首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two experiments were conducted to evaluate combinations of wet corn gluten feed (WCGF) and barley, as well as the particle size of dry-rolled barley and corn, in finishing steer diets containing WCGF. In Exp. 1, 144 crossbred steers (initial BW = 298.9 +/- 1.4 kg) were used to evaluate barley (0.566 kg/L and 23.5% NDF for whole barley) and WCGF combinations in finishing diets containing 0, 17, 35, 52, or 69% WCGF (DM basis), replacing barley and concentrated separator byproduct. A sixth treatment consisted of corn (0.726 kg/L and 11.1% NDF for whole corn), replacing barley in the 35% WCGF treatment. In Exp. 2, 144 crossbred steers (initial BW = 315.0 +/- 1.5 kg) were used to evaluate coarse or fine, dry-rolled barley or corn (0.632 and 0.699 kg/L; 26.6 and 15.9% NDF for whole barley and corn, respectively) in finishing diets containing WCGF. A factorial treatment design was used; the factors were grain source (corn or barley) and degree of processing (coarse or fine). The diets contained 50% WCGF, 42% grain (corn or barley), 5% alfalfa hay, and 3% supplement (DM basis). In Exp. 1, DMI and ADG responded quadratically (P < or = 0.03), peaking at 35 and 52% WCGF, respectively. The efficiency of gain was not affected (P > or = 0.42) by dietary treatment. Steers fed dry-rolled corn and 35% WCGF had heavier HCW, lower DMI, greater ADG, increased G:F, increased s.c. fat thickness at the 12th rib, and greater yield grades compared with steers fed dry-rolled barley and 35% WCGF (P < or = 0.04). The apparent dietary NEg was similar among the barley and WCGF combinations (P > or = 0.51); however, the corn and 35% WCGF diet was 25% more energy dense (P < 0.001) than was the barley and 35% WCGF diet. In Exp. 2, no grain x processing interactions (P > or = 0.39) were observed. Particle size was 2.15 and 2.59 mm for fine- and coarse-rolled barley and was 1.90 and 3.23 mm for fine- and coarse-rolled corn. Steers fed a combination of corn and WCGF had increased ADG, greater G:F, heavier HCW, larger LM area, more s.c. fat thickness at the 12th rib, greater yield grades, increased marbling, and more KPH compared with steers fed a combination of barley and WCGF (P < or = 0.03). Fine-rolling of the grain increased fat thickness (P = 0.04). The addition of WCGF to the barley-based diets increased DMI and gain. Decreasing grain particle size did not greatly affect performance of the steers fed the 50% WCGF diets; however, carcasses from the steers fed the fine-rolled grain contained more fat.  相似文献   

2.
Use of poultry fat in the finishing diets of steers has not been studied as a potential source of added energy. Therefore, 60 Angus crossbred steers were fed 1 of 3 dietary treatments consisting of 1) a corn-soybean meal control diet devoid of added fat; 2) the control diet formulated with 4% tallow; or 3) the control diet formulated with 4% poultry fat. Addition of fat did not (P = 0.17) affect ADG for the 112-d study. The inclusion of tallow in the diet reduced (P < 0.05) ADFI of steers compared with those on the control diet; however, ADFI of steers fed poultry fat did not differ from those fed the control (P = 0.06) or the tallow (P = 0.36) diets. At d 55, steers consuming either fat source had improved (P < 0.05) G:F compared with steers fed the control diet. For the entire 112 d, steers consuming the poultry fat diet gained more efficiently (P < 0.05) than the control steers, and the tallow-fed steers were intermediate and not different from the other groups (P > or = 0.14). The inclusion of fat in the diet did not (P > or = 0.15) affect carcass characteristics. Steaks from the steers consuming diets with added fat were darker (lower L* value; P < 0.05) than the controls; however, dietary treatments did not (P > or = 0.10) affect any other objective color measurements or discoloration scores during retail display. Thiobarbituric acid reactive substances for LM steaks did not differ (P = 0.21) by dietary treatment. The cooked LM steaks from steers fed poultry fat did not (P > or = 0.80) differ in juiciness or flavor intensity from steaks of steers fed the control or tallow diets. There were also no differences (P = 0.18) in off flavors as a result of added dietary fat. In the LM and adipose tissue, percentages of total SFA were increased (P = 0.05) by adding supplemental fat to the diet, regardless of source. In the LM, total MUFA were decreased (P = 0.02) by adding supplemental fat. Conversely, diet did not (P > or = 0.14) affect the proportions of total PUFA in either tissue or total MUFA in the adipose tissue. Results indicated that replacing beef tallow in finishing diets with poultry fat, a more economical energy source, had no detrimental effects on growth performance, carcass characteristics, retail display life, fatty acid profiles, or palatability.  相似文献   

