首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of resistant cultivars is one of the best methods for nematode control and reduction of economic losses caused by these pathogens. Studies of inheritance of nematode resistance in common bean (Phaseolus vulgaris L.) are nonetheless scarce. The present paper reports on the estimation of genetic parameters associated with resistance to the root nematode Meloidogyne incognita race 1 in common beans. Two contrasting bean lines, ‘Aporé’ (P1 = nematode resistant) e ‘Macarr?o Rasteiro Conquista’ (P2 = susceptible), and the generations F1 (P1 × P2), F2 (P1 × P2), BC1(P1) = (F1 × P1) and BC1(P2) = (F1 × P2), were assessed 45 days after nematode inoculation, through a scale related to the number of eggs per gram of root tissue. Dominant genetic effects were inferior in magnitude to additive effects, indicating incomplete dominance of nematode resistance. Dominance was in the direction of increased nematode resistance (i.e., lower number of eggs per g root). Resistance to Meloidogyne incognita race 1 in common bean is under control of a single gene locus, with incomplete dominance of the resistance allele present in ‘Aporé’, but modifier genes affecting its expression appear to be present in the susceptible parent ‘Macarr?o Rasteiro Conquista’.  相似文献   

2.
Resistance to the southern root-knot nematode Meloidogyne incognita Chitwood would be an important attribute of lettuce Lactuca sativa L. cultivars adapted to both protected and field cultivation in tropical regions. `Grand Rapids' and a few other cultivars are reported to be resistant to this nematode. In this paper, we studied the inheritance of the resistant reaction of `Grand Rapids' (P2) in a cross with a standard nematode-susceptible cultivar Regma-71 (P1). F1(Regina-71 × Grand Rapids) and F2 seed were obtained, and inoculated along with the parental cultivars with different races of M. incognita to evaluate nematode resistance. Broad sense heritability estimates for the number of galls and of egg masses per root system, gall size and gall index were generally in the order of 0.5 or higher. Class distributions of these variables over generations P1, P2, F1 and F2 were in agreement with simulated theoretical distributions based on monogenic inheritance models. F3 families were obtained from randomly sampled F2 plants and tested for reaction to the nematode. The frequency ratio of homozygous resistant, segregating and homozygous susceptible F3 families did not differ from the 1:2:1 ratio expected from monogenic inheritance. M. incognita resistance appears to be under control of a single gene locus. The Grand Rapids allele (for which the symbol Me is proposed) is responsible for the resistant reaction, and shows high (though incomplete) penetrance, variable expressivity and predominantly additive gene action. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Downy mildew on lettuce is currently controlled using host resistance genes (Dm genes) that confer race-specific resistance in seedlings. Field resistance (FR) that is active in adult plants but not seedlings was identified in the cvs. Grand Rapids and Iceberg. The goal of our study was to evaluate the utility of Grand Rapids as a source of novel Bremia resistance alleles, particularly in comparison with Iceberg. To measure FR, downy mildew symptoms were evaluated following natural infection in field experiments. The responses of Grand Rapids and Iceberg were similar in many respects. Although both cultivars had a small percentage of plants exhibiting disease symptoms, the average disease ratings were as low as for cultivars with effective Dm genes. We observed no evidence for race specificity. FR was effective over 3 years of our study, despite documented variation within pathogen populations. Both cultivars lacked all known seedling resistance genes except Dm13, which was not responsible for the resistance observed in field experiments. Similar segregation of FR was observed in F2 populations for both Grand Rapids and Iceberg. The presence of highly susceptible families within Grand Rapids × Iceberg populations suggested the presence of at least one unique resistance allele in each cultivar. Preliminary genetic analysis of FR from Grand Rapids revealed a high estimate of narrow-sense heritability that suggested simple inheritance, but single gene models did not fit the observed data. Our results suggest that Grand Rapids may represent an underutilized resource for controlling downy mildew in lettuce.  相似文献   

