首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chickens from seven different parental lines of commercial White Leghorn layer flocks from three independent breeders were inoculated with a naturally occurring avian leukosis virus (ALV) containing an ALV-B envelope and an ALV-J long terminal repeat (LTR) termed ALV-B/J. Additional groups of chickens from the same seven parental lines were inoculated with ALV-B. Chickens were tested for ALV viremia and antibody at 0, 4, 8, 16, and 32 wk postinfection. Chickens from all parental lines studied were susceptible to infection with ALV-B with 40%-100% of inoculated chickens positive for ALV at hatch following embryo infection. Similarly, infection of egg layer flocks with the ALV-B/J recombinant virus at 8 days of embryonation induced tolerance to ALV with 86%-100% of the chickens viremic, 40%-75% of the chickens shedding virus, and only 2/125 (2%) of the chickens producing serum-neutralizing antibodies against homologous ALV-B/J recombinant virus at 32 wk postinfection. In contrast, when infected with the ALV-B/J recombinant virus at hatch, 33%-82% of the chickens were viremic, 28%-47% shed virus, and 0%-56% produced serum-neutralizing antibodies against homologous ALV-B/J recombinant virus at 32 wk postinfection. Infection with the ALV-B/J recombinant virus at embryonation and at hatch induced predominately lymphoid leukosis (LL), along with other common ALV neoplasms, including erythroblastosis, osteopetrosis, nephroblastomas, and rhabdosarcomas. No incidence of myeloid leukosis (ML) was observed in any of the commercial White Leghorn egg layer flocks infected with ALV-B/J in the present study. Data suggest that the parental line of commercial layers may influence development of ALV-B/J-induced viremia and antibody, but not tumor type. Differences in type of tumors noted in the present study and those noted in the field case where the ALV-B/J was first isolated may be attributed to differences in the genetics of the commercial layer flock in which ML was first diagnosed and the present commercial layer flocks tested in the present study.  相似文献   

2.
Electron microscopy and immunocytochemistry were used to study the development of lymphoid leukosis virus infection in the bursa of Fabricius of experimentally infected chicken embryos and chickens. In embryos infected at 7 days of incubation and killed 10 days later, virus particles and group-specific viral antigen were confined mainly to the connective tissue of the lamina propria of the bursal mucosal folds; a few developing follicles had discrete virions and group-specific antigen between cells. In chickens infected at 1 day of age, infection (as determined by use of electron microscopy and immunocytochemistry) was maximal in 1- to 4-month-old birds, and the greatest concentration of virus and group-specific viral antigen was in the medulla of the follicles. Although lymphoid leukosis virus was released from lymphocytes, epithelial cells, and macrophages, virus replication in the medullary macrophages was more active than that in the other cells. Normal medullary macrophages had cell membrane vesicles (50 to 80 nm in diameter) that covered part of all of the cell membrane surface. In infected chickens, virus particles frequently developed within these vesicles. Comparable vesicles were not found on cortical macrophages. Results of the present study indicated that the medullary macrophage was the principal host cell for replication of lymphoid leukosis virus in the bursa of Fabricius of the chicken.  相似文献   

3.
Infection of broiler chickens with subgroup J avian leukosis virus (ALV) results in the induction of myeloid tumors. However, although egg-type chickens are susceptible to infection with ALV-J, the tumor incidence is very low, and on rare occasions the tumors observed are of the myeloid lineage. We recently described the isolation of an ALV (AF115-4) from commercial egg-type chickens suffering from myeloid leukosis. AF115-4 was initially identified as an ALV-J isolate based on PCR analysis of the long terminal repeat (LTR). However, further characterization of the viral envelope indicated that the virus is recombinant with subgroups B envelope and J LTR. Here we further characterize this recombinant virus at both the molecular and biological levels. We show that the AF115-4 isolate expresses a recombinant envelope glycoprotein encoded by a subgroup B gp85 region and a subgroup E gp37 region. The host range ofAF115-4 was analyzed using cells resistant to infection by subgroups A/B, J, or E; this shows that no ALV-J was present in the isolates obtained from the affected chickens. Additional antigenic characterization of AF115-4 using chicken sera specific for subgroups B or J indicated that no ALV-J was present in the samples examined. Inoculation of AF 115-4 into ALV-susceptible 1515 X 71 chickens resulted in the induction of lymphoid leukosis but not the expected myeloid leukosis affecting the commercial chickens. These results suggest that differences in the genetic makeup of the chickens from which AF115-4 was isolated and the line 1515 X 71 used in the present experiments may be responsible for the observed differences in pathogenicity. In addition, the results suggest that ALV-J continues to evolve by recombination, generating new viruses with different pathological properties.  相似文献   

