 CO2 after two growing seasons, and shoot/root ratio was unaffected by either CO2 or N. At both harvests, seedlings grown in the enriched atmospheres generally had higher mycorrhizal counts and greater percentages of colonized root length, but differences among treatments in ectomycorrhizal development were nonsignficant regardless of quantification method. During the imposed drought episode, xylem water potential of seedlings grown in elevated CO2 descended below that of seedlings grown in the ambient atmosphere as soil water potential decreased, most notably in the predawn measurements. These results suggest that CO2 enrichment stimulates shoot and root growth of juvenile ponderosa pine under field conditions, a response somewhat dependent on soil N availability. However, below-ground growth is not increased proportionally more than that above ground, which may predispose this species to greater stress when soil water is limited.  相似文献   

20.
Abstract

This study examined the impact of increased irrigation efficiency on the hardening and frost tolerance of 2-year-old containerized white spruce seedlings in the context of groundwater protection, irrigation management and the maintenance of seedling quality in northern climates. The seedlings were grown under three different irrigation regimes (IR =30%, 40% and 55% v/v; cm3 H2O/cm3 substrate) and were hardened under conditions of natural photoperiod and temperature. After being subjected to artificial frost tests on four sampling dates during autumn, the seedlings were compared for bud development and frost tolerance. IR had no influence on frost tolerance as determined by measurements of physiological (electrolyte leakage, root water loss) and morphological (shoot damage, root initiation) variables. At the end of the second growing season, there was no significant difference between IRs in seedling height, root collar diameter, shoot dry mass and root dry mass. The results indicate that the amount of water applied to large-dimension 2-year-old white spruce seedlings during the growing season can be significantly decreased without prematurely impeding their growth or hindering their acquisition of frost tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号