首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Corticotropin-releasing hormone (CRH) is a potent mediator of endocrine, autonomic, behavioral, and immune responses to stress. For a better understanding of the structure and function of the CRH gene and to study its effect on feeding regulation in cyprinid fish, the cDNA of the CRH gene from the brain of Schizothorax prenanti was cloned and sequenced. The full-length CRH cDNA consisted of 1,046 bp with an open reading frame of 489 bp encoding a protein of 162 amino acids. Real-time quantitative PCR analyses revealed that CRH was widely expressed in central and peripheral tissues. In particular, high expression level of CRH was detected in brain. Furthermore, CRH mRNA expression was examined in different brain regions, especially high in hypothalamus. In addition, there was no significant change in CRH mRNA expression in fed group compared with the fasted group in the S. prenanti hypothalamus during short-term fasting. However, CRH gene expression presented significant decrease in the hypothalamus in fasted group compared with the fed group (P < 0.05) on day 7; thereafter, re-feeding could lead to a significant increase in CRH mRNA expression in fasted group on day 9. The results suggest that the CRH may play a critical role in feeding regulation in S. prenanti.  相似文献   

2.
In this study, we investigated the effects of hyperthermia and recovery on cell viability, lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD) activity, malondialdehyde (MDA), total antioxidant capacity (T-AOC), and heat shock protein (HSP60, 70, and 90) mRNA expression in the hepatic cells of the grass carp, Ctenopharyngodon idellus. Triplicate groups of cultured cells were exposed to 30, 32, or 34 °C for 0.5 h and then immediately incubated at 27 °C in 5 % CO2 for 6, 12, 24, or 48 h. Hyperthermia stress greatly reduced cell viability and increased LDH release. Cell damage declined after recovery. Hyperthermia stress increased the lipid peroxide levels and reduced the antioxidant capacity (e.g., reduced SOD and T-AOC) of the cells. However, oxidative damage declined as the recovery period increased, and the levels of MDA, SOD, and T-AOC were restored. After cells were exposed to 32 °C, the expression of HSP60 after recovery for 1, 2, and 4 h (P < 0.05), the expression of HSP70 after recovery for 0.5 and 1 h (P < 0.01), and the expression of HSP90 throughout recovery were significantly higher (P < 0.01) than the prestress levels. During the recovery period, the variations in HSP gene expression reflected the transition period from a state of cellular growth to one of the cellular repairs. In conclusion, hyperthermia depresses cell viability, induces oxidative damage, and increases HSP expression, which plays an important role during hyperthermic stress in grass carp hepatic cells.  相似文献   

3.
The present study explores the effect of dietary sodium propionate on mucosal immune response and expression of antioxidant enzyme genes in zebra fish (Danio rerio). Six hundred healthy zebra fish (0.42 ± 0.06 g) supplied, randomly stocked in 12 aquariums and fed on basal diets supplemented with different levels of sodium propionate [0 (control), 5, 10 and 20 g kg?1] for 8 weeks. At the end of the feeding trial, mucosal immune parameters (TNF-α, IL-1β, Lyz), antioxidant enzyme (SOD, CAT) as well as heat shock protein 70 (HSP70) gene expression were measured. The results revealed feeding on sodium propionate significantly up-regulated inflammatory response genes (TNF-α, IL-1β, Lyz) in a dose-dependent manner (P < 0.05). However, antioxidant enzyme genes significantly down-regulated in the treated group compared with control (P < 0.05). Also, HSP70 gene expression was higher in the liver of fish fed the basal diet and deceased with elevation of sodium propionate levels in the diet. These results showed beneficial effects of dietary sodium propionate on mucosal immune response as well as the antioxidant defense of zebra fish.  相似文献   