4.
Five groups of genetically susceptible chickens were inoculated at hatching with lymphoid leukosis virus; four of these were given infectious bursal viruses of varying virulence at 14 days of age and one group was not inoculated (control). All chickens in the control group developed evidence of lymphoid leukosis by 180 days. Two groups given relatively virulent bursal disease viruses, which destroyed bursal lymphoid cells, did not develop lymphoid leukosis. Treatment with avirulent vaccines had no visible effect on bursal morphology and did not significantly alter the incidence of lymphoid leukosis in two other groups, although the time of development was delayed. Results of our study show that viral-induced destruction of the bursa of Fabricius eliminates the development of lymphoid leukosis but that infection without bursal destruction has little effect on lymphoid leukosis.  相似文献   

5.
In Experiment 1, chickens from various white leghorn experimental lines were inoculated with strain ADOL-Hcl of subgroup J avian leukosis virus (ALV-J) either as embryos or at 1 day of age. At various ages, chickens were tested for ALV-J induced viremia, antibody, and packed cell volume (PCV). Also, at 4 and 10 wk of age, bursal tissues were examined for avian leukosis virus (ALV)-induced preneoplastic lesions with the methyl green-pyronine (MGP) stain. In Experiment 2, chickens harboring or lacking endogenous virus 21 (EV21) were inoculated with strain ADOL-Hcl of ALV-J at hatch. All embryo-inoculated chickens in Experiment 1 tested positive for ALV-J and lacked antibody throughout the experimental period of 30 wk and were considered viremic tolerant, regardless of line of chickens. By 10 wk of age, the incidence of ALV-J viremia in chickens inoculated with virus at hatch varied from 0 (line 0 chickens) to 97% (line 1515); no influence of ALV-J infection was noted on PCV. Results from microscopic examination of MGP-stained bursal tissues indicate that ALV-J can induce typical ALV-induced transformation in bursal follicles of white leghorn chickens. Lymphoid leukosis and hemangiomas were the most common ALV-J-induced tumors noted in chickens in Experiment 1. At termination of Experiment 2 (31 wk of age), 54% of chickens harboring EV21 were viremic tolerant compared with 5% of chickens lacking EV21 after inoculation with ALV-J at hatch. The data indicate that genetic differences among lines of white leghorn chickens, including the presence or absence of EV21, can influence response of chickens to infection with ALV-J.  相似文献   

6.
Avian leukosis virus subgroup A (ALV‐A) is a retrovirus which infects egg‐type chickens and is the main pathogen of lymphoid leukosis (LL) and myeloid leukosis (ML). In order to greatly enhance the diagnosis and treatment of clinical avian leukemia, two monoclonal antibodies (MAbs) to ALV‐A were developed by fusion between SP2/0 and spleen cells from mice immunized with expressed ALV‐A env‐gp85 protein. Using immunofluorescence assay (IFA), two MAbs reacted with ALV‐A, but not with subgroups B and J of ALV. Western blot tests showed that molecular weight of ALV‐A envelope glycoprotein recognized by MAbs was about 53 kD. Isotyping test revealed that two MAbs (A5C1 and A4C8) were IgG1 isotypes. These MAbs can be used for diagnosis and epidemiology of ALV‐A.  相似文献   