3.
An experiment was conducted to evaluate the effects of grain processing and lipid addition to finishing diets on cattle performance, carcass characteristics, and meat quality. Eighty Hereford x Angus steers (384 kg +/- 17 kg of BW) were fed diets containing steam-flaked corn (SFC) or dry-rolled corn (DRC) with and without the addition of tallow (SFC/Fat and DRC/Fat) or steam-flaked corn with ground flaxseed (SFC/Flax). Ribeye steaks from steers fed SFC, SFC/Fat, or SFC/ Flax were used to evaluate the effects of fat source on meat quality. Cattle fed SFC and SFC/Fat tended to have greater ADG, G:F, HCW, and USDA yield grade, compared with those fed DRC and DRC/Fat (P < 0.10). Steaks from steers fed SFC/Flax developed a detectable off-flavor (P < 0.05) compared with steaks from steers fed SFC and SFC/Fat, and steaks from steers fed SFC retained desirable color longer than those from steers fed SFC/Flax (P < 0.05). Feeding SFC/Flax increased deposition of alpha-linolenic acid in muscle tissue compared with feeding SFC or SFC/Fat (P < 0.01). Dietary treatment did not cause differences in tenderness, juiciness, or flavor intensity. Ground flaxseed can replace tallow in finishing diets without loss in performance, but flax may affect flavor and color stability of beef. Feeding flaxseed can effectively alter composition of carcass tissues to yield beef that is high in n-3 fatty acids.  相似文献   

4.
To assess the effects of feeding high-oil corn on carcass characteristics and meat quality, 60 yearling steers were fed high concentrate diets containing either control corn (82% of diet), high-oil corn (82% of diet), or high-oil corn at a concentration that was isocaloric with the control diet (74% of diet). After being fed for 84 d, steers were slaughtered. At 72 h postmortem, carcass data were collected and rib sections from five steers grading U.S. Choice and five steers grading U.S. Select from each treatment were collected, vacuum packaged, and aged for 14 d. Three steaks (2.54 cm thick) were removed from each rib for Warner-Bratzler shear force measurement, sensory appraisal, and fatty acid composition analyses. Data were analyzed with treatment as the main effect for the carcass data and treatment, quality grade, and two-way interaction in the model for the longissimus data. The two-way interaction was nonsignificant (P > 0.05) for all variables tested. No differences were detected (P > 0.05) in carcass measurements except for marbling scores and quality grades, both of which were greater (P < 0.05) for carcasses from steers fed the high-oil corn. Overall, 78% of steers fed the high-oil corn graded U.S. Choice compared with 47% for the control and 67% for isocaloric group. Shear force and sensory properties of the longissimus were not different (P > 0.05) among treatments. Steaks from U.S. Choice carcasses rated higher (P < 0.05) for tenderness and tended to rate higher (P < 0.10) for juiciness. Feeding the isocaloric and high-oil diets increased (P < 0.05) linoleic acid, arachidonic acid, and the total PUFA content of lipid extracted from the longissimus. Saturated fatty acid percentage was lowest (P < 0.05) for high-oil corn and highest (P < 0.05) for control, with isocaloric being intermediate. Feeding high-oil corn increased (P < 0.05) pentadecyclic acid, margaric acid, and total odd-chain fatty acid content. Feeding high-oil corn in finishing beef cattle diets enhanced intramuscular lipid deposition and increased unsaturation of fatty acids of the longissimus.  相似文献   

5.
The value of sunflower seed (SS) in finishing diets was assessed in two feeding trials. In Exp. 1, 60 yearling steers (479 +/- 45 kg) were fed five diets (n = 12). A basal diet (DM basis) of 84.5% steam-rolled barley, 9% barley silage, and 6.5% supplement was fed as is (control), with all the silage replaced (DM basis) with rolled SS, or with grain:silage mix replaced with 9% whole SS, 14% whole SS, or 14% rolled SS. Liver, diaphragm, and brisket samples were obtained from each carcass. In Exp. 2, 120 yearling steers (354 +/- 25 kg) were fed corn- or barley-based diets containing no SS, high-linoleic acid SS, or high-oleic acid SS (a 2 x 3 factorial arrangement, n = 20). Whole SS was included at 10.8% in the corn-based and 14% in the barley-based diets (DM basis). In Exp. 1, feeding whole SS linearly increased DMI (P = 0.02), ADG (P = 0.01), and G:F (P = 0.01). Regression of ME against level of whole SS indicated that SS contained 4.4 to 5.9 Mcal ME/kg. Substituting whole for rolled SS did not significantly alter DMI, ADG, or G:F (8.55 vs. 8.30 kg/d; 1.36 vs. 1.31 kg; and 0.157 vs. 0.158, respectively). Replacing the silage with rolled SS had no effect on DMI (P = 0.91) but marginally enhanced ADG (P = 0.10) and improved G:F (P = 0.01). Dressing percent increased linearly (P = 0.08) with level of SS in the diet. Feeding SS decreased (P < 0.05) levels of 16:0 and 18:3 in both diaphragm and subcutaneous fats, and increased (P = 0.05) the prevalence of 18:1, 18:2, cis-9,trans-11-CLA and trans-10,cis-12-CLA in subcutaneous fat. In Exp. 2, barley diets supplemented with high-linoleic SS decreased DMI (P = 0.02) and ADG (P = 0.007) by steers throughout the trial, whereas no decrease was noted with corn (interaction P = 0.06 for DMI and P = 0.01 for ADG). With barley, high-linoleic SS decreased final live weight (554 vs. 592 kg; P = 0.01), carcass weight (329 vs. 346 kg; P = 0.06), and dressing percent (58.5 vs. 59.4%; P = 0.04). Steers fed high-linoleic SS plus barley had less (P < 0.05) backfat than those fed other SS diets. No adverse effects of SS on liver abscess incidence or meat quality were detected. Although they provide protein and fiber useful in formulating finishing diets for cattle, and did improve performance in Exp. 1, no benefit from substituting SS for grain and roughage was detected in Exp. 2. Because of unexplained inconsistencies between the two experiments, additional research is warranted to confirm the feeding value of SS in diets for feedlot cattle.  相似文献   