4.
Corticotropin-releasing hormone (CRH), urotensin I (UI) and urotensin II (UII) are found throughout vertebrate species from fish to human. To further understand the role of crh, uI and uII in teleosts during development, we investigated the expression pattern of crh, uI, uIIα and uIIβ genes, and their response to acute salinity and temperature challenge during early development of zebrafish, Danio rerio. The results reveal that crh, uI, uIIα and uIIβ mRNA are detected from 0hpf, and the expression levels increase to a maximum at 6 days post fertilization (dpf), with the exception of uIIα that peak at 5dpf. Exposure of zebrafish embryos and larvae to acute osmotic (30ppt) stress for 15 min failed to modify expression levels of crh, uI, uIIα and uIIβ mRNA from levels in control fish except at 6dpf when uIIα and uIIβ were significantly (P < 0.05) modified. Exposure of embryos and larvae to a cold (18 °C) or hot stress (38 °C) generally down-regulated mRNA levels of crh, uI, uIIα and uIIβ apart from at 3dpf. The results indicate that the contribution of crh, uI, uIIα and uIIβ genes to the stress response in zebrafish may be stressor-specific during early development. Overall, the results from this study provide a basis for further research into the developmental and stressor-specific function of crh, uI, uIIα and uIIβ in zebrafish.  相似文献   

5.
To evaluate the effect of thermal and microbial stress on the immune response of common carp (Cyprinus carpio L.), relative mRNA expression level of pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1β] and other genes related to immune or stress response [inducible nitric oxide synthase (iNOS), heat shock protein 70 (Hsp70), superoxide dismutase one (SOD1), and glucocorticoid receptor (GR)] was measured by quantitative PCR (qPCR). In addition, total protein and total immunoglobulin level in blood plasma of experimental common carp was also assayed. All the above parameters were estimated 24 h post-challenge with Gram-negative bacterium, Aeromonas hydrophila. Common carp (54.89?±?6.90 g) were initially exposed to 20 °C (control group) and 30 °C (thermal stress group) water temperature for 30 days, followed by experimental challenge with 2.29?×?108 colony forming unit/mL (CFU/mL; LD50 dose) of A. hydrophila. Exposure of fish to thermal stress and subsequently challenge with A. hydrophila significantly (P?<?0.05) increases the IL-1β mRNA expression in head kidney and spleen of common carp by ~?39.94 and ~?4.11-fold, respectively. However, TNF-α mRNA expression in spleen decreased ~?5.63-fold in control fish challenged with A. hydrophila. Thermal stress and challenge with bacterium suppresses the iNOS and GR mRNA expression in spleen of common carp. Moreover, significant (P?<?0.05) increase in total protein content of blood plasma (~?43 mg/g) was evident in fish exposed to thermal stress and challenged with A. hydrophila. In conclusion, our study highlights the importance of elevated temperature stress and microbial infection in differential regulation of expression of several immunogenes in common carp.  相似文献   

6.
A 4-week feeding trial was conducted to determine the effects of different dietary supplements on the growth, immunity and resistance of sea cucumber Apostichopus japonicus against Vibrio splendidus infection. The control group was supplied with blank microcapsules, and Astragalus polysaccharide (APS) microcapsules, tuckahoe polysaccharide (TPS) microcapsules, (APS + TPS) microcapsules, (APS + TPS) microcapsules + Bacillus subtilis, were tested for effects. Coelomic fluid was collected at 7-day intervals to test activities of lysozyme (LSZ), superoxide dismutase (SOD), alkaline phosphatase (AKP), and complement 3 (C3) content. After the feeding trial, the specific growth rate of sea cucumbers fed a diet supplemented with (APS + TPS) microcapsules + B. subtilis was significantly increased (P < 0.05); activities of LSZ, SOD, AKP and C3 content were significantly higher than in other groups (P < 0.05). The challenge test showed that the cumulative mortality of sea cucumbers fed a diet supplemented with (APS + TPS) microcapsules + B. subtilis reduced significantly (P < 0.05). In conclusion, dietary combinations of (APS + TPS) microcapsules + B. subtilis has a potential for use in diet formulations for sea cucumbers to significantly increase growth, immunity and disease resistance against V. splendidus infection.  相似文献   