4.
Cotton (Gossypium hirsutum L) cultivars highly resistant to the southern root-knot nematode (RKN) [Meloidogyne incognita (Kofoid and White) Chitwood] are not available. Resistant germplasm lines are available; however, the difficulty of selecting true breeding lines has hindered applied breeding and no highly resistant cultivars are available to growers. Recently, molecular markers on chromosomes 11 and 14 have been associated with RKN resistance, thus opening the way for marker assisted selection (MAS) in applied breeding. Our study aimed to determine the utility of these markers for MAS. Cross one was RKN resistant germplasm M240 RNR × the susceptible cultivar, FM966 and is representative of the initial cross a breeder would make to develop a RKN resistant cultivar. Cross two consists of Clevewilt 6 × Mexico Wild (PI563649), which are the two lines originally used to develop the first highly RKN resistant germplasm. Mexico Wild is photoperiodic. We phenotyped the F2 of cross one for gall index and number of RKN eggs per plant and genotyped each plant for CIR 316 (chromosome 11) and BNL 3661 (chromosome 14). From this, we verified that MAS was effective, and the QTL on chromosome 14 was primarily associated with a dominant RKN resistance gene affecting reproduction. In the first F2 population of cross two, we used MAS to identify 11 plants homozygous for the markers on chromosomes 11 and 14, and which also flowered in long days. Progeny of these 11 plants were phenotyped for RKN gall index and egg number and confirmed as RKN highly resistant plants. Generally about 7–10 generations of RKN phenotyping and progeny testing were required to develop the original RKN highly resistant germplasms. Our results show that commercial breeders should be able to use the markers in MAS to rapidly develop RKN resistant cultivars.  相似文献   

5.
The resistance to Fusarium oxysporum f.sp. melonis (Fom) race 1.2 has been studied in melons, such as the Portuguese accession ‘BG-5384’ and in the Japanese ‘Shiro Uri Okayama’, ‘Kogane Nashi Makuwa’, and ‘C-211’, since a good characterization of the resistance is necessary before its introgression into commercial varieties. These four melon accessions showed a high level of resistance to races 0, 1, and 2 of Fom, indicating that the partial resistance to the race 1.2 previously detected may not have been race specific. To determine the mode of inheritance of the resistance to Fom race 1.2, the F1, F2, BCPR, and BCPS generations from the crosses between the four resistant accessions above and ‘Piel de Sapo’, a Fom race 1.2 susceptible melon, were developed. They were subsequently inoculated with two Fom isolates, one from the pathotype 1.2Y and the other from the pathotype 1.2W. The area under the disease progress curve was determined for each inoculated plant, and the data were analyzed. We show that the resistance seen in these accessions is polygenically inherited with a complex genetic control because many epistatic interactions were detected. The three epistatic effects; additivity × additivity, dominance × dominance, and dominance × additivity are present and significant, with differing magnitudes from one cross to the next. The relatively low heritabilities, and these epistatic effects make difficult the improvement of the resistance, from these sources, through a standard selection procedure.  相似文献   

6.
The inheritance of the resistance to Fusarium oxysporum f. sp. melonis (F.o.m.) races 0 and 2 in ‘Tortuga’, a Spanish cantalupensis accession, was studied from crosses of ‘Tortuga’ by the susceptible line ‘Piel de Sapo’ and the resistant one ‘Charentais-Fom1’ that carries the resistance gene Fom-1. The segregation patterns observed in the F2 (‘Tortuga’ × ‘Piel de Sapo’) and the backcross (‘Piel de Sapo’ × (‘Tortuga’ × ‘Piel de Sapo’) populations, suggest that resistance of ‘Tortuga’ to races 0 and 2 of F.o.m. is conferred by two independent genes: one dominant and the other recessive. In the F2 derived from the cross between accessions ‘Tortuga’ and ‘Charentais-Fom1’, the lack of susceptible plants indicated that the two accessions are carrying the same resistance gene (Fom-1). The analysis of 158 F2 plants (‘Tortuga’ × ‘Piel de Sapo’) with a Cleaved Amplified Polymorphic Sequence marker 618-CAPS, tightly linked to Fom-1 (0.9 cM), confirmed that ‘Tortuga’ also carries a recessive gene, that we propose to symbolize by fom-4.  相似文献   