7.
Avian leukosis virus subgroup J has a high tropism for myeloid lineage cells and frequently induces neoplastic transformation of myelocytes. The impact of congenital avian leukosis virus subgroup J infection on the function of circulating heterophils and susceptibility to staphylococcal infection was investigated. Six-week-old broiler chickens negative for exogenous avian leukosis viruses or congenitally infected with avian leukosis virus subgroup J were inoculated intravenously with 10(6) colony-forming units of Staphylococcus aureus, and pre- and postinoculation heterophil function was assessed. All chickens developed a leukocytosis with heterophilia after inoculation, but total leukocyte and heterophil counts were significantly higher in leukosis-negative chickens than in virus-infected chickens. Tenosynovitis was more severe in leukosis-negative chickens, and 2/10 (20%) of the virus-infected chickens had no histologic evidence of tenosynovitis. Osteomyelitis in the tibiotarsus or tarsometatarsus developed in 5/10 (50%) of the chickens in each group. S. aureus was recovered from the hock joint of 6/10 (60%) of the chickens in each group. Heterophils from all chickens exhibited similar phagocytic ability pre- and postinoculation. Heterophils from virus-infected chickens exhibited less bactericidal ability preinoculation than did heterophils from leukosis-negative chickens. However, postinoculation bactericidal ability was similar in both groups. Avian leukosis virus subgroup J provirus was present in heterophils isolated from congenitally infected chickens. Heterophils isolated from broiler chickens congenitally infected with avian leukosis virus subgroup J exhibit no significant functional deficits, and infected and uninfected chickens exhibit similar susceptibility to staphylococcal infection.  相似文献   

8.
Sera and organ extracts from ten different commercial stocks of layer chickens were examined for the presence of lymphoid leukosis (LL) viruses. Virus was recovered from 40.8% of the cockerels between three and six weeks of age. Their female hatch mates were examined at the age of 20 months. A mean of 11.3% of these laying hens was positive in the NP activation test. Lymphoid leukosis was successfully controlled in three inbred strains of White Leghorn chickens and in a commercial White Plymouth Rock line. All flocks were kept in a filtered air positive pressure (FAPP) house during the first two months of life and thereafter transferred to a conventional environment. The control method is based on three elements:
• —from an infected flock, hens are selected in whose eggs no avian lymphoid leukosis viruses can be detected by examination of pooled extracts of groups of embryos;
• —only eggs from hens that are shown not to shed congenitally virus in their eggs are used for the production of progeny. The offspring are reared in isolation until two months of age at which time the age-related resistance against tumour formation appears to be sufficiently developed;
• —the chickens are subsequently intramuscularly inoculated with lymphoid leukosis viruses of subgroups A and B and transferred to a conventional chicken house. The inoculated birds become persistently viremic and resist horizontal virus exposure and intramuscular challenge infections.
Horizontal virus transmission was observed to take place when virus-free non-vaccinated chickens were reared in isolation for two months and then exposed under field conditions.Efficiency of virus recovery was considerably improved when washed buffy coat cells were cocultivated with chick embryo fibroblasts or explant cultures were prepared from various tissues before testing with the NP activation test.  相似文献   

9.
Chickens contact-exposed to lymphoid leukosis virus at various ages up to 32 weeks responded with relatively high rates of infection as determined by the presence of neutralizing antibody. Virus shedding as determined by cloacal swab and albumen testing occurred in 7 of 8 groups of such chickens, but the incidence was 10% or less and sporadic. Vaccination of chickens immediately before exposure with a low pathogenicity virus of subgroup A at 8 weeks of age did not eliminate subsequent shedding.  相似文献   

10.
Pathogenicity of avian leukosis viruses   总被引:4,自引:0,他引:4  
Three methods were used in attempts to obtain non-oncogenic avian leukosis virus for possible use as an immunoprophylactic agent for the control of lymphoid leukosis in chickens. These were: 1) isolate a nononcogenic virus from commercial breeder flocks experiencing very little or no lymphoid leukosis; 2) obtain a non-oncogenic recombinant from mixed infection of a strain with low oncogenicity, Rous-associated virus-60 (RAV-60), with RAV-1 or RAV-2 in cell culture; and 3) attempt to attenuate subgroup A avian leukosis virus by serial passage in avian cell culture. Of 43 isolates obtained from field sources, all were pathogenic except one, and its pathogenicity was questionable because of the low amount of virus tested. All 42 clones from mixed infection of highly oncogenic and poorly oncogenic virus and all clones passaged serially in cell culture were oncogenic.  相似文献   