7.
Oxidative stress causes damage at the cellular level and activates a number of signaling pathways. Heat-shock proteins (HSPs) play an important role in repair and protective mechanisms under cell response to stress conditions. HSP70 has been shown to act as an inhibitor of apoptosis. Apoptosis signal-regulating kinase-1 (ASK1) activity is regulated at multiple levels, one of which is through inhibition by cytosolic chaperons HSP70. The current study was aimed to investigate the alteration in signaling molecules that allow the fish to survive under stressed natural field conditions. The study also investigates the variation in biomolecular composition of hepatocytes by using Fourier transform infrared spectroscopy. The impact of stress on hepatocytes was assessed by measuring the level of lipid peroxides (LPO), catalase activity (CAT) and assessing the changes in hepatocytes of Mugil cephalus inhabiting Kovalam and Ennore estuaries. The expression of HSP70 and ASK1 were analyzed by immunoblot analysis and ELISA, respectively. The spectral analysis showed variations in biomolecular composition of hepatocytes at a wave number region of 4,000–400 cm?1. There was significant decrease of CAT activity (p < 0.01) (25 %) with significant increase of LPO (p < 0.001) (35 %) and HSP70 (p < 0.001) and insignificant increase of ASK1 (p < 0.05) (16 %) in fish hepatocytes inhabiting Ennore estuary than Kovalam estuary. In conclusion, the present study suggests that the survival of fish in the Ennore estuary under stressed condition may be due to the upregulation of HSP70 that mediates the altered signal pathway which promotes cellular resistance against apoptosis.  相似文献   

8.
The size of a fish is an important factor in its physiology, and metal uptake is affected by animal physiology. In this study, small and large tilapias (Oreochromis niloticus) differing approximately twofold in length and fivefold in weight were compared for their antioxidant response. Both groups were exposed to Cu or Cr (1.0 μg/mL) in a freshwater (?80 mg CaCO3/L, conductivity 1.77 mS/cm) using 2 exposure protocols (20 μM for 48 h and 10 μM for 6 days). Following the exposures, the antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPX; glutathione reductase, GR and glutathione S-transferase, GST) and glutathione (GSH) levels were measured in the liver of fish. Results showed that small fish was affected from exposure conditions much more than large ones as their antioxidant parameters significantly decreased even in controls. Metal exposures of small fish caused significant increases in SOD and CAT activity in acute Cu or Cr exposures. Subchronic Cr exposure of small fish also caused significant increases in CAT, GPx and GST activities, while there was no significant change in Cu-exposed ones. Large fish, however, showed different antioxidant responses as their levels mostly decreased. This study demonstrated that the response of antioxidant system in the liver of tilapia varied in relation to fish sizes and emphasized using different size groups in environmental monitoring and also in evaluation of fish biomarkers.  相似文献   

9.
An experiment was conducted to study the stress mitigation and growth enhancing role of dietary l-tryptophan (TRP) under thermal stress in rohu, Labeo rohita fingerlings for 45 days. Seven hundred and twenty fishes were distributed in three major groups that are ambient temperature (26 °C), 34 and 38 °C in triplicate following a complete randomized design. Acclimation of fishes to 34 and 38 °C over average ambient temperatures were carried out at 1 °C/day. Each group was fed with a diet supplemented with 0, 0.36, 0.72 or 1.42 % l-TRP. Results showed that blood glucose and serum cortisol level were found to be significantly higher (p < 0.05) in the higher temperature groups than the ambient temperature group. Similarly, aminotransferase, lactate dehydrogenase, malate dehydrogenase, CAT, superoxide dismutase activities were found to be significantly higher (p < 0.05) in the control groups (0 % l-TRP) and decreasing activities of these enzymes were observed with the increasing level of dietary l-TRP. In different temperature groups, l-TRP-supplemented groups were found to have higher (p < 0.05) growth, RGR and PER. The results obtained in the present study indicate that dietary l-TRP mitigates thermal stress and enhances growth. From the present study, we can conclude that dietary supplementation of l-TRP at the 0.72 % level in the diet is found to be optimum to reduce thermal stress even up to 38 °C in rohu, L. rohita. The baseline data obtained here could be useful for the farmers to formulate feeds to culture the fish in different agro-climatic zones.  相似文献   

