首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 242 毫秒
1.
在甘肃省石羊河流域绿洲灌区,研究了不同灌溉量(常规灌溉327 mm,节水20%灌溉261 mm和节水40%灌溉196 mm)和施氮量 (0,140,221和300 kg N/hm2) 对留茬免耕绿洲农田0~120 cm 土壤水分动态、小麦耗水规律、籽粒产量和水分利用效率的影响。结果表明,灌溉影响灌水前24 h深层(80~120 cm)土壤含水量和灌水后24 h浅层(0~80 cm)土壤含水量,施氮处理对深层(0~120 cm)土壤含水量影响不显著。就全生育期而言,土壤贮水量和植株耗水强度随灌水量增加而增加,不施氮处理的土壤贮水量高于施氮处理,施氮对植株耗水强度影响不显著。当施氮量达到221 kg N/hm2时,春小麦水分利用效率(14.51 kg/hm2·mm)和春小麦籽粒产量(6 365 kg/hm2)达到最大值。春小麦籽粒产量随灌溉量增加而增加,常规灌溉的平均籽粒产量比节水20%灌溉和节水40%灌溉分别增加8.2%和32.2%。不同灌溉之间的水分利用效率相差不显著。  相似文献   

2.
在甘肃省石羊河流域绿洲灌区,研究不同灌溉量和施氮量对留茬免耕春小麦收后0~30 cm土层土壤有机碳、土壤全氮和土壤碳氮比的影响。结果表明,在0~140 kg/hm2施氮范围,土壤全氮和有机碳含量增施氮肥均明显增加,当施氮量超过140 kg/hm2时,土壤有机碳随施氮量增加而降低,土壤全氮含量无明显变化。就平均施氮水平而言,土壤全氮和有机碳含量随灌溉量增加呈先升高后下降的趋势,适量灌溉 (节水20%灌溉) 促进土壤氮和碳的矿化速率,从而增加全氮和有机碳含量,但少量或过量灌溉降低土壤氮和碳的矿化速率,同时增加土壤氮和碳的损失,导致节水20%灌溉的土壤全氮含量(0.9 g/kg)和有机碳含量(14.22 g/kg)最高。就各灌溉水平平均值而言,当施氮达到221 kg/hm2,春小麦籽粒产量(6 365 kg/hm2)达到最大值,春小麦籽粒产量随灌溉量增加而增加。  相似文献   

3.
灌溉与施氮对紫花苜蓿土壤水分动态和耗水强度的影响   总被引:4,自引:2,他引:2  
在甘肃省河西绿洲灌区设计大田试验,研究了不同灌溉量常规灌溉(330 mm)、节水20%灌溉(264 mm)和节水40%灌溉(198 mm)和施氮量0、40、80和120 kg/hm2对紫花苜蓿(Medicago sativa)土壤不同层次含水量、贮水量动态变化和耗水强度的影响.结果表明:根系层(0~120 cm)土壤含...  相似文献   

4.
为探究不同施氮量对紫花苜蓿根际土壤微生物数量、酶活性、干草产量的影响,设置4个施氮梯度,施氮量分别为:0kg/hm2(N0)、60kg/hm2(N1)、120kg/hm2(N2)和180kg/hm2(N3),测定紫花苜蓿根际土壤微生物数量、酶活性及干草产量,并进行综合分析.结果表明:紫花苜蓿根际土壤细菌、真菌、放线菌数...  相似文献   

