首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
The aim of the present study was to locate Ski protein, a product of cellular protooncogene c-ski, in rat ovaries in order to predict the possible involvement of Ski in follicular development and atresia. First, expression of c-ski mRNA in the ovaries of adult female rats was confirmed by RT-PCR. Then, ovaries obtained on the day of estrus were subjected to immunohistochemical analysis for Ski and proliferating cell nuclear antigen (PCNA) in combination with terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL). Ski was expressed in granulosa cells that were positive for TUNEL, but negative for PCNA, regardless of the size of follicles. Expression of Ski in TUNEL-positive granulosa cells, but not in PCNA-positive granulosa cells, was also verified in immature hypophysectomized rats having a single generation of developing and atretic follicles by treatment with equine chorionic gonadotropin. These results indicate that Ski is profoundly expressed in the granulosa cells of atretic follicles, but not in growing follicles, and suggests that Ski plays a role in apoptosis of granulosa cells during follicular atresia.  相似文献   

7.
8.
9.
10.
11.
This study quantified Fibroblast growth factor 2 (FGF-2) mRNA and localized FGF-2 protein in different categories of follicles isolated from goat ovaries. In addition, we verified the effects of this factor on the in vitro culture of preantral follicles isolated from goats. For mRNA quantification, we performed real-time PCR using primordial, primary and secondary follicles, as well as cumulus-oocyte complexes (COCs) and mural granulosa and theca cells of small and large antral follicles. For FGF-2 protein localization, the ovaries were subjected to conventional immunohistochemical procedures. Preantral follicles were isolated and cultured in vitro for 12 days in either control (basic) or supplemented with FGF-2 medium. The expression of FGF-2 mRNA was detected in all categories of follicles and there was no difference in preantral follicles and COCs or granulosa/theca cells from small and large antral follicles. However, in large antral follicles, COCs showed expression levels significantly lower than in granulosa/theca cells (p < 0.05). We observed moderate expression of FGF-2 protein in preantral follicles but not in granulosa cells of primordial follicles and theca cells of secondary follicles. In both small and large antral follicles, strong, moderate and weak staining was observed in oocytes, granulosa and theca cells, respectively. The addition of FGF-2 caused a significant increase in the daily follicular growth rate compared to the control group. We conclude that FGF-2 mRNA is expressed throughout follicular development and that its protein can be found in different patterns in preantral and antral follicles. Furthermore, FGF-2 increases the follicular growth rate in vitro.  相似文献   

12.
Involvement of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in ovarian folliculogenesis has been extensively studied during the last decade. In all mammalian species, IGF-I stimulates granulosa cell proliferation and steroidogenesis. The concentrations of IGF-I and -II do not vary during terminal follicular growth and atresia. In contrast, the levels of IGFBP-2 and -4, as well as IGFBP-5 in ruminants, dramatically decrease and increase during terminal follicular growth and atresia, respectively. These changes are responsible for an increase and a decrease in IGF bioavailability during follicular growth and atresia, respectively. They are partly explained by changes in ovarian expression. In particular, expression of IGFBP-2 mRNA decreases during follicular growth in ovine, bovine and porcine ovaries, and expression of IGFBP-5 mRNA dramatically increases in granulosa cells of bovine and ovine atretic follicles. Changes in IGFBP-2 and -4 levels are also due to changes in intrafollicular levels of specific proteases. Recently, we have shown that the pregnancy-associated plasma protein-A (PAPP-A) is responsible for the degradation of IGFBP-4 in preovulatory follicles of domestic animals. Expression of PAPP-A mRNA is restricted to the granulosa cell compartment, and is positively correlated to expression of aromatase and LH receptor. From recent evidence, the bone morphogenetic protein (BMP) family would also play a key role in ovarian physiology of domestic animals. In particular, we and others have recently shown that a non-conservative substitution (Q249R) in the bone morphogenetic protein-receptor type IB (BMPR-IB) coding sequence is fully associated with the hyperprolific phenotype of FecB(B)/FecB(B) Booroola ewes. BMP-4 and GDF-5, natural ligands of BMPR-IB, strongly inhibit secretion of progesterone by ovine granulosa cells in vitro, but granulosa cells from FecB(B)/FecB(B) ewes are less responsive than those from FecB(+)/FecB(+) to the action of these peptides. It is suggested that in FecB(B)/FecB(B) ewes, Q249R substitution would impair the function of BMPR-IB, leading to a precocious differentiation of granulosa cells and of follicular maturation. Interestingly, recent findings have described mutations in BMP-15 gene associated with hyperprolific phenotypes in Inverdale and Hanna ewes, suggesting that the BMP pathway plays a crucial role in the control of ovulation rate.  相似文献   