10.
In this study, full-length tilapia transferrin (OnTF) isolated from liver cDNA of Nile tilapia (Oreochromis niloticus) was found to have an open reading frame of 2,091-bp encoding 696 amino acid residues. Two additional amino acids: Gly369 and Gly370 were observed compared with the reported Nile tilapia transferrin protein sequence. Pre-mature protein has a predicted molecular weight of 78.2 kDa, while mature protein is 73.28 kDa in size. Comparative sequence analysis with transferrin from other species revealed two major putative iron-binding domains designated as the N-lobe and the C-lobe in accordance with the transferrin protein characteristics. The predicted tertiary structure of tilapia transferrin confirmed the presence of iron and anion-binding sites on both lobes that are conserved among transferrins from other species. Quantitative real-time PCR analysis showed significantly higher expression of tilapia transferrin gene in liver than in other tissues (p < 0.05). Transferrin expression in tilapia experimentally infected with 106 and 108 colony-forming units mL?1 of Streptococcus agalactiae was significantly upregulated at 24 and 12 h post-infection (hpi), respectively, and decreased afterward. Iron-deficiency in serum of bacterially infected fish was detected at 48 and 24 hpi, respectively. The expression pattern of the transferrin gene and the iron levels of infected tilapia in this study were consistent with the function of transferrin in innate immunity.  相似文献   

11.
The present study was carried out to evaluate the effect of dietary taurine (Tau) on performance, digestive enzymes, antioxidant activity, and resistance of common carp, Cyprinus carpio L., fry to salinity stress. Fish (0.97?±?0.033 g) were fed on different taurine levels of 0.0 (control), 5, 10, 15, or 20 g/kg diet up to satiation twice daily for 8 weeks. At the end of the feeding trial, fish were stressed by exposure to 10 ppt salinity for 3 days during which fish mortality was observed. Fish performance was significantly (P?<?0.05) improved by dietary taurine up to 15 g Tau/kg diet after which fish growth and feed intake were almost the same. Also, taurine supplementation significantly (P?<?0.05) elevated activities of intestinal amylase, lipase, and protease resulting in an improving in feed intake giving better performance. Furthermore, Tau-stimulated antioxidant activity of common carp was observed in a dose-related manner, where activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were significantly (P?<?0.05) higher, but malondialdehyde (MDA) value was significantly (P?<?0.05) lower in Tau-fed fish groups than those fed the control diet. In salinity stress experiment, highest survival rate was observed at fish fed Tau-supplemented diets without significant (P?>?0.05) differences over fish fed the control diet. It appears that taurine could be used as a feed supplement to confer better growth and health of common carp fry with optimal level of 15 g/kg diet.  相似文献   

12.
The effects of dietary folic acid on biochemical parameters and gene expression of three heat shock proteins (HSPs) of blunt snout bream (Megalobrama amblycephala) fingerling under acute high temperature stress. Six dietary folic acid groups (0.0, 0.5, 1.0, 2.0, 5.0, and 10.0) mg/kg diets were designed and assigned into 18 tanks in three replicates each (300 l/tank) and were administered for 10 weeks in a re-circulated water system. The fingerlings with an initial weight of 27.0 ± 0.03 g were fed with their respective diets four times daily. At the end of the experiment, samples were collected before challenge, 0, 24, 72 h, and 7 days. Serum total protein (TP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), cortisol, glucose, complement C3 (C3), complement C4 (C4, immunoglobulin M (IgM) hepatic superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and the expression of heat shock protein 60 (HSP60), 70 (HSP70), and 90 (HSP90) were studied. The results showed that fish fed with dietary folic acid between 1.0, 2.0, and 5.0 mg/kg significantly (P < 0.05) increased serum TP, C3, C4 hepatic SOD, CAT, and the expression of HSP60, HSP70, and HSP90 before and after temperature challenge of 32 °C. Also, serum ALP, cortisol, glucose, and hepatic MDA were significantly (P < 0.05) reduced by supplementation of dietary folic acid level 1.0, 2.0, and 5.0 mg/kg before and after the same temperature challenge of 32 °C. Before stress, 0, 24, 72 h, and 7 days significantly (P < 0.05) affects serum biochemical parameters, immune and antioxidant capacities, and expression level of three HSPs. Furthermore, there was no statistical evidence to show that dietary folic acid inclusion level and temperature duration have significant interactive effect on serum biochemical parameters, antioxidant parameters, and gene expression level (P > 0.05) of the three HSPs. However, there were statistical significant interactive effect between dietary folic acid inclusion level and temperature duration on serum C3 and C4 (P < 0.05) except IgM (P > 0.05). The present results indicate that supplementation of basal diet from 1.0 mg/kg; 2.0 and 5.0 mg/kg can enhance acute high temperature resistance ability in M. amblycephala fingerling to some degree and improve physiological response, immune and antioxidant capacities, and expression level of three HSPs.  相似文献   