6.
To measure the effects of dietary fat on feedlot performance and carcass characteristics, and on beef appearance, moisture binding, shelf life, palatability, and fatty acid content, 126 crossbred beef steers (321.1 +/- 0.57 kg of BW) were allotted to a randomized complete block (3) design with a 3 x 2 + 1 factorial arrangement of dietary treatments. The main effects were level of yellow grease (0, 3, or 6%) and alfalfa hay (3.5 or 7%) in corn-based diets containing 15% potato by-product (PB). The added treatment was 6% tallow and 7% alfalfa in a barley-based diet containing 15% PB. Dry matter intake and ADG were not affected by diet; however, G:F and diet NE content increased linearly (P < 0.10) with yellow grease. Kidney, pelvic, and heart fat (2.0 to 2.3 +/- 0.07) and yield grade (2.8 to 3.1 +/- 0.09) increased linearly (P < or = 0.05) with yellow grease. Steers fed corn plus 6% yellow grease had lower (P < 0.05) beef firmness and beef texture scores but greater (P < 0.01) fat color score than those fed barley plus 6% tallow. Moisture retention of beef was not affected by dietary treatment, except purge score during retail storage, which was decreased linearly (P < 0.01) from 2.1 to 1.6 +/- 0.06 by level of yellow grease. Steaks from steers fed barley plus 6% tallow had greater (P < 0.05) shear force than those from steers fed corn plus 6% yellow grease, and beef flavor increased linearly (P < 0.05) from 6.2 to 6.7 +/- 0.11 as the level of yellow grease increased. Level of yellow grease linearly increased (P < 0.01) transvaccenic acid (TVA) by 61% and CLA content of beef by 48%. Beef from steers fed corn plus yellow grease had lower (P < 0.05) palmitoleic and oleic acids and greater (P < 0.05) linoleic, TVA, and CLA than beef from steers fed the barley-tallow diet. Feeding yellow grease increased diet energy content, which increased carcass fatness, and altered beef fatty acid content, which increased beef flavor without affecting moisture retention, shelf life, or cooking properties of the beef. Additionally, beef from steers fed corn plus 6% yellow grease was more tender and had more polyunsaturated fatty acid content and CLA than beef from steers fed barley plus 6% tallow.  相似文献   

7.
The hypothesis of this experiment was that increasing dietary fat through the use of whole oilseeds and altering the dietary ratio of PUFA:saturated fatty acids would alter carcass composition of finishing steers. Seventy-two steers (443.6 +/- 1.0 kg) were fed for 76 d one of four dietary treatments: a corn/ soybean meal-based diet (NOFAT); two diets containing 16% (DM basis) whole raw soybeans; and a corn/soybean meal-based diet containing choice white grease (CWG) equal to the fat addition supplied by the soybeans. Soybeans used in the diets were either a standard variety (NORM-SB) or a variety high in oleic acid content (HO-SB). The fatty acid profile of diets differed (P < 0.05) in the degree of saturation and content of palmitic, stearic, oleic, linoleic, and linolenic acids. There were no differences in ADG (1.73 kg/d), hot carcass weight (347 kg), longissimus muscle area (79.4 cm2), yield grade (3.31), or percentage of boneless retail cuts (48.8%). Contrasts revealed differences (P < 0.05) in G:F and marbling score with the addition of fat (0.126 vs. 0.137 and 4.66 vs. 4.91, respectively, for NOFAT vs. fat). The addition of fat tended (P < 0.10) to increase backfat, and feeding NORM-SB increased (P < 0.01) dressing percent compared with the HO-SB treatment. Loin samples taken from steers fed NOFAT, NORM-SB, and HO-SB did not differ in alpha-tocopherol content. Loins from the CWG treatment tended (P < 0.10) to have lower alpha-tocopherol content than did the soybean treatments (0.79 vs. 0.99 ppm, respectively). From main-effects analysis, HO-SB loin samples had the highest (F3,8 = 32.91; P < 0.01) concentration of gamma-tocopherol (0.33 ppm); this resulted in differences (P < 0.05) in gamma-tocopherol when comparing all contrasts. When comparing loin samples from NORM-SB-fed steers with those from HO-SB-fed steers, NORM-SB samples had a greater (P < 0.05) percentage oflinoleic acid and PUFA and a lower (P < 0.05) percentage of oleic acid and monounsaturated fatty acids. Furthermore, loin samples from soybean-fed steers tended (P < 0.10) to have a greater concentration of conjugated linoleic acid than samples from CWG-fed steers. These data suggest that the source of added dietary fat may affect overall carcass composition. Furthermore, dietary addition of soybeans or CWG can improve feed efficiency and marbling, whereas the addition of whole raw soybeans compared with CWG may increase unsaturation and total vitamin E content of beef.  相似文献   