13.
Expression of mRNAs encoding cytochrome P450 side-chain cleavage (P450scc), cytochrome P450 17 -hydroxylase (P450c17), and cytochrome P450 aromatase (P450arom) were characterized by the RT-PCR technique and concentrations of progesterone (P4), testosterone (T0) and estradiol (E2) were measured by radioimmunoassay during follicular development of prepubertal goats. Synthesis of mRNAs encoding P450scc and P450c17 began in preantral follicles, but mRNA encoding P450arom was not detectable until early antral formation. While mRNA for P450scc was expressed in both theca and granulosa cells, mRNA for P450c17 was expressed only in theca cells while P450arom mRNA only in granulosa cells. In nonatretic follicles from prepubertal ovaries, the relative quantity of mRNA expression of all the three enzymes increased with follicle size; however, while the concentration of P4 and E2 increased, that of T0 decreased with follicle size. While expression of mRNA encoding P450scc was unaffected, that of P450c17 mRNA decreased to the lowest level and mRNA for P450arom became undetectable following atresia; accordingly, while the concentration of P4 increased in the atretic medium follicles, that of T0 and E2 decreased to the lowest level after atresia. While the adult follicular stage follicles showed a similar cytochrome expression as the nonatretic follicles of prepubertal goats, the former contained higher levels of E2 and P4 than the latter. The presence of corpus luteum in an ovary decreased expression of P450scc, significantly in large follicles while it increased concentration of P4. These findings indicated that (1) similar to other species, changes in follicular steroid production in goats were explained in large measure by changes in steroidogenic enzyme expression; (2) while mRNA expression was similar, activities of some of the steroidogenic enzymes may differ between sexually mature and immature goats.  相似文献   

14.
Epidermal growth factor (EGF) is one of the important regulatory factors of EGF family. EGF has been indicated to effectively inhibit the apoptosis of follicular cells, to promote the proliferation of granulosa cells and the maturation of oocytes, and to induce ovulation process via binding to epidermal growth factor receptor (EGFR). However, little is known about the distribution and expression of EGF and EGFR in cattle ovary especially during oestrous cycle. In this study, the localization and expression rule of EGF and EGFR in cattle ovaries of follicular phase and luteal phase at different time points in oestrous cycle were investigated by using IHC and real-time qPCR. The results showed that EGF and EGFR in cattle ovary were mainly expressed in granulosa cells, cumulus cells, oocytes, zona pellucida, follicular fluid and theca folliculi externa of follicles. The protein and mRNA expression of EGF/EGFR in follicles changed regularly with the follicular growth wave both in follicular and in luteal phase ovaries. In follicular phase ovaries, the protein expression of EGF and EGFR was higher in antral follicles than that of those in other follicles during follicular growth stage, and the mRNA expression of EGFR was also increased in stage of dominant follicle selection. However, in luteal phase ovaries, the growth of follicles was impeded during corpus luteum development under the action of progesterone secreted by granular lutein cell. The mRNA and protein expressions of EGF and EGFR in ovarian follicles during oestrous cycle indicate that they play a role in promoting follicular development in follicular growth waves and mediating the selection process of dominant follicles.  相似文献   

15.
Cattle genetically selected for twin ovulations and births (Twinner) exhibit increased ovarian follicular development, increased ovulation rate, and greater blood and follicular fluid IGF-1 concentrations compared with contemporary cattle not selected for twins (Control). Experimental objectives were to 1) assess relationships among aromatase (CYP19A1), IGF-1 (IGF1), IGF-2 receptor (IGF2R), and FSH receptor (FSHR) mRNA expression in small (≤5 mm) antral follicles and 2) determine their association with increased numbers of developing follicles in ovaries of Twinner females. Ovaries were collected from mature, cyclic (d 3 to 6) Twinner (n = 11), and Control (n = 12) cows at slaughter and pieces of cortical tissue were fixed and embedded in paraffin. Expression of mRNA was evaluated by in situ hybridization using (35)S-UTP-labeled antisense and sense probes for CYP19A1, FSHR, IGF1, and IGF2R mRNA. Silver grain density was quantified within the granulosa and theca cells of individual follicles (2 to 7 follicles/cow) by Bioquant image analysis. Follicles of Twinners tended to be smaller in diameter than Controls (1.9 ± 0.1 vs. 2.3 ± 0.1 mm; P = 0.08), but thickness of granulosa layer did not differ (P > 0.1) by genotype. Relative abundance of CYP19A1 (P < 0.01) and FSHR (P < 0.05) mRNA was greater in granulosa cells of Twinners vs. Controls, respectively, whereas IGF2R mRNA expression was less in both granulosa (P < 0.01) and theca (P < 0.05) cells in follicles of Twinners vs. Controls, respectively. Abundance of CYP19A1 mRNA in granulosa cells was correlated negatively with IGF2R mRNA expression in both granulosa (r = -0.33; P < 0.01) and theca (r = -0.21; P = 0.05) cells. Expression of IGF1 mRNA was primarily in granulosa cells, including cumulus cells, and its expression did not differ between Twinners vs. Controls (P > 0.10). Detected increases in CYP19A1 and FSHR, but not IGF1, mRNA expression along with decreases in IGF2R mRNA expression in individual follicles of Twinners support the hypothesis that increased follicular development and steroidogenesis in Twinner females result from increased extra-ovarian IGF-1 production. Furthermore, a reduction in follicular IGF2R mRNA expression accompanied by a reduction in receptor numbers would increase availability of free IGF-2 and its stimulation of follicular development in Twinners.  相似文献   