7.
Nicotiana wuttkei Clarkson and Symon discovered in the 1990s in Australia may be of potential interest to breeders as it carries resistance to Peronospora hyoscyami de Bary. The crossability between N. wuttkei (2n = 4x = 32) and three N. tabacum (2n = 4x = 48) cultivars (‘Puławski 66’, ‘Wiślica’ and ‘TN 90’) and the morphology and cytology of their amphihaploid hybrids (2n = 4x = 40) were studied. Seeds were produced only when N. wuttkei was used as the maternal parent, but under normal germination all seedlings died. Viable F1 hybrids of N. wuttkei × N. tabacum cv. ‘Puławski’ and N. wuttkei × N. tabacum cv. ‘Wiślica’ were obtained only by in vitro cotyledon culture. The amphihaploid plants were intermediate between the parents for most morphological traits. In 46.4% of the PMC’s, only univalents were present. The remainder of the cells had 1–5 bivalents and 1–2 trivalents. In spite of a detectable frequency of monads (2.6%), dyads (2.6%) and triads (4.5%), the hybrids were self and cross sterile.  相似文献   

8.
Heritability and gain from selection of traits associated with field resistance to multiple root-knot nematode species were estimated in carrot (Daucus carota L.). Experimental plots were uniformly and simultaneously infested with Meloidogyne incognita race 1 and M. javanica. Forty-seven half-sib families derived from the cv. ‘Brasília’ were evaluated for: (1) percentage of commercial roots with non-galling symptoms (%RNG); (2) percentage of commercial roots with gall symptoms (%RGS) and (3) percentage of non-commercial roots (%NCR). The cultivars ‘Brasília’ (resistant), ‘Carandaí’ (intermediate) and ‘Nova Kuroda’ (susceptible) were employed as standards. Broad-sense heritability estimates were 61.9 % for %RNG; 30.6 % for %RGS and 67.9 % for %NCR. However, the gains from selection were very small for all traits. The genotypic correlation between %RGS and %NCR was –0.38 and the correlation between %RNG and %RGS was 0.13. Selection on increasing %RNG resulted in a negative correlated response on %NCR (genotypic correlation = –0.99) indicating repulsion phase linkage(s) between the genetic factor(s) controlling these traits. The phenotypic correlation of –0.88 between %RNG and %NCR suggested that incomplete penetrance and dosage effects might be involved in the expression of these traits. Selection of superior genotypes (i.e. high %RNG, low %RGS, and low %NCR) can be achieved. ‘Brasília’ was among the genotypes selected for the following cycle of recombination reinforcing the notion that this cultivar is one of the most promising sources of stable, wide-spectrum field resistance to Meloidogyne species in D. carota. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
D. Rubiales  A. Martín 《Euphytica》1999,109(3):157-159
The inheritance of resistance to yellow mosaic virus spread by Bemisia tabaci Gen. in Glycine soja (Linn.) Seib. & Zucc. was studied following natural infection in the field condition. The resistant wild accession, Glycine soja was crossed with susceptible cultivars ‘Ankur’, ‘Bragg’, ‘PK 472’ and ‘Kalitur’ of Glycine max (Linn.) Merr. Resistance reactions of F1 and F2 plants, and individual F2 plant derived F3 families indicated that resistance was controlled by a single dominant gene. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
We previously surveyed chromosomal regions showing segregation distortion of RFLP markers in the F2 population from the cross between a japonica type variety ‘Nipponbare’ and an indica type variety ‘Milyang23’, and showed that the most skewed segregation appeared on the short arm of chromosome 3. By comparison with the marker loci where distortion factors were previously identified, this region was assumed to be a gametophytic selection-2 (ga2) gene region. To evaluate this region, two near isogenic lines (NILs) were developed. One NIL had the ‘Nipponbare’ segment of this region on the genetic background of ‘Milyang23’ (NIL9-23), and the other NIL had the ‘Milyang23’ segment on the genetic background of ‘Nipponbare’ (NIL33-18). NIL9-23 and ‘Milyang23’, NIL33-18 and ‘Nipponbare’, and ‘Nipponbare’ and ‘Milyang23’ were respectively crossed to produce F1 and F2 populations. The F1 plants of NIL9-23 × ‘Milyang23’ and NIL33-18 × ‘Nipponbare’ showed high seed fertility and the same pollen fertility as their parental cultivars, indicating that ga2 does not reduce seed and pollen fertility. Segregation ratio of a molecular