13.
Fish gills are the vital multifunctional organ in direct contact with external environment. Therefore, activation of the cytoprotective mechanisms to maintain branchial cell viability is important for fish upon stresses. Salinity is one of the major factors strongly affecting cellular and organismal functions. Reduction of ambient salinity may occur in coral reef and leads to osmotic stress for reef-associated stenohaline fish. However, the physiological responses to salinity stress in reef-associated fish were not examined substantially. With this regard, the physiological parameters and the responses of protein quality control (PQC) and osmoregulatory mechanisms in gills of seawater (SW; 33–35 ‰)- and brackish water (BW; 20 ‰)-acclimated blue-green damselfish (Chromis viridis) were explored. The results showed that the examined physiological parameters were maintained within certain physiological ranges in C. viridis acclimated to different salinities. In PQC mechanism, expression of heat-shock protein (HSP) 90, 70, and 60 elevated in response to BW acclimation while the levels of ubiquitin-conjugated proteins were similar between the two groups. Thus, it was presumed that upregulation of HSPs was sufficient to prevent the accumulation of aggregated proteins for maintaining the protein quality and viability of gill cells when C. viridis were acclimated to BW. Moreover, gill Na+/K+-ATPase expression and protein amounts of basolaterally located Na+/K+/2Cl? cotransporter were higher in SW fish than in BW fish. Taken together, this study showed that the cytoprotective and osmoregulatory mechanisms of blue-green damselfish were functionally activated and modulated to withstand the challenge of reduction in salinity for maintaining physiological homeostasis.  相似文献   

14.
The purpose of present study was to ascertain whether the response of gastrointestinal (gut) melatonin to altered feeding conditions was related to the levels of different antioxidants and digestive enzymes in the same gut tissues of a sub-tropical carp (Catla catla). Accordingly, the fish were subjected to food deprivation for 4 or 8 days and separately to re-feeding for 4 or 8 or 12 days after deprivation of food for 8 days, and their gut tissue homogenates were used to measure the levels of melatonin, both enzymatic [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST)] and non-enzymatic [reduced glutathione (GSH)] antioxidants, as well as different digestive enzymes (α-amylase, cellulase, protease, and lipase). Notably, the gut levels of melatonin, SOD, CAT, GPx, and GST underwent gradual increase with the progress of food deprivation, but a sudden fall after restoration of food supply for 4 days and a rise thereafter. Conversely, the activity of all the digestive enzymes significantly decreased after deprivation of food, but started increasing when food supply was reinforced. Gut melatonin concentrations by showing a positive correlation with the titers of different antioxidants (in both food-deprived and re-fed fish groups) and a negative (in food-deprived fish) or a positive (in re-fed fish) correlation with the activity of each digestive enzyme underlined possible physiological interplay between them. Collectively, our findings lend support to the hypothesis that gut melatonin response to altered feeding conditions in carp might be associated with the oxidative status as well as the digestive functions of the gastrointestinal tissues itself.  相似文献   

15.
The need to expand aquaculture production has led to other fish to be considered as potential species for culture, such as the sub-Antarctic notothenioid Eleginops maclovinus (Valenciennes, 1830). The aim of this study was to determine the cumulative effect of density and pathogen infection by protein extract of Piscirickettsia salmonis on skeletal muscle metabolism. In a first experiment, specimens were submitted to three different stocking densities: (1) 3.1 kg m?3, (2) 15 kg m?3 and (3) 60 kg m?3, for a period of 10 days. In a second experiment, metabolic changes caused by an infection of P. salmonis protein extract (a single injection of 0.5 μL P. salmonis protein extract g body weight?1 was inoculated in the fish) and its combined effect with stocking density was assessed during a period of 10 days. This study concludes that stress caused by high stocking density led to the reorganization of some metabolic routes to fulfill skeletal muscle energy needs. Furthermore, infection response by pathogen P. salmonis differed when stocking density increased, suggesting an increase of energy needs with density in skeletal muscle of infected fish.  相似文献   