16.
More than 99% of follicles undergo a degenerative process known as "atresia", in mammalian ovaries, and only a few follicles ovulate during ovarian follicular development. We have investigated the molecular mechanism of selective follicular atresia in mammalian ovaries, and have reported that follicular selection dominantly depends on granulosa cell apoptosis. However, we have little knowledge of the molecular mechanisms that control apoptotic cell death in granulosa cells during follicle selection. To date, at least five cell death ligand-receptor systems [tumor necrosis factor (TNF)alpha and receptors, Fas (also called APO-1/CD95) ligand and receptors, TNF-related apoptosis-inducing ligand (TRAIL; also called APO-2) and receptors, APO-3 ligand and receptors, and PFG-5 ligand and receptors] have been reported in granulosa cells of porcine ovaries. Some cell death ligand-receptor systems have "decoy" receptors, which act as inhibitors of cell death ligand-induced apoptosis in granulosa cells. Moreover, we showed that the porcine granulosa cell is a type II apoptotic cell, which has the mitochondrion-dependent apoptosis-signaling pathway. Briefly, the cell death receptor-mediated apoptosis signaling pathway in granulosa cells has been suggested to be as follows. (1) A cell death ligand binds to the extracellular domain of a cell death receptor, which contains an intracellular death domain (DD). (2) The intracellular DD of the cell death receptor interacts with the DD of the adaptor protein (Fas-associated death domain: FADD) through a homophilic DD interaction. (3) FADD activates an initiator caspase (procaspase-8; also called FLICE), which is a bipartite molecule, containing an N-terminal death effector domain (DED) and a C-terminal DD. (4) Procaspase-8 begins auto-proteolytic cleavage and activation. (5) The auto-activated caspase-8 cleaves Bid protein. (6) The truncated Bid releases cytochrome c from mitochondrion. (7) Cytochrome c and ATP-dependent oligimerization of apoptotic protease-activating factor-1 (Apaf-1) allows recruitment of procaspase-9 into the apoptosome complex. Activation of procaspase-9 is mediated by means of a conformational change. (8) The activated caspase-9 cleaves downstream effector caspases (caspase-3). (9) Finally, apoptosis is induced. Recently, we found two intracellular inhibitor proteins [cellular FLICE-like inhibitory protein short form (cFLIPS) and long form (cFLIPL)], which were strongly expressed in granulosa cells, and they may act as anti-apoptotic/survival factors. Further in vivo and in vitro studies will elucidate the largely unknown molecular mechanisms, e. g. which cell death ligand-receptor system is the dominant factor controlling the granulosa cell apoptosis of selective follicular atresia in mammalian ovaries. If we could elucidate the molecular mechanism of granulosa cell apoptosis (follicular selection), we could accurately diagnose the healthy ovulating follicles and precisely evaluate the oocyte quality. We hope that the mechanism will be clarified and lead to an integrated understanding of the regulation mechanism.  相似文献   

17.
Experiments were conducted to examine the cellular localization of inhibin alpha-subunit, protein kinase B (PKB/Akt), and FoxO3a proteins in the ovaries of minipigs, Chinese Xiang pigs, by immunohistochemistry. The results indicated that inhibin alpha-subunits were localized in the granulosa cells of follicles at all stages but were not localized in corpora lutea. PKB was localized in the granulosa cells of primordial follicles and in the basal layers of the granulosa cells of preantral and antral follicles, but were not localized in atretic follicles and corpora lutea. FoxO3a was localized in the granulosa cells of follicles at all stages and was extensively localized in the cytoplasma of the luteinized granulosa cells of corpora lutea. Together, the stage- and cell-specific expression patterns of inhibin alpha-subunit, FoxO3a, and PKB suggest that these proteins might play potential roles in follicular development, atresia, and luteinization in the minipig.  相似文献   