5.
为探讨不同水氮供应对紫花苜蓿生长、产量和水氮利用效率的影响,确定地下滴灌紫花苜蓿栽培草地的合理施氮量和灌溉量,以紫花苜蓿‘巨能7号'为供试品种,采用田间试验,全生长季共设置4个总滴灌量水平:480mm(W1)、550mm(W2)、620 mm(W3)和690 mm(W4);施氮量共设置4个水平:无氮(N0,0)、低氮(N1,60kg·hm-2)、中氮(N2,120kg·hm-2)和高氮(N3,180kg·hm-2)结合灌溉进行,试验采用田间裂区设计,研究了不同水氮供应对地下滴灌紫花苜蓿全生长季内生长状况、产量和水氮利用效率的影响。试验结果表明:1)水氮供应对紫花苜蓿不同茬次的株高和茎粗均有不同的影响,表现为第1、2茬紫花苜蓿的株高均随施氮量和滴灌量的增加而增高,第1茬紫花苜蓿的茎粗随滴灌量的增加而增粗。2)第1、2茬紫花苜蓿干草产量均随滴灌量的增加而增加,施氮量对第1、4茬和全年的紫花苜蓿干草产量有显著的提高,其中滴灌量、施氮量和水氮互作对紫花苜蓿增产效应极显著(P0.01)。3)增加滴灌量,降低施氮量,紫花苜蓿的水分利用效率(WUE)和灌溉水利用效率(IWUE)均逐渐下降,WUE和IWUE最小值均出现在W4N0处理下,且该处理下的WUE和IWUE均明显小于其他处理。4)紫花苜蓿氮肥农学效率(ANUE)随施氮量增加在不同滴灌量下表现出不同的变化趋势,在W1、W2和W3水平下,ANUE随施氮量的增加表现为先增大后降低趋势,ANUE最大值均出现在N2水平,在W4水平下,ANUE随施氮量的增加而降低;氮肥偏生产力(PFPN)则随施氮量的增加而显著降低。ANUE随滴灌量的增加先降低后升高,而PFPN先增加后降低,说明适当增加滴灌量可以提高紫花苜蓿的ANUE和PFPN。综合考虑紫花苜蓿产量效应和资源利用、环境等综合效应,W3N2处理下(滴灌量为620mm,施氮量为120kg·hm-2)宁夏引黄灌区地下滴灌紫花苜蓿种植较为适宜。研究结果可为宁夏引黄灌区紫花苜蓿大面积推广节水、高产优质种植提供理论依据。  相似文献   

6.
为探讨不同水氮供应对紫花苜蓿生长、产量和水氮利用效率的影响,确定地下滴灌紫花苜蓿栽培草地的合理施氮量和灌溉量,以紫花苜蓿‘巨能7号’为供试品种,采用田间试验,全生长季共设置4个总滴灌量水平:480 mm(W1)、550 mm(W2)、620 mm(W3)和690 mm(W4);施氮量共设置4个水平:无氮(N0,0)、低氮(N1,60 kg·hm-2)、中氮(N2,120 kg·hm-2)和高氮(N3,180 kg·hm-2)结合灌溉进行,试验采用田间裂区设计,研究了不同水氮供应对地下滴灌紫花苜蓿全生长季内生长状况、产量和水氮利用效率的影响。试验结果表明:1)水氮供应对紫花苜蓿不同茬次的株高和茎粗均有不同的影响,表现为第1、2茬紫花苜蓿的株高均随施氮量和滴灌量的增加而增高,第1茬紫花苜蓿的茎粗随滴灌量的增加而增粗。2)第1、2茬紫花苜蓿干草产量均随滴灌量的增加而增加,施氮量对第1、4茬和全年的紫花苜蓿干草产量有显著的提高,其中滴灌量、施氮量和水氮互作对紫花苜蓿增产效应极显著(P<0.01)。3)增加滴灌量,降低施氮量,紫花苜蓿的水分利用效率(WUE)和灌溉水利用效率(IWUE)均逐渐下降,WUE和IWUE最小值均出现在W4N0处理下,且该处理下的WUE和IWUE均明显小于其他处理。4)紫花苜蓿氮肥农学效率(ANUE)随施氮量增加在不同滴灌量下表现出不同的变化趋势,在W1、W2和W3水平下,ANUE随施氮量的增加表现为先增大后降低趋势,ANUE最大值均出现在N2水平,在W4水平下,ANUE随施氮量的增加而降低;氮肥偏生产力(PFPN)则随施氮量的增加而显著降低。ANUE随滴灌量的增加先降低后升高,而PFPN先增加后降低,说明适当增加滴灌量可以提高紫花苜蓿的ANUE和PFPN。综合考虑紫花苜蓿产量效应和资源利用、环境等综合效应,W3N2处理下(滴灌量为620 mm,施氮量为120 kg·hm-2)宁夏引黄灌区地下滴灌紫花苜蓿种植较为适宜。研究结果可为宁夏引黄灌区紫花苜蓿大面积推广节水、高产优质种植提供理论依据。  相似文献   

7.
为了探讨不同施氮水平对沙地羊草草产量、土壤全氮变化及羊草对氮肥利用率的影响,设置了0(CK)、100、200、300、400 kg/hm2的施氮(纯氮)量.结果 表明:随着施氮水平的提高,羊草产量呈先增加后平稳的趋势,309.66 kg/hm2施氮量草产量最高,羊草干草产量与施氮量的回归方程为y=--0.073x2 +45.21x+3808;羊草植株粗蛋白含量随着施氮水平的增加呈增加趋势,300 kg/hm2处理水平氮肥利用率最高;羊草生育期内土壤全氮含量、氮肥贡献率、氮肥吸收利用率与其产量呈显著正相关.施氮肥会提高羊草干草粗蛋白水平,施氮水平的高低决定土壤残留氮素的多少.施入309.66 kg/hm2氮时羊草干草产量最高,可以作为科尔沁沙地人工羊草草地的最佳施肥量.  相似文献   

