首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
为了获得GP-81A系列航空喷头的雾滴粒径分布情况,该文针对GP-81A系列航空喷头进行了风洞条件和飞行条件下的雾滴粒径及分布测试,通过高速风洞测试系统模拟飞行时产生的高速气流开展了气流大小对雾滴粒径及分布的影响研究;基于农用航空常用的Y5B飞机开展了不同型号喷嘴航空喷雾时的雾滴粒径及分布研究;同时,比较了相近喷雾压力条件下,相同喷嘴在风洞条件和飞行条件下的雾滴粒径及分布差距。试验结果表明,风洞条件测试时,当风速小于33.8 m/s时,雾滴粒径随气流的增加而增大;而当风速大于33.8 m/s时,雾滴粒径随气流的增加而减小,足够大的气流可以使雾滴进一步雾化。当气流在33.8 m/s时,7#喷嘴雾滴粒径最大,为491.1μm;当气流在84.87 m/s时,2#喷嘴雾滴粒径最小,为202.1μm。该系列喷头的6种不同喷孔的喷头的雾滴粒径均大于150μm,说明该喷头航空喷雾时的飘移损失较小。在喷雾压力基本相同的条件下,风洞条件下的雾滴粒径测试结果略高于飞行试验结果,主要原因是距离喷头出口的测试位置不同。风洞条件和飞行条件下的雾滴谱相对宽度S值均较小,表明雾滴分布较均匀,而飞行条件下的雾滴分布更均匀些。该研究为进一步优化航空喷头的作业参数,开展减少雾滴飘移研究提供参考。  相似文献   

2.
背负式喷雾器雾滴分布特性的CFD模拟与试验   总被引:5,自引:5,他引:0  
为了解决不同喷雾条件对背负式喷雾器雾滴分布的影响问题,采用CFD离散相粒子跟踪模拟方法,研究了距喷嘴垂直高度分别为0.4、0.55和0.7m,喷雾压力分别为0.15、0.2、0.3和0.35MPa,风速分别为0、1、2、3m/s情况下,雾滴沉积分布和粒径分布特性,并进行试验验证。结果表明:沉积率受风速影响显著,随风速增大而降低,但沉积率受喷雾压力影响不显著。模拟与试验结果回归决定系数R2和标准误差SE分别为0.9424、0.039,表明CFD离散相粒子跟踪模拟法可用于评估雾滴沉积分布。雾滴粒径分布模拟结果与试验结果相关性差,CFD模拟法不宜用于评估雾滴粒径分布情况。该研究为后续各类喷雾器数据测量提供参考。  相似文献   

3.
不同侧风和静电电压对静电喷雾飘移的影响   总被引:1,自引:2,他引:1  
为研究不同侧风和静电电压对静电喷雾雾滴飘移的影响规律,设计不同侧风(恒速风1、2、4 m/s及0~4 m/s变化的模拟自然风)及静电电压(0,2,4,6,8 k V),进行喷杆式静电喷雾机的雾滴飘移试验,测定不同静电电压下的雾滴粒径与荷质比,并对比分析雾滴飘移质量中心距和飘失率。结果表明:随着静电电压的增大,雾滴粒径减小,雾滴荷质比增大,0~8 k V电压下电极干燥和电极打湿对雾滴荷质比没有显著影响。在侧风风速为1 m/s时,0~8 k V静电喷雾的雾滴飘移中心距小于0.55 m,雾滴飘失率低于15%。在侧风风速2 m/s时,非静电喷雾的雾滴飘失率为11.9%,6~8 k V静电喷雾的雾滴飘失率超过20%,其中静电电压8 k V的雾滴飘失率(23.9%)比非静电喷雾增加100.8%。在侧风风速4 m/s时,4~8 k V静电喷雾的雾滴飘移中心距在0.9 m以上,雾滴飘失率在30%以上,其中静电电压8 k V下的雾滴飘移中心距为967.2 mm比非静电喷雾下增加了13.7%,雾滴飘失率为35.4%比非静电喷雾下增加了59.5%。相同静电电压下,2 m/s的恒速风和0~4 m/s变化的模拟自然风之间对雾滴飘失率无显著差异。该研究为优化喷雾技术参数和提高雾滴抗飘移的能力提供参考。  相似文献   