11.
Studies of reticuloendotheliosis virus-induced lymphomagenesis in chickens   总被引:1,自引:0,他引:1  
Seventy-three percent of chickens inoculated with the chick syncytial strain of reticuloendotheliosis virus (REV) at hatching developed lymphomas by 39 weeks of age. Neonatal treatment with cyclophosphamide or surgical bursectomy at 2, 4, 8, or 12 weeks of age significantly (P less than 0.01) reduced lymphoma development. In a further experiment, surgical bursectomy of REV-infected chickens followed by intravenous inoculation of the chickens with a single cell suspension of their own bursa cells at 2, 4, 9, or 13 weeks of age resulted in lymphoid tumors in chickens treated at 9 or 13 weeks but not in chickens treated at 2 or 4 weeks of age. Furthermore, this treatment did not shorten the incubation period for lymphoma development. These findings argue very strongly that transforming target cells are primarily in the bursa of Fabricius. The data also suggest that a minimum residency of 4 weeks in the bursa is required for infected bursa cells to become transformed. Therefore, lymphomagenesis induced by REV in chickens appears similar to that induced by the avian leukosis virus group.  相似文献   

12.
We established 9 cell lines from 63 tumor cases of enzootic bovine leukosis and studied their properties. Cells of all lines formed small clumps and floated in culture medium, indicating growth. Four of the 9 cell lines were surface immunoglobulin (SIg)-positive, but the remaining 5 line cells were negative for SIg or, if SIg was detected, the percentage of SIg-positive cells was very low. Tests for the properties of the cells with monoclonal antibodies to lymphocytes revealed that the established line cells are B-lymphocytes. Morphological observation also revealed that they had the morphology of B-lymphoblastic cell. The results of E and EAC rosette assay were negative, but 6 of 8 cell lines were positive for EA rosetting. All the 9 cell lines reacted with MoAb C-143, which recognizes the tumor-associated antigen (TAA) of the EBL tumor cell. All 9 cell lines produced bovine leukosis virus (BLV). These results suggest that the 9 cell lines are tumor cells derived from B-lymphocytes of EBL.  相似文献   

13.
C/O specific pathogen-free White Leghorn chickens were intracerebrally inoculated at one day of age with a brain homogenate of Japanese bantams (Gallus gallus domesticus) affected with fowl glioma. Histologically, six of eight inoculated chickens developed nonsuppurative meningoencephalitis in cerebrum and two of them had the characteristic lesions of fowl glioma. Hyperplastic lymphoid foci concomitantly developed in many organs of these birds, especially in the heart. Apart from these lymphoid foci, lymphocytic myocarditis was observed in all inoculated birds. Matrix inclusions were also noted in myocardial cells. Immunohistochemically, avian leukosis virus antigens were detected in reticular cells in the lymphoid foci, mesangial cells of the kidney, smooth muscle cells of the blood vessels, and myocardial cells. Of these tissues, the myocardium of all inoculated birds consistently showed strong reactivity for this antigens. The matrix inclusions were also positive for the antigens. These results suggest that the causal virus of fowl glioma has a high propensity to replicate, especially in myocardium and nonsuppurative myocarditis occurs associated with so-called fowl glioma.  相似文献   