marker on the ga2 region in the three F2 populations was investigated to clarify whether segregation distortion occurred on the different genetic backgrounds. Segregation distortion of the ga2 region appeared in the both F2 populations from the NIL9-23 and ‘Milyang23’ cross (background was ‘Milyang23’ homozygote) and the ‘Nipponbare’ and ‘Milyang23’ cross (background was heterozygote), but did notin the F2 population from the NIL33-18 and ‘Nipponbare’ cross (background was ‘Nipponbare’ homozygote). This result indicates that ga2 interacts with a ‘Milyang23’ allele(s) on the different chromosomal region(s) to cause skewed segregation of the ga2 region. In addition, segregation ratio was the same between the F2 populations from NIL9-23 × ‘Milyang23’ and ‘Nipponbare’ × ‘Milyang23’ crosses, suggesting that the both genotypes, ‘Milyang23’ homozygote and heterozygote, of gene(s) located on the different chromosomal region(s) have the same effect on the segregation distortion. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Pomegranate cultivation is one of the most attractive farming enterprises in the Indian arid tropics. However, the quality of the fruit is often severely affected by a physiological disorder called ‘aril browning’ in which a part or all the arils show discolouration (browning) and such fruits are unfit for consumption. This has become a serious concern to consumers, growers and researchers in the recent times. In order to understand the genotypic variation for aril browning and its association with other fruit traits, 158 progenies obtained by selfing two pomegranate multiple hybrids viz., {(‘Ganesh’ × ‘Kabul’) × ‘Yercaud’} × {(‘Ganesh’ × ‘Gulsha Rose Pink’)-F2} and {(‘Yercaud’ × ‘Jyothi’) × (‘Ganesh’ × ‘Gulsha Rose Pink’)-F2} × {(‘Ganesh’ × ‘Kabul’) × ‘Yercaud’} were studied. Because of heterozygous nature of the crop and diverse genetic base of parents, a wide array of recombinants were produced which were scored for aril browning, fruit skin colour, aril colour, total soluble solids (TSS) and seed mellowness. Results of Spearman’s correlation analysis revealed that aril browning is inversely related with aril colour (r = −0.41). A statistical model constructed to study the reasons for the observed variation in aril browning showed that about 82.9% of it was accounted collectively by skin colour, aril colour, TSS and seed mellowness. Further, a refined model represented by Y (aril browning severity) = 0.78 − 0.52 X1 (aril colour) + 0.23 X2 (TSS) was found to contribute to 73.5% of the observed variability in aril browning with least error in prediction. Analysis of data further showed that every unit increase in intensity of aril colour amounted to decrease in severity of aril browning by 0.52 units. However, for every unit increase in TSS there was an increase of 0.23 units in severity of aril browning. Thus, with the increase in intensity of aril colour there was a reduction in severity of aril browning while with raise in TSS, aril browning incidence was higher, an association often not favourable in selection of desirable genotypes. The results of the present study suggested that while developing varieties free from aril browning it is important to strike a balance between aril colour and TSS level.  相似文献   

12.
The interspecific cross between Chrysanthemum × grandiflorum (Ramat.) Tzvel. ‘rm20-12’ (R, 2n = 54) and C. makinoi Matsum., and Nakai (M, 2n = 18) was achieved using embryo rescue, and a single backcross progeny using C. × grandiflorum ‘rm20-12’ as paternal parent was obtained. The morphology of the two independent F1 hybrids (MR1 and MR2) differed from that of both parents. MR1 had a larger inflorescence diameter along with narrow leaves and a reduced number of ray and tubular florets. MR2 was shorter and its inflorescence developed fewer tubular florets than either M or R. The BC1F1 hybrid was similar to its maternal plant MR2 in terms of leaf length and width, inflorescence diameter and the number of ray florets, while it produced fewer tubular florets than either MR2 or R. The flower color in both F1 hybrids was lavender, while the BC1F1 plant bore purple flowers. The aphid resistance and heat tolerance of MR1, MR2 and the BC1F1 hybrid were both significantly superior to that of C. × grandiflorum ‘rm20-12’. Interspecific hybridization followed by backcrossing shows clear potential for cultivar improvement in chrysanthemum.  相似文献   