8.
A 2 x 2 factorial experiment with 48 crossbred steers (with Hereford, Angus, and Charolais genetics, and an initial BW of 373 +/- 8.4 kg) was conducted to evaluate the effects of dietary sunflower seeds (SS) and tylosin phosphate (TP) on production factors, carcass characteristics, liver abscess incidence, and fatty acid composition of the muscle (pars costalis diaphragmatis; PCD) and subcutaneous fat. Individually penned steers were fed either a control diet of 84.5% rolled barley, 14% barley silage, and 1.5% mineral and vitamin mix on a DM basis, or an SS diet, in which SS replaced 15% of the diet. Half the animals fed each diet received TP at 11 mg/kg of DM as a top dressing. Interactions were significant for all production factors. A reduction (P = 0.008) in DMI was observed from 10.1 +/- 0.4 kg/d, in steers fed the control diet, to 8.9 +/- 0.3 and 8.6 +/- 0.3 kg/d, in steers fed the SS and SS + TP diets, respectively. Greater (P = 0.014) ADG was observed for steers fed the control diet than for those fed the SS or SS + TP diet (1.4 vs. 1.1 and 1.2, SE = 0.1 kg/d, respectively); however, G:F ratios were greater (P = 0.011) in steers fed the control diets than in those fed the SS diets. Steers fed the control and SS diets had the heaviest and lightest HCW (347 +/- 6.9 vs. 325 +/- 8.4 kg; P = 0.025), respectively. Lean meat yield (%) of steers fed SS was greater (P = 0.117) than in steers fed the control diets, whereas total lean yield [(HCW x lean meat yield)/100] was similar (P = 0.755). Provision of the SS or SS + TP diet eliminated (P = 0.08 for interaction) liver abscesses compared with the 36 and 9% incidence in steers fed the control or control + TP diet, respectively. Fatty acid weight percentages (wt%) followed similar patterns in PCD and subcutaneous fat. Feeding the SS diets led to greater (P = 0.001) wt% of 18:0 and 18:2n-6, but reduced the wt% of 16:0, 9-cis (c)-18:1, and 18:3n-3 in PCD compared with that in steers fed the control diets, but the wt% of 9c,11-trans (t), and 10t,12c CLA were increased (P = 0.001) by 36 and 400% in PCD. Dietary SS increased (P < 0.001) the wt% of trans-18:1 isomers. The 10t-18:1 and 11t-18:1 isomers were the greatest, but dietary TP elevated (P = 0.004) only 10t-18:1, and total trans-18:1 (excluding 11t-18:1) was 0.47 +/- 0.06 g/100 g of PCD. Dietary SS for finishing steers reduced the incidence of liver abscesses without affecting total lean yield of the carcass, with modest increases in trans fatty acids and in potentially beneficial fatty acids (11t-18:1 and CLA).  相似文献   

9.
Angus-cross steers (n = 165; 295 +/- 16 kg of BW) were used evaluate the effect of low vitamin A diets with high-moisture corn (HMC) or dry corn (DC) on marbling and fatty acid composition. Steers were allotted to 24 pens (7 steers/pen), such that each pen had the same average initial BW. Treatments were randomly allotted to the pens. The experiment had a completely randomized design, with a 2 x 2 factorial arrangement of treatments: low vitamin A (Lo, no supplemental vitamin A) and HMC (LoHMC); LoDC; high vitamin A (Hi, supplemented with 2,200 IU of vitamin A/kg of DM) and HMC (HiHMC); and HiDC. Diets contained 76% corn, 10% corn silage, 11% protein supplement, and 3% soybean oil (DM basis). Samples of feed ingredients were collected for carotenoid analysis. Blood samples were collected for serum retinol determination. Steers were slaughtered after 145 d on feed. Carcass characteristics and LM composition were determined. Samples from the s.c. fat depot were analyzed for fatty acid composition. High-moisture corn had a greater vitamin A content, based on its carotenoid content, than DC (614 vs. 366 IU/kg of DM, P < 0.01). No vitamin A x corn type interactions were detected for feedlot performance, carcass characteristics, or serum, s.c. fat, or liver retinol concentration. Average daily gain, DMI, and G:F were not affected by vitamin A (P > 0.05). Marbling score and USDA quality grade were greater (P < 0.05) in Lo vs. Hi steers. Hot carcass weight, backfat, and yield grade were not affected by the treatments (P > 0.05). Vitamin A and corn type did not affect LM composition (DM, ash, CP, or ether-extractable fat, P > 0.05). Vitamin A supplementation increased (P < 0.06) serum retinol on d 112 and 145 and increased (P < 0.01) liver retinol at slaughter (Lo = 38.7 vs. Hi = 102.9 mug/g). The s.c. fat retinol concentrations were less (P < 0.01) for Lo (0.8 mug/g) than for Hi (1.4 mug/g) at slaughter. Cell diameter of adipocytes in the i.m. depot was not affected by dietary vitamin A (P > 0.05). A vitamin A x corn type interaction was observed (P < 0.05) for the s.c. fat cellularity. Feeding HMC increased the number of cells per square millimeter when Lo diets were fed (LoHMC = 128 vs. LoDC = 100 cells/mm(2), P < 0.05), but not when Hi diets were fed (HiHMC = 109 vs. HiDC = 111 cells/mm(2), P > 0.05). The CLA content of adipose tissue was not affected by the treatments. Regardless of the corn type used, feeding low vitamin A diets for 145 d to Angus-cross steers increased marbling and quality grade without affecting yield grade, animal health, or performance.  相似文献   