14.
Commercial Marek's disease (MD) vaccines produced by two manufacturers were tested for possible contamination with avian leukosis virus (ALV). Samples of MD vaccines manufactured by two companies (A and B) were received from a breeder company; samples were also received directly from vaccine company B. Using virus isolation tests, samples initially tested positive for subgroup E (endogenous) ALV. However, upon repassage, the vaccines also tested positive for exogenous ALV. The isolated exogenous ALV proved to be a subgroup A virus, as determined by flow cytometry using polyclonal chicken antibodies specific for various subgroups of ALV, and by DNA sequencing of the envelope glygoprotein (gp85). The exogenous ALV isolated from MD vaccines was inoculated in chickens from ADOL lines 15I(5) x 7(1) and 0 to determine its pathogenicity and compare it with that of Rous-associated-virus-1 (RAV-1), the prototype strain of ALV-A. Each chicken from each line was inoculated with approximately 10,000 infectious units of RAV-1 or the ALV-A isolated from vaccines termed B-39 virus at 7th day of embryonation. At hatch, and at 4, 8, and 16 wk of age, chickens were tested for viremia and cloacal shedding; chickens were also observed for ALV-induced tumors within 16 wk of age. Viremia and cloacal shedding results suggest that chickens from both lines were susceptible to infection with either virus. Within 16 wk of age, the proportion of ALV tumors induced by strain B-39 in line 0 and line 15I5 x 7(1) chickens was 0% and 12%, respectively, compared with 62% and 67% in chickens inoculated with RAV-1. The data indicate that commercial MD vaccines produced by two manufacturers were contaminated with endogenous subgroup E and an exogenous subgroup A ALV. Further, data from biological characterization suggest that the ALV-A isolated from commercial MD vaccines is of low oncogenicity, compared with that of RAV-1. GenBank accession numbers: The gp85 gene sequences of ALV isolated from commercial Marek's disease vaccines have been deposited in GenBank and assigned the following accession numbers: A46 subgroup A, DQ412726 ; B53 subgroup A, DQ412727; A46 subgroup E, DQ412728; B53 subgroup E, DQ412729.  相似文献   

15.
An outbreak of subcutaneous sarcomas in commercial White Leghorn egg layers was observed in the northeastern United States during late 2004. Subcutaneous tumors were confined to three flocks distributed in two locations and belonging to the same company. The tumors were first observed grossly by farm personnel at approximately 7 wk of age and persisted throughout the economic life of the flocks. Most of the tumors observed during the growing period were present on the facial region or around the head, wings, and legs. There was no gross evidence of bursal or visceral involvement. Microscopically, most tumors were undifferentiated sarcomas and myxomas. There was no microscopic evidence of Marek's disease or lymphoid leukosis. Reticuloendotheliosis virus proviral DNA was not detected by polymerase chain reaction either in tumors or in cell cultures. Egg production and mortality rates were within normal limits in the affected flocks and many of the chickens exhibiting tumors seemed healthy otherwise, albeit approximately one-half of the daily mortality exhibited tumors. Avian myeloblastosis-associated virus type 1 (MAV-1) was isolated from tumors, plasma, and serum. Upon initial virus neutralization, the viruses isolated seemed at least partially related antigenically to avian leukosis virus (ALV) subgroups A and B but not to subgroup J (ALV-J). Sequencing of the variable and hypervariable regions of gp85 in the envelope gene revealed that the viruses involved are closely related to MAV-1. Attempts to reproduce subcutaneous sarcomas with MAV-1 isolated from White Leghorn chickens in the case herein reported produced exclusively myelocytomas indistinguishable histologically from those induced by ALV-J in meat type chickens.  相似文献   

16.
Continuous passage of MDCC-RP1, a highly tumorigenic Marek's disease (MD) lymphoblastoid cell line, in cell culture resulted in a gradual loss in ability of the cell line to cause progressive tumors in susceptible day-old chicks. Inoculation of day-old chicks with high-cell-culture-passaged (187th to 417th) nontumorigenic MDCC-RP1 cells gave excellent protection against challenge at 8 days with low-passaged tumorigenic MDCC-RP1 cells but failed to protect against primary tumors caused by inoculation with MD virus. Vaccination with the herpesvirus of turkeys, on the other hand, protected the chickens well against primary tumors caused by MD virus and against transplantable tumors caused by tumorigenic MDCC-RP1 cells, but it did not protect as well against another MD lymphoblastoid cell line, MDCC-RP4. It is unlikely, therefore, that vaccines prepared from passaged MDCC-RP1 cell lines will have value for protecting chickens against MD in the field.  相似文献   