4.
喷雾助剂类型及浓度对喷头雾化效果影响   总被引:8,自引:5,他引:3  
为达到农药减施增效的目的,助剂逐渐成为农药喷洒过程中必不可少的部分,其效果及浓度直接影响着施药过程中农药利用率。为探索不同助剂及浓度对喷头雾化效果的影响,该文利用激光粒度仪比较分析了IDK120-025型和LU120-015型喷头喷施不同浓度典型增效剂意欧、减量增产助剂激健、尿素时,其雾滴体积中径及雾滴分布相对跨度差异。两款喷头应用广泛,喷雾角度相同、喷腔雾化结构相异。结果表明:3种助剂溶液对IDK120-025型喷头的影响效果相比于LU120-015型喷头更为显著,但是LU120-015喷头喷雾雾滴均匀性较优于IDK120-025。激健溶液配比为1:3 000时,在0.4 MPa喷雾压力条件下,与水相比可将IDK喷头雾滴体积中径增加20.43%,粒径分布相对跨度减小1.74%;意欧溶液配比为1:2 000时,在0.4 MPa喷雾压力条件下,与水相比可将IDK喷头雾滴体积中径增加11.10%,粒径分布相对跨度减小8.86%;意欧溶液配比1:3 000时,在0.2 MPa喷雾压力条件下,与水相比可将LU喷头雾滴体积中径减小5.99%,粒径分布相对跨度增大1.56%;尿素溶液在配比1:2 000时,在0.4 MPa喷雾压力条件下,与水相比可将IDK喷头雾滴体积中径增加16.92%,粒径分布相对跨度减小6.92%。该试验可为田间农药施用中助剂及喷头的选择提供依据,为进一步研究喷头及助剂提供数据基础。  相似文献   

5.
脉宽调制(pulse width modulation, PWM)技术是实现变量喷雾的重要手段,其工作参数与环境条件决定着施药的精准性。为探究PWM变量喷头雾化及风洞环境沉积特性,该文研制了脉宽调制变量喷雾系统,以农业施药常用空心圆锥雾化喷头喷雾的雾化、沉积特性为研究对象,在IEA-II型常规风速风洞内,通过点阵式放置电容式雾滴沉积传感器测定计算雾滴沉积与沉积评价指数(deposition evaluation index,DEIX),并利用Spraytec雾滴粒径仪测试其雾滴体积中径(volume median diameter,VMD)和雾滴相对分布跨度(relative span,RS)。试验结果表明:占空比在10%~40%间,随占空比增大,雾滴体积中径呈减小趋势,与占空比10%时相比,占空比40%时的雾滴体积中径下降了7.9%;PWM占空比60%时分布跨度最小,较占空比20%时雾滴分布跨度下降9.52%,雾滴谱最窄,获得的雾滴粒径分布最集中。雾滴沉积方面,风速1 m/s条件下,雾滴主要沉积在距喷头3.3 m内,此范围内沉积量占总沉积量的95.7%,当风速超过3 m/s时,在气流作用下,雾滴沉降距离增大,导致雾滴运动偏离施药靶标区域。PWM占空比增加,雾滴沉积评价指数DEIX值降低,雾滴的飘移率增大;相同工况下,风速及喷头高度越大,DEIX越小,施药雾滴越易飘移。该研究可为农业田间实际生产中脉宽调制变量施药技术应用及其工况参数的选择提供依据,为PWM变量调节装置的进一步优化提供研究基础。  相似文献   

6.
高速气流条件下标准扇形喷头和空气诱导喷头雾化特性   总被引:2,自引:4,他引:2  
标准扇形喷头与空气诱导喷头均为地面喷雾常用喷头,其在低速条件下的雾化特性已有较多研究,而在高速气流下的雾化特性尚不清楚。为了探究对比2种喷头在高速气流条件下的雾化特性,以及其用作航空喷头的可能性,基于北京农业智能装备技术研究中心自行设计制造的IEA-I型高速风洞,采用马尔文Spraytec喷雾粒度仪对德国Lechler公司生产的LU-120-03标准扇形压力喷头和IDK-120-03空气诱导喷头进行了测试。试验结果表明,两种类型喷头在距离出口0.15 m时,雾滴并未完全雾化。而在距离出口0.35 m时雾滴均已充分雾化。其中LU-120-03扇形压力喷头雾滴体积中径随风速增大从210μm逐渐减小至130μm,在管道压力达0.4 MPa以上时,其雾滴粒径分布跨度随风速增大逐渐从1.3增至1.5。而IDK-120-03空气诱导喷头产生的雾滴粒径相对较大,在风速为120 km/h时,达420~450μm,但其随着风速进一步增加快速减小,在风速达305 km/h时,其产生的雾滴体积中径降低到150μm。试验还发现管道压力变化对LU-120-03扇形压力喷头产生雾滴体积中径影响较大,而对IDK-120-03空气诱导喷头产生的雾滴体积中径影响较小。该研究可为固定翼有人机航空施药方案,如喷头选型、压力选择、作业速度选择等提供试验数据指导。  相似文献   