10.
Three experiments were conducted to determine the effects of whole cottonseed or cottonseed products on performance and carcass characteristics of beef cattle. In Exp. 1, 120 beef steers (initial BW = 381 +/- 31.7 kg) were fed steam-flaked corn-based finishing diets with 10% (DM basis) basal roughage, and whole cottonseed or individual cottonseed components (cottonseed hulls, meal, and oil). Over the entire feeding period, ADG did not differ (P = 0.95), but DMI increased (P = 0.07) and G:F decreased (P = 0.06) for steers fed the cottonseed diets compared with the control diet. Dressing percent (P = 0.02) and marbling scores (P = 0.02) of carcasses from steers fed the cottonseed diets were less than for steers fed the control diet. In Exp. 2, 150 beef steers (initial BW = 364 +/- 9.9 kg) were used to determine the effects of whole cottonseed or pelleted cottonseed (PCS) on performance and carcass characteristics. Cattle were fed steam-flaked corn-based finishing diets in which whole cottonseed or PCS replaced all of the dietary roughage, supplemental fat, and supplemental natural protein of the control diet. Over the entire feeding period, steers fed the cottonseed diets had lower (P = 0.04) DMI and greater (P < 0.01) G:F than steers fed the control diet. Carcass characteristics did not differ (P = 0.16 to 0.96) among dietary treatments. In Exp. 3, 150 beef heifers (initial BW = 331 +/- 17.1 kg) were used to determine the effects of PCS or delinted, whole cottonseed (DLCS) on performance and carcass characteristics. Heifers were fed rolled corn-based finishing diets in which cottonseed replaced the dietary roughage, supplemental fat, and all or part of the supplemental natural protein of the control diet. Over the entire feeding period, ADG, DMI, and G:F of heifers fed the control diet did not differ (P = 0.19 to 0.80) from those of the cottonseed diets; however, heifers fed the diets containing PCS had greater ADG (P = 0.03) and G:F (P = 0.09) than heifers fed diets containing DLCS. Carcass characteristics of heifers fed the control diet did not differ (P > or = 0.28) from those fed the cottonseed diets. Heifers fed the diets containing PCS had greater (P < or = 0.03) HCW, dressing percent, and LM area than those fed DLCS. Based on our results, whole cottonseed, or products derived from processing whole cottonseed, can replace feedstuffs commonly used in beef cattle finishing diets with no adverse effects on animal performance or carcass characteristics.  相似文献   

11.
Our objective was to compare the effects of feeding steam-flaked, high-oil corn with normal steam-flaked corn to which yellow grease was added to equalize dietary fat on performance and carcass characteristics of finishing beef steers, and palatability, retail case life, and fatty acid composition of strip loins. Angus steers (n = 120; initial BW = 288 kg) were allotted to dietary treatments consisting of 1) normal mill-run, steam-flaked corn plus added fat (NMR) or 2) high-oil, steam-flaked corn (HOC) and assigned randomly to pens (12 pens/treatment with 5 steers/pen). Performance (ADG, DMI, and G:F) was measured over time, and cattle were shipped to a commercial abattoir for collection of carcass data after 165 d on feed. Carcass data were collected at 48 h postmortem on all carcasses, and 2 carcasses from each pen were selected randomly for collection of strip loins (IMPS #180A). At 14 d postmortem, 4 steaks (2.54 cm thick) were removed for retail display, trained sensory panel analysis, Warner-Bratzler shear force determination, and fatty acid analysis. Daily BW gain was greater (P = 0.03) and G:F was increased 8.4% (P = 0.01) for steers fed NMR compared with HOC, but DMI was not affected (P > 0.10) by treatment. No treatment differences were observed (P > 0.10) for HCW, 12th-rib fat, KPH, and yield grade. Marbling scores were greater (P = 0.01) for NMR than for HOC, and LM area tended (P = 0.07) to be greater in NMR than in HOC carcasses. The proportion of carcasses grading USDA Choice did not differ (P = 0.77) between treatments, but a greater (P = 0.04) proportion of carcasses graded in the upper two-thirds of Choice for NMR vs. HOC. Trained sensory panel traits and Warner-Bratzler shear force values did not differ between treatments (P > 0.10), and no differences (P > 0.10) were detected for purge loss or fatty acid composition. Overall, ADG and G:F were less and marbling score was decreased, but there were no differences between treatments in beef palatability, retail case life, or concentrations of fatty acids in strip loins.  相似文献   