13.
Caused by Aphanomyces cochlioides Drechsler, Aphanomyces root rot is a serious disease of sugar beet (Beta vulgaris L.), for which sources of resistance are scarce. To identify the segregation pattern of the rare resistance trait found in Japanese sugar beet line ‘NK-310mm-O’, F1 and BC1F2 seedings, drawn from a cross between ‘NK-310mm-O’ and susceptible line ‘NK-184mm-O’, were inoculated with zoospores and their survival evaluated in the greenhouse. Resistance segregation followed was that of a single dominant gene, which was designated Acr1 (Aphanomyces cochlioides resistance 1). Molecular markers tightly linked to Acr1 were identified by bulked segregant analysis of two BC1F2 populations. Fourteen AFLP markers linked to Acr1 were identified, the closest located within ±3.3 cM. Three F5 lines and two BC2F1 lines, selected on the basis of their Acr1-AFLP markers, were tested for their resistance to Aphanomyces root rot in a highly infested field. Results indicated that Acr1 conferred significant resistance to Aphanomyces root rot at the field level. Based on its linkage with CAPS marker tk, a representative marker for chromosome III, Acr1 was located on this chromosome. The clear linkage between tk and Rhizomania resistance trait Rz1, suggests the clustering of major disease resistance genes on chromosome III.  相似文献   

14.
Zingiberene (ZGB) and acylsugars (AS) are allelochemicals responsible for high levels of arthropod resistance found in Solanum habrochaites (= Lycopersicon hirsutum) var. hirsutum ‘PI 127826’ and S. (= L.) pennelli ‘LA 716’, respectively. These accessions were used to develop commercial lines with good levels of pest resistance. The objective of the present work was to assess the ZGB and AS contents and the levels of resistance to Tuta absoluta in tomato hybrids between high ZGB × high AS lines, as compared with their parental lines and with commercial checks. High AS homozygous lines [TOM-688 and TOM-689, both originated from the interspecific cross S. lycopersicum (= L. esculentum) × S. pennelli], high ZGB homozygous lines (ZGB-703 and ZGB-704, both derived from the interspecific cross S. lycopersicum × S. habrochaites var. hirsutum), double heterozygotes for both ZGB and AS, single heterozygotes for ZGB, and single heterozygotes for AS were assessed for AS and ZGB contents. Low-ZGB low-AS checks ‘Débora Max’ and ‘TOM-684’ were used, as well as checks with high ZGB (PI 127826) and high AS (LA 716). The genotypes were submitted to infestation with South American tomato pinworm adults in a screenhouse, and oviposition counts were taken 10 days after the initial infestation date. Plants were scored for overall plant damage and percent leaflets attacked up to the 38th day after infestation. Genotypes heterozygous for ZGB or AS showed allelochemical contents intermediate to those of their high and low content parents, indicating incompletely dominant gene action for contents of each of the allelochemicals. There were no significant differences in T. absoluta oviposition between high-AS homozygous genotypes, high-ZGB homozygotes, single heterozygotes for AS, single heterozygotes for ZGB and double heterozygotes for ZGB and AS, but all these genotypes showed egg counts significantly lower than the low-ZGB low-AS checks. Feeding damage of T. absoluta was higher in the low-ZGB low-AS checks than in any other ZGB-rich or AS-rich tomato genotype. Relative to ZGB or AS single heterozygotes, the heterozygotes for both ZGB and AS showed higher levels of resistance to the insect, as measured by overall plant damage, indicating a synergic effect of the allelochemicals on resistance.  相似文献   