16.
Fish are commonly exposed to environmental pollutants, which in turns could induce an oxidative stress. So, it is important to understand the effects and the responses elicited by these toxicants in fish species, being fish cell lines important tools for this purpose. Thus, the aim of the present study was to compare the effects of copper and UV-B radiation exposure on zebrafish hepatocytes (ZFL lineage) in terms of reactive oxygen species (ROS) levels, sulfhydril groups content and mRNA levels of important genes related to cellular response to toxic agents. Exposure of ZFL cells to UV-B radiation (23.3 mJ/cm2) significantly increased levels of intracellular ROS and mRNA of both superoxide dismutase isoforms (sod1 and sod2), three glutathione S-transferase isoforms (gstα, gstµ and gstπ) and a heat shock protein (hsp70). However, no changes in nonprotein sulfhydryl groups (NP-SH) content, as well as in the mRNA levels of genes related to glutathione (GSH) synthesis and recycling, were observed. Contrary to this, copper exposure (20 mg/L) diminished NP-SH content and increased the levels of mRNA of genes related to GSH synthesis (gclc and gs). Moreover, copper exposure increases the mRNA levels of some genes related to antioxidant defenses (gpx and gstπ), biotransformation reactions (cyp1a1) and protein repair (hsp70). In conclusion, these results demonstrated that both toxicants could increase ROS levels in ZFL cell line, but the responses are different, which could be related to activation of different signaling pathways.  相似文献   

17.
In this study, efficacy of three antigenic preparations from the fish pathogen Aeromonas hydrophila was evaluated as vaccine candidate in rohu Labeo rohita. The rabbit anti-rohu globulin conjugate was prepared in rabbit using sera obtained from healthy adult rohu. Three antigens, namely formalin inactivated A. hydrophila (FAH), FAH mixed with Freund’s incomplete adjuvant in a 1:1 (v/v) ratio (FAH + A), and extra cellular product were prepared. Protection of rohu against A. hydrophila infection was tested at days 10, 20, and 30 post-vaccination. At the end of the vaccination, fish were challenged with A. hydrophila (dose: 1 × 107 cfu ml?1) and relative per cent of survival was recorded up to 60th day of post-challenge. Study of cellular immunological parameters including antigen-specific leucocyte proliferation, antigen-specific nitric oxide production, and superoxide anion production exhibited significantly higher (p < 0.05) values on 10th and 20th day of post-vaccination compared with control. Among all the antigenic groups, FAH + A showed most significant responses compared with the other groups and produced maximum antibody on 30th day following vaccination. Among the humoral immune responses, lysozyme activity showed almost similar trend like cellular parameters. The result of the challenge study showed a higher level of survival in all the vaccinated groups, especially in FAH + A group. Our results suggest that vaccine FAH + A can effectively protect rohu against A. hydrophila infection and could offer an appropriate strategy to prevent this infection in rohu farms.  相似文献   

18.
A 60-day feeding trial was conducted to evaluate the haemato-biochemical, innate immune response, antioxidant capacity and histopathological changes in Labeo rohita fingerlings fed rubber protein isolates (RPI). One hundred and eighty fingerlings (average weight 4.45 ± 0.01 g) were distributed into five experimental groups in triplicate and fed with isonitrogenous and isocaloric diets. Soybean protein isolate (SPI) served as the reference diet (Control), and the treatment diets were formulated as RPI25, RPI50, RPI75 and RPI100 replacing 25, 50, 75 and 100% of SPI protein, respectively. The growth performance indices like final body weight (9.54–10.27 g), net weight gain (5.09–5.84 g), metabolic growth rate (4.54–5.02) and feed efficiency ratio (0.60–0.65) among the various groups were not significantly different (P > 0.05). All the haematological parameters, except red blood cells, showed no significant differences compared with the control group (P > 0.05). The immuno-biochemical parameters like albumin, globulin, total immunoglobulin, respiratory burst and lysozyme activities among the various groups did not differ significantly (P > 0.05). The stress enzyme such as superoxide dismutase (SOD), catalase (CAT) and oxidative stress marker malondialdehyde (MDA) showed no significant difference (P > 0.05). Histopathological examination of the liver revealed no marked changes. In summary, the results showed that RPI was well utilised by the fish and its inclusion did not generate any oxidative-induced stress, thus, RPI may be suggested as a potential replacement for SPI in fish diets without any detrimental effects. Hence, protein isolation offers a unique opportunity for the utilisation of rubber seed meal.  相似文献   