12.
A 2-yr study was conducted using a 3 × 2 factorial arrangement of treatments to evaluate the effects of feeding dried distillers grains throughout a beef production system on performance, carcass characteristics, and fatty acid profile of beef. Factors were wheat pasture supplement [no supplement (CON), dry-rolled corn (DRC), and dried distillers grains (DDG)] fed at 0.5% BW daily and finishing diet [steam-flaked corn based diet containing 0 (SFC) or 35% (35DDG) DDG]. Each year, 60 preconditioned Hereford steers (initial BW = 198 kg ± 3) grazed winter wheat pasture with or without supplement. Body weight gain was 8% greater for steers consuming DDG supplement compared with CON and DRC steers (P < 0.01). After the grazing period, pastures within supplement treatment were randomly assigned to SFC or 35DDG. There was no supplement by finishing diet interaction for any performance or carcass variable of interest (P ≥ 0.41). Previous supplementation on winter wheat affected BW at feedlot entry and adjusted G:F (P ≤ 0.05) but had no effect on finishing ADG or carcass traits (P ≥ 0.12). On a carcass-adjusted basis, steers consuming 35DDG had reduced final BW, ADG, G:F, and total BW gain throughout the system (P ≤ 0.04) compared with SFC. Additionally, steers consuming 35DDG had reduced HCW, dressing percent, and fat thickness (P ≤ 0.03) compared with SFC. There was a supplement by finishing diet interaction (P = 0.02) for 18:0, in which cattle supplemented with DRC and fed the SFC finishing diet had the lowest concentration of 18:0 but DRC supplemented steers fed the 35DDG diet had the greatest concentration. The interaction was not significant (P ≥ 0.18) for other fatty acids. Main effects of supplement and finishing diet affected (P ≤ 0.05) several other fatty acids of interest, particularly 18:2, which is associated with reduced flavor-stability of beef. The use of DDG as a supplement to wheat pasture resulted in greater ADG during wheat grazing and heavier BW at feedlot entry, but final BW was not different from CON or DRC groups. Feeding DDG at 35% DM in steam-flaked corn-based finishing diets reduced ADG, G:F, and HCW, and affected the fatty acid composition of beef.  相似文献   

13.
Crossbred yearling steers (n=80; 406 ± 2.7 kg of BW) were used to evaluate the effects of S concentration in dried distillers grains with solubles (DDGS) on growth performance, carcass characteristics, and ruminal concentrations of CH(4) and H(2)S in finishing steers fed diets based on steam-flaked corn (SFC) or dry-rolled corn (DRC) and containing 30% DDGS (DM basis) with moderate S (0.42% S, MS) or high S (0.65% S, HS). Treatments consisted of SFC diets containing MS (SFC-MS), SFC diets containing HS (SFC-HS), DRC diets containing MS (DRC-MS), or DRC diets containing HS (DRC-HS). High S was achieved by adding H(2)SO(4) to DDGS. Ruminal gas samples were analyzed for concentrations of H(2)S and CH(4). Steers were fed once daily in quantities that resulted in traces of residual feed in the bunk the following day for 140 d. No interactions (P ≥ 0.15) between dietary S concentration and grain processing were observed with respect to growth performance or carcass characteristics. Steers fed HS diets had 8.9% less DMI (P < 0.001) and 12.9% less ADG (P=0.006) than steers fed diets with MS, but S concentration had no effect on G:F (P=0.25). Cattle fed HS yielded 4.3% lighter HCW (P = 0.006) and had 16.2% less KPH (P=0.009) than steers fed MS. Steers fed HS had decreased (P=0.04) yield grades compared with steers fed MS. No differences were observed among treatments with respect to dressing percentage, liver abscesses, 12th-rib fat thickness, LM area, or USDA quality grades (P ≥ 0.18). Steers fed SFC had less DMI (P < 0.001) than steers fed DRC. Grain processing had no effect (P > 0.05) on G:F or carcass characteristics. Cattle fed HS had greater (P < 0.001) ruminal concentrations of H(2)S than cattle fed MS. Hydrogen sulfide concentration was inversely related (P ≤ 0.01) to ADG (r=-0.58) and DMI (r=-0.67) in cattle fed SFC, and to DMI (r=-0.40) in cattle fed DRC. Feeding DDGS that are high in dietary S may decrease the DMI of beef steers and compromise the growth performance and carcass characteristics of feedlot cattle.  相似文献   

14.
To measure effects of diet on feedlot performance, carcass characteristics, and beef appearance, 144 crossbred beef steers (333+/-.44 kg) were allotted within weight block (3) to a randomized complete block design with a 2 x 3 factorial arrangement of dietary treatments. Main effects were grain (barley or corn) and level of potato by-product (PB) (0, 10, or 20% of diet DM). Steers were fed diets containing 83% concentrate (grain plus PB), 10% supplement, and 7% alfalfa on a DM basis for an average of 130 d. Level of PB quadratically affected (P < .10) DM intake and gain such that steers fed 10% PB ate more and gained faster. Corn-fed steers were more (P < .05) efficient (5.8 vs 6.3 kg DM/kg gain) and had more (P < .05) kidney, pelvic, and heart fat (2.2 vs 2.0%) than barley-fed steers. A grain x PB interaction was detected (P < .10) for marbling score, which was minimized in steers fed barley diets (small 0) but maximized in those fed corn diets (small 30) at 10% PB. Diet did not affect beef firmness or beef color score. Barley-fed beef had whiter fat (P < .05) than corn-fed beef (2.6 vs 2.9 on a 1 to 7 scale); however, fat luster score was not affected by diet. Small differences were noted in fatty acid profile, purge, drip loss, and muscle pH. No differences were noted in color measurements due to dietary treatment over 7 d of retail shelf life. Overall, differences were small and probably not biologically important. These results indicate that these diets had minimal effects on beef appearance and carcass characteristics, meat composition, and water retention properties.  相似文献   