8.
水氮互作对河西走廊紫花苜蓿品质的影响   总被引:1,自引:0,他引:1  
通过研究不同灌溉量(W_1:117mm;W_2:156mm;W_3:192mm)和施氮量(N_1:0kg·hm~(-2);N_2:40kg·hm~(-2);N_3:80kg·hm~(-2);N_4:120kg·hm~(-2))互作条件下河西走廊紫花苜蓿水分利用效率、品质和相对饲用价值的变化特征,旨在确定紫花苜蓿品质最优时的水氮配置模式。结果表明,水氮互作显著影响了紫花苜蓿水分利用效率、粗蛋白质含量、中性洗涤纤维含量和相对饲用价值(P0.05),但对紫花苜蓿地上生物量、粗脂肪、粗灰分含量和酸性洗涤纤维含量影响不显著。紫花苜蓿水分利用效率、粗蛋白质含量、中性洗涤纤维含量和相对饲用价值随灌溉量和施氮量的增加均呈开口向下的抛物线,最大值出现的组合分别为W_2N_3和W_2N_2,说明只有水氮合理配置才能提高紫花苜蓿品质和相对饲用价值。  相似文献   

9.
灌水和施肥是调控作物生长和产量形成的两大重要技术措施,研究水氮互作对燕麦耗水特性及产量的影响,对于优化燕麦高产高效栽培理论和技术具有重要意义。2014-2015年连续两个生长季,在甘肃河西绿洲灌区,田间试验设置3个定额灌溉和3个施氮(纯N)水平,研究水氮耦合对陇燕3号农田0~150 cm土层耗水量、棵间蒸发、产量及水分利用效率的影响。3个灌溉处理的灌水量分别为270.0 mm (I1)、337.5 mm (I2)和405.0 mm (I3),3个施N水平分别为90 kg/hm2 (N1)、120 kg/hm2 (N2)和150 kg/hm2 (N3)。在全生育期内,棵间蒸发量(E)及E/ET(总蒸散量)的比例表现先降后升趋势,且相同施氮量下,拔节至灌浆期随灌水量的增大而增大,而灌浆至成熟期则随灌水量的增大而减小。相同施氮量下,燕麦耗水量与籽粒产量随着灌水量的增加而显著增加,水分利用效率却随着灌水量的增加而降低。所有处理中,N3I3产量最高(5466.0~5727.5 kg/hm2),N3I2次之(5428.5~5678.5 kg/hm2),N1I1最小(4504.5~4804.3 kg/hm2),而N3I2的水分利用效率最大[12.11~12.82 kg/(mm·hm2)],N3I1次之[12.04~12.63 kg/(mm·hm2)],N1I3最小[9.79~10.58 kg/(mm·hm2)]。由此表明,水氮耦合对燕麦水分利用及产量具有显著互作效应,施氮量150 kg/hm2、灌溉定额337.5 mm是西北绿洲灌区燕麦种植较佳的节水、高产水氮管理模式。  相似文献   

10.
以紫花苜蓿(Medicago sativa)WL919品种为材料,设置15.0 kg·hm?2(D1)、30.0 kg·hm?2(D2)、45.0 kg·hm?2(D3)3个播种量,150.0 kg·hm?2(N1)、225.0 kg·hm?2(N2)、300.0 kg·hm?2(N3)3个施肥量,研究了种植密度和施肥量对盐碱地紫花苜蓿产量与生理特性的影响,以期为滩涂盐碱地苜蓿的高产栽培提供技术支持.结果表明:1)紫花苜蓿的株高、干草产量随种植密度的增加先增后减、在中等密度(D2)下达到最高,随施氮量的增加而增加.2)种植密度和施氮量互作条件下,苜蓿的株高、干草产量均以中密度中氮(D2N2)处理最优.3)播种后120 d时紫花苜蓿处于现蕾期和初花期,此时紫花苜蓿的饲草品质较好,干草产量为11057.2 kg·hm?2,因此是最适宜的收获时期.4)丙二醛含量在播种后60 d时最低,此时施氮量对丙二醛含量影响不显著(P>0.05),播种后120 d时,D3N2组合下丙二醛含量最低.5)随着种植密度以及施氮量的增加,脯氨酸含量先增后减.总体上,超氧化物歧化酶活性随着种植密度和施氮量的增加而增加,在D2N2处理下活性达到最大值;过氧化物酶活性在中等密度(D2)下较高,在D2N2处理下过氧化物酶活性最高;过氧化氢酶活性在D2、D3密度下,随着施氮量的增加先增后减,在中氮(N2)下活性最高.种植密度和施氮量互作条件下,中密度中氮(D2N2)处理下盐碱地紫花苜蓿的生长和生理特性均能达到最优水平.  相似文献   