15.
Flowering dogwood (Cornus florida L.) is an ornamental tree valued for its showy white, pink, or red spring bract display and red fall color. A “pseudo” F2 flowering dogwood population was recently developed from a honeybee mediated cross of ‘Cherokee Brave’ × ‘Appalachian Spring’. The foliage color of 94 “pseudo” F2 plants segregated into green- and red- leaved phenotypes and was visually rated for color on five spring dates over 3 years (2007–2009). Chi-square analyses of observed segregation of phenotypes indicated that a complementary gene interaction form of epistasis controls foliage color with a 9:7 two gene ratio. We propose the symbols rl 1 and rl 2 for the genes controlling this trait.  相似文献   

16.
Petra Scheewe 《Euphytica》1994,77(1-2):25-29
Summary The fungusPhytophthora fragariae Hickman is the causal agent of red stele disease in strawberry (Fragaria × ananassa), this being a major disease in many areas with cool and moist conditions. Success of resistance breeding can be nullified by the appearence of specific races of the fungus capable of overcoming the introduced resistance. In some countries (USA, UK, Japan and Canada) races were identified by using a differential set of strawberry cultivars. The absence of an international standard differential set and the use of different test methods make a comparison of the identified races difficult or even lead to contradictory results for one variety/race combination. The aim of this study was to obtain information about the spectrum of pathogenic races in Germany as a basic contribution to research on resistance breeding against the fungus. The susceptibility of different strawberry cultivars to German isolates ofP. fragariae was evaluated. The inoculation was done by modifying a method described by Milholland et al. (1989). Rootedin vitro plants, four weeks after transferring them to the soil, were used for the investigation. Inoculation was done with a zoospore suspension of defined concentration. Up to now three German isolates, G-1, G-2, and G-3, can be separated by their ability to infect and produce oospores in the roots of the strawberry cultivars ‘Senga Sengana’, either ‘Saladin’, ‘Redgauntlet’ or ‘Climax’ andFragaria chiloensis clone ‘YaquinaB’. These results confirm the existence of pathogenic races ofP. fragariae in Germany and should be taken into consideration for resistance breeding against the fungus.  相似文献   

17.
In carrot, two codominant sequence-tagged site (STS) markers, flanking in tight linkage the Meloidogyne javanica resistance (Mj-1) locus, were employed to investigate the association between expression of resistance and locus dosage. Phenotypic expression of homozygous resistant (R); heterozygous; and homozygous susceptible (S) individuals in an F2 population of 396 F2 plants from ‘Brasília-1252’ (R) × ‘B6274’ (S) was estimated for three resistance criteria: total egg production per plant (TEP), egg production per gram of fibrous root (EPG) and root gall index (RGI). The homozygous resistant class had average values of 403.9 for TEP; 147.5 for EPG and 0.8 for RGI. The heterozygous class had 1,673; 477.3; and 0.16 whereas the homozygous susceptible class had 68,604; 11,877; and 2.54, respectively. The dominance ratio (d/a) indicated that genomic region(s) derived from the resistant parent encompass genetic factor(s) with almost complete dominance for RGI (d/a = 0.93–0.94) and incomplete dominance for transformed (TEP)0.25 and (EPG)0.25 (d/a = 0.63–0.65). Broad sense heritabilities were high varying from 72.9% for (EPG)0.25 to 86.0% for RGI. Narrow sense heritability values ranged from 55.9% for RGI to 64.3%for (TEP)0.25. Highly significant orthogonal contrasts were observed between homozygous resistant vs. heterozygous for (TEP)0.25 and (EPG)0.25. Marker-assisted selection could greatly facilitate the incorporation of the Mj-1 allele in both male-fertile and male-sterile counterpart lines in order to obtain F1 hybrids with the most effective levels of resistance. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
S. H. Jalikop 《Euphytica》2007,158(1-2):201-207
Summary Inheritance of fruit acidity in pomegranate (Punica granatum L.) was studied in 3 sweet or low acid (‘Ganesh’, ‘Ruby’ and ‘Kabul Yellow’) and 3 sour or high acid (‘Nana’, ‘Daru’ and ‘Double Flower’) varieties and their progenies. The F1 and F2 data of ‘Ganesh’ × ‘Nana’ showed that fruit acidity is monogenically controlled and the sour nature is dominant over sweet. Further, whether a genotype produces sweet or sour fruit is determined by a major gene (SS) while a few modifiers with small effects cause fluctuations in the acidity levels within sour and sweet types. All the trees of 3 crosses involving ‘Daru’ produced acidic fruits but those of (‘Ganesh’ × ‘Nana’) × ‘Daru’ reached acidity as high as 71.2 g/l which could be because of cumulative influence of modifying genes derived from the two acidic varieties ‘Nana’ and ‘Daru’. Pollination of functionally sterile ‘Double Flower’ variety with single (normal) flower types revealed that ‘Double Flower’ is a dominant mutant from an acidic fruited genotype (Ss). The segregation pattern in F1 indicated the possible linkage between genes governing total acidity and flower type. All the F1 hybrids between ‘Kabul Yellow’ and ‘Ganesh’ (sweet × sweet) were sour fruited with almost 8-fold jump in fruit acidity over the mid-parental value. The steep increase in acidity cannot be convincingly attributed to overdominance which is certainly rare at major gene level. Alternatively, linked dominant alleles or epistatic effect of neighboring loci which readily simulate overdominance (pseudo-overdominance) could have caused a major shift in F1 fruit acidity.  相似文献   