15.
In each of 2 yr, 20 Holstein steers (185+/-7 kg initial BW) were allocated to each of three treatments: pastured for 4.5 mo on grass/legume pastures and then fed 80% corn diets (DM basis) until slaughter; pastured for 4.5 mo on grass/legume pastures with ad libitum access to molasses-based protein supplements and fed 80% corn diets until slaughter; and placed in a feedlot and fed only 80% corn diets until slaughter (FEEDLOT). Half of the steers in each treatment were initially implanted with Revalor-S and not reimplanted. Supplemented steers on pasture had greater (P < 0.05) ADG than unsupplemented steers, and FEEDLOT steers gained faster and were fatter (P < 0.05) after 4.5 mo. Implanted steers had greater (P < 0.05) ADG with no significant treatment x implant status effect. Supplement intake was variable and related to ambient temperature. During the feedlot phase, steers previously on pasture had greater DMI and ADG (P < 0.05) but were not more efficient than FEEDLOT steers. Percentage of USDA Choice carcasses, fat thickness, dressing percentage, yield grade, and final weight were greater (P < 0.05) for FEEDLOT steers than for steers on other treatments. Implanting increased ADG of all steers but did not affect carcass traits, carcass composition, or feedlot performance during the finishing phase. Holstein steers consuming supplemented and unsupplemented pasture before slaughter will be leaner, have lower carcass weights, and have generally lower quality grades than those fed exclusively in a feedlot when slaughtered at similar ages.  相似文献   

16.
A feedlot trial was conducted to determine the effect of dietary vitamin A concentration and roasted soybean (SB) inclusion on carcass characteristics, adipose tissue cellularity, and muscle fatty acid composition. Angus-crossbred steers (n = 168; 295 +/- 1.8 kg) were allotted to 24 pens (7 steers each). Four treatments, in a 2 x 2 factorial arrangement, were investigated: no supplemental vitamin A, no roasted soybeans (NANS); no vitamin A, roasted SB (20% of the diet on a DM basis; NASB); with supplemental (2,700 IU/kg) vitamin A, no roasted SB (WANS); and with supplemental vitamin A, roasted SB (WASB). Diets included high moisture corn, 5% corn silage, 10 to 20% supplement, and 20% roasted SB in the SB treatments on a DM basis. The calculated vitamin A concentration in the basal diet was < 1,300 IU/kg of DM. Blood samples (2 steers/pen) were collected for serum vitamin A determination. Steers were slaughtered after 168 d on feed. Carcass characteristics and LM composition were determined. Fatty acid composition of LM was analyzed, and adipose cellularity in the i.m. and s.c. depots was determined. No vitamin A x SB interactions were detected (P > 0.10) for cattle performance, carcass composition, or muscle fatty acid composition. Low vitamin A diets (NA) did not affect (P > 0.05) ADG, DMI, or G:F. Quality grade tended (P = 0.07) to be greater in NA steers. Marbling scores and the percentage of carcasses grading > or = Choice(-) were 10% greater for NA steers, although these trends were not significant (P = 0.11 and 0.13, respectively). Backfat thickness and yield grade were not affected (P > 0.26) by vitamin A supplementation. Composition of the LM was not affected (P > 0.15) by vitamin A or SB supplementation. Serum retinol at slaughter was 44% lower (P < 0.01) for steers fed NA than for steers supplemented with vitamin A (23.0 vs. 41.1 microg/dL). A vitamin A x SB interaction occurred (P < 0.05) for adipose cellularity in the i.m. depot; when no SB was fed, vitamin A supplementation decreased cell density and increased cell size. However, when SB was fed, vitamin A supplementation did not affect adipose cellularity. Adipose cellularity at the s.c. depot was not affected (P > 0.18) by vitamin A or SB treatments. Fatty acid profile of the LM was not affected by vitamin A (P > 0.05), but SB increased (P < 0.05) PUFA (7.88 vs. 4.30 g/100 g). It was concluded that feeding NA tended to increase marbling without affecting back-fat and yield grade. It appeared that NA induced hyperplasia in the i.m. but not in the s.c. fat depot.  相似文献   

17.
本试验旨在探讨玉米加工利用的适宜方法,以提高玉米的利用效率。选用120头利木赞杂交阉牛(590 kg±10 kg),随机分为4组,分别饲喂蒸汽压片(A)、粉碎后过七目筛(B)、十目筛(C)和十四目筛(D)的玉米型日粮,研究日粮玉米不同加工方法对阉牛育肥性能的影响。结果表明,玉米不同加工方式对肉牛的生产性能和大多数胴体指标都没有显著影响(P>0.05)。蒸汽压片玉米组的胴体产肉率高于十目筛组,骨重低于十目筛组(P<0.05)。十四目筛组的高档肉块比例和上脑重显著高于其它3个处理组,牛柳重显著低于其它处理组,七目筛组西冷重高于十目筛组(P<0.05)。养殖效益则以十目筛组阉牛最高。  相似文献   