17.
W B Gross 《Avian diseases》1990,34(3):607-610
Factors playing a part in the development of respiratory disease complex in chickens were investigated in a series of experiments. The experimental infection was produced by exposing chickens to Mycoplasma gallisepticum and the B1 vaccine strain of Newcastle disease virus and later exposing them to aerosols containing the O1:K1 serotype of Escherichia coli. Chickens became susceptible (pericarditis or death) to E. coli 8 days after mixed respiratory disease challenge. One day after respiratory disease challenge, lesions consisted of edema and infiltration with lymphoid cells and heterophils. At the time of susceptibility to E. coli, the lesions were strongly lymphoid with many dense follicular areas and very few heterophils. The incidence of pericarditis and death was similar when the concentration of bacteria in the aerosol inoculum ranged between 10(9)/ml and 10(5)/ml. At the time of maximum susceptibility to aerosol challenge, chickens were less susceptible to intravenously administered E. coli than were the uninfected controls. Resistance of chickens that had been selectively bred for a high (HA) or low (LA) antibody response to sheep erythrocytes was compared. HA chickens were more resistant to respiratory agents and less resistant to E. coli than LA line chickens. When the lines were exposed to respiratory disease followed by exposure to aerosols containing E. coli, the HA line had the lowest incidence of pericarditis and death.  相似文献   

18.
Marek’s disease virus (MDV) is an alpha-herpesvirus causing Marek’s disease in chickens, mostly associated with T-cell lymphoma. VP22 is a tegument protein abundantly expressed in cells during the lytic cycle, which is essential for MDV spread in culture. Our aim was to generate a pathogenic MDV expressing a green fluorescent protein (EGFP) fused to the N-terminus of VP22 to better decipher the role of VP22 in vivo and monitor MDV morphogenesis in tumors cells. In culture, rRB-1B EGFP22 led to 1.6-fold smaller plaques than the parental virus. In chickens, the rRB-1B EGFP22 virus was impaired in its ability to induce lymphoma and to spread in contact birds. The MDV genome copy number in blood and feathers during the time course of infection indicated that rRB-1B EGFP22 reached its two major target cells, but had a growth defect in these two tissues. Therefore, the integrity of VP22 is critical for an efficient replication in vivo, for tumor formation and horizontal transmission. An examination of EGFP fluorescence in rRB-1B EGFP22-induced tumors showed that about 0.1% of the cells were in lytic phase. EGFP-positive tumor cells were selected by cytometry and analyzed for MDV morphogenesis by transmission electron microscopy. Only few particles were present per cell, and all types of virions (except mature enveloped virions) were detected unequivocally inside tumor lymphoid cells. These results indicate that MDV morphogenesis in tumor cells is more similar to the morphorgenesis in fibroblastic cells in culture, albeit poorly efficient, than in feather follicle epithelial cells.  相似文献   

19.
We have recently described the isolation and molecular characteristics of two recombinant avian leukosis subgroup J viruses (ALV J) with an avian leukosis virus subgroup A envelope (r5701A and r6803A). In the present study, we examined the role of the subgroup A envelope in the pathogenesis of these recombinant viruses. Chickens of line 151(5) x 7(1) were inoculated at 1 day of age with r5701A, r6803A, Rous-associated virus type 1 (RAV-1), or strain ADOL-Hcl of ALV-J. At 2, 4, 10, 18, and 32 wk postinoculation (PI), chickens were tested for avian leukosis virus (ALV)-induced viremia, shedding, and neutralizing antibodies. All except one chicken inoculated with the recombinant viruses (98%) developed neutralizing antibodies by 10 wk PI compared with only 16% and 46% of the ADOL-Hcl and RAV-1-inoculated birds, respectively. ALV-induced tumors and mortality in the two groups inoculated with recombinant viruses were different. The incidence of tumors in groups inoculated with r5701A or RAV-1 was 100% compared with only 9% in the groups inoculated with r6803A or ADOL-Hcl. The data suggest that differences in pathogenicity between the two recombinant viruses might be due to differences in the sequence of the 3' untranslated region (presence or absence of the E element), and, therefore, not only the envelope but also other elements of the viral genome play an important role in the pathogenesis of ALV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号