11.
青海高寒草甸施氮肥增产效应浅析   总被引:4,自引:2,他引:2  
纪亚君 《草业科学》2006,23(3):26-29
采用氮肥施用量的单因子试验研究了施用氮肥对高寒草甸的增产效应。结果表明,就2年累积增产效应而言,施氮量为150 kg/hm2时,每公斤尿素可获得地上总生物量的最大增产量为19.22 kg,而当施氮量为225 kg/hm2时,禾本科牧草可以获得单位尿素的最大增产量为17.48 kg。综合考虑草地总盖度、草地总生物量、优良牧草生物量及优良牧草分盖度的增加,认为天然高寒草甸草地的最佳施氮量为150 kg/hm2,2年累积可增加地上总生物量2 883 kg/hm2鲜草,增加禾本科牧草地上生物量1 770 kg/hm2鲜草。  相似文献   

12.
不同灌溉量对紫花苜蓿产量影响的对比   总被引:6,自引:0,他引:6  
张国利 《草业科学》2009,26(10):181-181
为了查明景泰地区紫花苜蓿Medicago sativa生育期灌溉量与产草量的关系,探索既能使紫花苜蓿高产,又能节约用水的灌溉模式,对不同灌溉条件下紫花苜蓿的鲜草产量和经济效益进行研究,确定出最适宜的灌溉量。试验结果表明,紫花苜蓿生长期,在2040 cm土层内,土壤水分含量达到30%左右时,紫花苜蓿均能良好生长,鲜草产量随灌溉量增加而增长,增产幅度也逐渐增大;但当灌溉总量达到5 400 m3/hm2时,灌溉量增加对苜蓿增产幅度影响不明显,灌溉总量4 800 m3/hm2左右时经济效益最高。  相似文献   

13.
施氮肥对高羊茅种子质量和产量组成的影响   总被引:23,自引:7,他引:16  
2000-2001年在新疆塔里木农垦大学牧草试验站进行了施氮肥对交战高羊茅种子质量和产量组成影响的研究。结果表明,施氮可以明显提高种子的活力和质量,并增加了单位面积的生殖枝数和小花数/小穗;施氮肥提高了种子产量,其中以秋季60kg/hm^2 春季120kg/hm^2施氮量为最好,种子产量可达1653.9kg/hm^2。  相似文献   

14.
王茜  纪树仁  沈益新 《草业学报》2017,26(12):48-55
土壤水分含量对作物施肥效应有重要影响。为了研究长江中下游农区土壤条件下施氮对紫花苜蓿生长的影响,探究土壤水分和施氮水平的互作效应,进行了盆栽半控制试验。试验采用两因素随机区组设计,设置了3个土壤水分水平(分别为50%、70%、90%的最大持水量)和4个施氮水平(0、90、180和270 kg/hm2)。结果表明,在施氮量一定的条件下,适当提高土壤水分含量,紫花苜蓿苗期生长、地上部干物质积累及氮素利用率均呈现增加的趋势。在相同土壤水分水平下,适量施氮可以促进紫花苜蓿生长、地上部干物质积累及氮素的利用,但是过多施氮不利于地上部干物质积累及氮素利用率的提高。土壤水分和施氮水平具有显著的互作效应。回归分析结果表明,施氮效应因土壤水分含量升高而显著增大;适宜的施氮量也因土壤水分含量升高而增大。因此,土壤缺水的地区或季节,施肥与灌溉应同步进行;土壤水分含量较高的长江中下游农区,适当增施氮肥有利于紫花苜蓿高产,并提高氮素利用率。  相似文献   

15.
不同施氮水平对俯仰臂形草生产性能的影响   总被引:8,自引:2,他引:8  
试验表明,在施一定量磷、钾、硫、锌、锰、铜肥的基础上,俯仰臂形草Brachiaria decumbens的干物质产量和粗蛋白含量随施氮量的增加而上升;在施氮处理范围内,氮肥利用率随施氮量的增加而降低.施氮量0~172.5 kg/hm2,种子产量随施氮量的增加而增加;当施氮量达到103.5 kg/hm2时,种子产量最高;达到304 kg/hm2时,随施氮量增加,种子产量呈下降趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号