18.
Angus x Hereford steers (n = 48) similar in frame size and in muscle thickness were allotted to eight groups (n = 6) of similar mean live weight for serial slaughter at 28-d intervals (0 to 196 d). Except for d-0 steers, which served as grass-fed controls, all steers were fed a high-concentrate diet during the finishing period. Upon slaughter, one side of each carcass was trimmed of subcutaneous fat in the wholesale rib region. Postmortem longissimus muscle (LM) temperature was monitored for each side during the 24-h chilling period. After quality and yield grade data were collected, rib steaks were removed and aged (7 d) and sensory traits of the steaks were evaluated. Most carcass grade traits increased linearly (P less than .01) with days on feed, whereas most sensory panel variables and marbling increased curvilinearly (P less than .05). Generally, after 56 d on feed, carcasses chilled at slower rates (P less than .05) with increased days fed. Taste panel tenderness, amount of perceived connective tissue, and shear force values peaked at 112 d and were slightly less desirable for cattle fed longer than 112 d (quadratic term, P less than .01). Postmortem muscle temperature at 2.5 h was the chilling time most highly correlated with tenderness values among untrimmed sides. Correlations for shear force with 2.5-h LM temperature, marbling score, days fed, fat thickness, and carcass weight were -.63, -.61, -.56, -.55, and -.53, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Corn distiller's grains plus solubles (DGS) have become a common replacement for shelled corn in diets of finishing steers. Numerous studies have evaluated DGS inclusion, both wet (WDGS) and dry (DDGS), into feedlot diets with conflicting reports on feedlot performance and subsequent meat quality. Many authors have failed to describe the nutrient composition of the DGS utilized in their studies making it difficult to determine why different studies have different results. The objective of this study was to evaluate the feedlot performance and subsequent meat quality characteristics of steers fed high fat (10.36±0.72%), modified wet corn distiller's grains plus solubles (HWDGS) at 0, 25, 40, and 70% of the diet dry matter (DM). Angus cross steers (n=240; 335±55 kg) were blocked by source and stratified within block (3 blocks) by body weight (BW) to 32 treatment pens containing either 6 or 10 steers/pen. Pens within block were randomly assigned to one of four diets containing 15% corn silage: (1) 76.9% shelled corn, 6.4% soybean meal 1.5% limestone, 0.2% premix (0 HWDGS); (2) 25.0% HWDGS, 58.20% shelled corn 1.6% limestone, 0.2% premix (25 HWDGS); (3) 40.0% HWDGS, 42.74% shelled corn 2.06% limestone, 0.2% premix (40 HWDGS); (4) 70.0% HWDGS, 12.30% shelled corn 2.5% limestone, 0.2% premix (70 HWDGS). Target BW at harvest was 591 kg±23 kg with 121 steers harvested on day (d) 161 and 117 steers on d 224. Hot carcass weight and liver abscess scores were recorded on d of harvest. Longissimus muscle area, rib fat thickness, marbling score, and kidney, pelvic and heart fat were measured after a 24 h chill. No significant differences were observed between treatments regarding average daily gain (ADG) or BW. Steers fed 0 HWDGS had significantly lower average daily feed intake (ADFI) than steers fed HWDGS and the response was quadratic at lower ADFI. Steers fed 70 HWDGS had lower (P<0.05) dry matter intake (DMI) compared to steers fed lower HWDGS concentrations. Steer gain to feed ratio (G:F) was significantly higher for steers fed 70 HWDGS compared to 0, 25, or 40 HWDGS with a quadratic response at higher % HWDGS diets. Mean United States Department of Agriculture (USDA) quality grade was average choice. Mean USDA yield grade was 3.0. Steers fed 70 HWDGS had significantly smaller rib eye areas and a linear trend (P=0.08) to have lower USDA quality grades compared to steers fed lower HWDGS inclusion rates. Increasing dietary HWDGS increased polyunsaturated fatty acid (PUFA) and PUFA/saturated fatty acid concentrations in intramuscular fat with both a linear and quadratic effect. High fat modified WDGS can be fed up to 70% of diet DM without compromising feedlot performance, carcass characteristics, or meat quality.  相似文献   

20.
A study was conducted to determine the effect of dietary Mn on performance of growing and finishing steers, and to evaluate the effect of pharmacological concentrations of Mn on lipid metabolism and subsequent carcass quality in steers. One hundred twenty Angus cross steers were blocked by BW and origin and assigned randomly to one of six treatments (four replicate pens per treatment) providing 0 (control), 10, 20, 30, 120, or 240 mg of supplemental Mn/kg of DM from MnSO4. Steers were fed a corn silage-based growing diet for 84 d, and then switched to a corn-based finishing diet for an average of 112 d. The control growing diet analyzed 29 mg of Mn/kg of DM, whereas the control finishing diet analyzed 8 mg of Mn/kg of DM. Jugular blood samples were obtained on d 56 of the growing and finishing phase for plasma Mn and glucose analysis. Final BW, DMI, ADG, and G:F did not differ (P = 0.38 to P = 0.98) across treatments during growing and finishing phases. Plasma Mn concentrations were not affected by treatment; however, liver and LM Mn at slaughter increased linearly (P = 0.02 and 0.002, respectively) with increasing dietary Mn. Plasma glucose concentrations did not differ (P = 0.90) among treatments. Serum nonesterified fatty acid concentrations tended (P = 0.10) to decrease linearly with increasing dietary Mn on d 56 of the finishing phase. Longissimus muscle lipid concentration was affected quadratically (P = 0.08) by dietary Mn. Muscle lipid seemed to increase slightly when steers were fed 30 or 120 mg of Mn/kg of DM, but decreased with the addition of 240 mg of Mn/kg of DM. Carcass characteristics were not affected by dietary Mn. Manganese concentrations of 29 and 8 mg/kg of DM in the growing and finishing diets, respectively, were adequate for maximizing performance of growing and finishing steers in this experiment. Supplementing physiological or pharmacological concentrations of Mn affected lipid metabolism; however, this did not result in altered carcass characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号