19.
The sesquiterpene zingiberene, present in leaf glandular trichomes, is reportedly responsible for the high level of arthropod resistance found in Lycopersicon hirsutum var. hirsutum. This paper reports on the inheritance of zingiberene contents and of the various types of glandular trichomes in the interspecific cross L. esculentum × Lycopersicon hirsutum var. hirsutum. Plants of L. esculentum ‘TOM-556’ (= P1), L. hirsutum var. hirsutum ‘PI-127826’(= P2), F1 (P1 × P2) and F2 (P1 ×P2) were evaluated for zingiberene contents and densitities of and glandular (types I, IV, VI and VII) trichomes. Broad sense heritabilities were high for all traits studied (0.678, 0.831, 0.996, 0.799 and 0.717 respectively for zingiberene and trichome types I, IV, VI, VII). There were significant positive genetic correlations between zingiberene contents and densities of trichomes types IV, VI and VII. Inheritance of zingiberenecontents can be explained mostly by the action of a single major locus, inwhich the allele from L. hirsutum that conditions high content is incompletely recessive over the allele from L. esculentum. Action of an incompleteley recessive allele in one major locus appears to be evident for densities of trichome types IV, VI and VII, but there is also evidence of the action of other epistatic loci for types IV and VI. F2 genotypes selected for high zingiberene levels showed higher levels of resistance to the silverleaf whitefly Bemisia argentifolii than L. esculentum ‘TOM-556’, levels that were comparable those found in L. hirsutum var. hirsutum ‘PI-127826’ and other whitefly resistant accessions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The rice cultivar ‘Chumroo’ is commonly cultivated in the mid- and high-altitude areas of Bhutan. This cultivar has shown durable blast resistance in that area, without evidence of breakdown, for over 20 years. Chumroo was inoculated with 22 blast isolates selected from the race differential standard set of Japan. The cultivar showed resistance to all the isolates. To identify the resistance gene(s), Chumroo was crossed with a susceptible rice cultivar, Koshihikari. The F1 plants of the cross showed resistance. Segregation analyses of 300 F3 family lines fitted the segregation ratio of 1:2:1 and indicated that a single dominant gene controls the resistance to a blast isolate Ao 92-06-2 (race 337.1). The Chumroo resistance locus (termed Pi46(t)) was mapped between two SSR markers, RM6748 and RM5473, on the terminal region of the long arm of chromosome 4, using linkage analysis with SSR markers. The nearest marker, RM5473, was linked to the putative resistance locus at a map distance of 3.2 cM. At the chromosomal region, no true resistance genes were identified, whereas two field resistance genes were present. Therefore, we designated Pi46(t) as a novel blast resistance locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号