18.
The morphology of healthy and atretic follicles in the ovary of the sexually immature ostrich was described in the present study. In addition, the distribution of the intermediate filaments desmin, vimentin and smooth muscle actin, in these ovarian follicles, was demonstrated. Healthy and atretic primordial, pre-vitellogenic and vitellogenic follicles were present in the ovaries of the sexually immature ostrich. Atresia occurred during all stages of follicular development. Atretic primordial and pre-vitellogenic follicles were characterized by the presence of a shrunken oocyte surrounded by a multilayered granulosa cell layer. Two forms of atresia (types 1 and 2) were identified in vitellogenic follicles. In the advanced stages of type 1 atresia the follicle was dominated by a hyalinized mass. In contrast, in type 2 atresia the granulosa and theca interna cells differentiated into interstitial gland cells. Positive immunostaining for desmin was observed in the granulosa cells of only healthy primordial and pre-vitellogenic follicles. Atretic primordial and pre-vitellogenic follicles were immunonegative for desmin. Vimentin immunoreactivity was demonstrated in the granulosa cells of all follicles except the vitellogenic atretic follicles. The results of the present study indicate that ovarian follicles in the sexually immature ostrich undergo a cycle of growth and regression, which is similar to that reported in other avian species. Furthermore, based on the results of the immunohistochemical study, it would appear that the distribution and immunostaining of intermediate filaments changes during follicular development and atresia.  相似文献   

19.
Most follicles undergo atresia during the developmental process. Follicular atresia is predominantly regulated by apoptosis of granulosa cells, but the mechanism underlying apoptosis via the mitochondria‐dependent apoptotic pathway is unclear. We aimed to investigate whether the mitochondria‐associated genes peroxisome proliferator‐activated receptor‐gamma, coactivator1‐alpha (PPARGC1A), nuclear respiratory factor‐1 (NRF‐1), B‐cell CLL/lymphoma 2 (BCL‐2) and BCL2‐associated X protein (BAX) played a role in follicular atresia through this pathway. The four mitochondria‐associated proteins (PGC‐1α, which are encoded by the PPARGC1A gene, NRF‐1, BCL‐2 and BAX) mainly expressed in granulosa cells. The mRNA and protein levels of PPARGC1A/PGC‐1α and NRF‐1 in granulosa cells increased with the follicular development. These results showed that these genes may play a role in the regulation of the follicular development. In addition, compared with healthy follicles, the granulosa cell in atretic follicles had a reduced expression of NRF‐1, increased BAX expression and increased ratio of BAX to BCL‐2 expression. These results suggested that changes of the mitochondria‐associated gene expression patterns in granulosa cells may lead to follicular atresia during goat follicle development.  相似文献   

20.
Angiogenic factors are associated with angiogenesis during follicular development in the mammalian ovary. The aim of the present study was to determine the relationships between the vascular network and mRNA expressions of angiopoietins (Ang)-1, Ang-2 and hepatocyte growth factor (HGF), and their receptors in follicles at different developmental stages during follicular development. Ovaries in gilts were collected 72 h after equine chorionic gonadotropin (eCG, 1250 IU) treatment for histological observation of the capillary network. Granulosa cells and thecal tissues in small (<4 mm), medium (4-5 mm) or large (>5 mm) individual follicles were collected for detection of mRNA expression of HGF, Ang-1 and Ang-2 in granulosa cells, and HGF receptor (HGF-R) and Tie-2 in the theca cells by semi-quantitative RT-PCR. The number of capillaries in the thecal cell layer increased significantly in healthy follicles at all developmental stages in the eCG group compared with those in controls. The expression of Ang-1 mRNA declined in granulosa cells of medium and large follicles and the level of Ang-2 mRNA increased in granulosa cells of small follicles after eCG treatment. The ratio of Ang-2/Ang-1 increased in small, medium and large follicles from ovaries after eCG treatment, but Tie-2 mRNA expression in the theca cells did not change. The level of HGF mRNA increased in granulosa cells of small follicles after eCG treatment but HGF-R in theca cells was not increased by eCG. These data suggested that the angiopoietins might be associated with thecal angiogenesis during follicular development in eCG-treated gilts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号