19.
The effect of dietary amylose/amylopectin (AM/AP) ratio on growth, feed utilization, digestive enzyme activities, plasma parameters, and postprandial blood glucose responses was evaluated in juvenile obscure puffer, Takifugu obscurus. Five isonitrogenous (430 g kg?1 crude protein) and isolipidic (90 g kg?1 crude lipid) diets containing an equal starch level (250 g kg?1 starch) with different AM/AP ratio diets of 0/25, 3/22, 6/19, 9/16 and 12/13 were formulated. Each experimental diet was fed to triplicate groups (25 fish per tank), twice daily during a period of 60 days. After the growth trial, a postprandial blood response test was carried out. Fish fed diet 6/19 showed best growth, feed efficiency and protein efficiency ratio. Hepatosomatic index, plasma total cholesterol concentration, liver glycogen and lipid content, and gluconokinase, pyruvate kinase and fructose-1,6-bisphosphatase activities were lower in fish fed highest AM/AP diet (12/13) than in fish fed the low-amylose diets. Activities of liver and intestinal trypsin in fish fed diet 3/22 and diet 6/19 were higher than in fish fed diet 9/16 and diet 12/13. Activities of liver and intestinal amylase and intestinal lipase, and starch digestibility were negatively correlated with dietary AM/AP ratio. Fish fed diet 3/22 and diet 6/19 showed higher plasma total amino acid concentration than fish fed the other diets, while plasma urea nitrogen concentration and activities of alanine aminotransferase and aspartate aminotransferase showed the opposite trend. Equal values were found for viscerosomatic index and condition factor, whole body and muscle composition, plasma high-density and low-density lipoprotein cholesterol concentrations, and activities of lipase and hexokinase and glucose-6-phosphatase in liver. Postprandial plasma glucose and triglyceride peak value of fish fed diet 12/13 were lower than in fish fed the low-amylose diets, and the peak time of plasma glucose was later than in fish fed the other diets. Plasma glucose and triglyceride concentrations showed a significant difference at 2 and 4 h after a meal and varied between dietary treatments. According to regression analysis of weight gain against dietary AM/AP ratio, the optimum dietary AM/AP ratio for maximum growth of obscure puffer was 0.25. The present result indicates that dietary AM/AP ratio could affect growth performance and feed utilization, some plasma parameters, digestive enzyme as well as hepatic glucose metabolic enzyme activities in juvenile obscure puffer.  相似文献   

20.
Vibrio scophthalmi, a bacterial pathogen of olive flounder Paralichthys olivaceus, exhibits strain-dependent virulence. No information is available on the comparative pathogenicity of different strains of V. scophthalmi toward olive flounder. In this study, high- and low-virulence strains (HVS and LVS, respectively) were compared in terms of their pathogenic characteristics, including adhesion and survival, superoxide dismutase (SOD) activity, and extracellular products (ECP) of bacterial cells. The cell-mediated defense of macrophages from olive flounder against V. scophthalmi infection in vitro was also investigated. The results demonstrated that the SOD activity of the HVS was higher than that of the LVS. The number of viable cells of the HVS in serum increased by two log units after 18 h, whereas that of the LVS decreased. The number of cells of the HVS in skin mucus increased significantly while that of the LVS remained constant. The LD50 values of the HVS and LVS ECP toward olive flounder were 10.14 and 15.99 μg protein/g fish, respectively. The ECP were positive for naphthol-AS-BI-phosphohydrolase, lipase, gelatinase, and leucine arylamidase. The extracellular O2 ? overflow and intracellular O2 ? concentration of macrophages induced by the HVS were lower than those induced by the LVS. Significantly more nitric oxide was produced by the HVS than by the LVS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号