7.
为研究植保喷雾作业中在不同风速和喷头倾斜角度下对水平喷雾的雾滴飘移的影响,设置3个风速水平(1、2、3 m/s)与4个喷头倾斜角度水平(0°、15°、30°、45°)进行喷雾试验,测定了不同水平的雾滴分布,以风速为0、喷头倾斜角度为0°的常规作业水平作为对照组,对垂直和水平两个方向的雾滴质量分布中心与变异系数进行分析。结果表明,垂直方向上,侧风风速与喷头倾斜角度对垂直雾滴质量分布中心的影响在±3 cm范围内整体影响较小,而侧风风速与喷头倾斜角度的增大都会使垂直方向变异系数减小,在1~3 m/s的风速下垂直方向变异系数减小的最大值分别为12.3、6.0、16.0个百分点,提高了雾滴在垂直方向上的均匀性。水平方向上,不同风速和喷头倾斜角度都会对雾滴飘移产生影响,随着喷头倾斜角度的增大,雾滴受风速的影响程度会减小,当喷头倾斜角的补偿量超过了当前风速下对雾滴的飘移量,会使雾滴飘移产生过补偿,在高风速时喷头倾斜角度的改变会带来更大的雾滴飘移改变。侧风风速与喷头倾斜角度对水平方向上变异系数会产生较大影响:随着喷头倾斜角度的增大,水平变异系数也随之增大,而风速的变化使水平变异系数呈现先增大后减小的趋势。拟合了喷头倾斜角度与风速对雾滴飘移的影响模型,并计算出在1、2、3 m/s风速条件下,最佳补偿的喷头倾斜角度分别为3°、7°、11°。该研究为植保作业中雾滴飘移改善技术提供参考。  相似文献   

8.
基于CFD离散相模型雾滴沉积特性的模拟分析   总被引:6,自引:4,他引:2  
为分析三维空间中气流对雾滴飘移的影响,该文基于计算流体力学(computational fluid dynamics,CFD)离散相模型的粒子跟踪技术,研究了不同喷雾条件下的雾滴特性。该文在条件为3m×2m×2m的长方体计算区域,喷嘴置于长方体顶端(上表面的几何中心),在合适的边界条件参数下,对喷雾高度为0.25~2m,风速为0~3m/s变化范围内的雾滴沉积特性进行了分析。结果显示,雾滴的分布趋势(偏移量)随风速和喷雾高度大小而变化:雾滴的沉积量随喷雾高度和风速的增加逐渐减小,其最大值为100%(喷雾高度为0.25m,风速为0),最小值为7.2%(喷雾高度为2m,风速为3m/s),其沉积率最大值和最小值分别为79.07%和3.98%,并基于该方法建立了雾滴沉积量和沉积率的预测模型。该研究为精量施药提供参考。  相似文献   

9.
压力及孔径对管道喷雾空心圆锥雾喷头雾滴参数的影响   总被引:1,自引:0,他引:1  
雾滴参数是衡量喷雾效果的重要指标。为研究管道喷雾设施中喷雾压力与喷头孔径的改变对果园用空心圆锥雾喷头雾滴参数的影响,通过喷雾性能综合试验平台和激光粒度仪,测量3种孔径的空心圆锥雾喷头在8种压力下的雾滴颗粒群的散射谱,获得了雾滴参数随压力和孔径的变化规律,给出了各工况下的雾滴谱曲线,分析了雾滴粒径的大小、分布和均匀性,建立了基于压力和孔径的雾滴参数模型。结果表明:压力越大,孔径越小,雾滴越细小越均匀;数据拟合误差均小于0.012;雾滴均较细小且较均匀,主要以气溶胶的形式存在;主要是粒径小于40μm的雾滴(79.659%~93.374%);雾滴谱峰值均在30μm附近出现;压力大于0.80 MPa后喷雾效果更好,其中体积中值粒径(volume median diameter,VMD)为30.610~31.632μm,雾滴很细小,扩散比(diffusion ratio,DR)为0.901~0.916,雾滴很均匀,VMD和DR均随压力呈二次多项式变化规律(R~2均大于0.968),VMD和DR与孔径和压力均有良好的二元线性关系(R~2分别为0.928和0.937)。研究结果验证了研发管道恒压喷雾装置的重要性,为喷头选型,管道恒压喷雾装置的优化、喷雾压力的设定和喷雾效果的优化提供了参考。  相似文献   

10.
用大喷头脉宽调制间歇喷雾提高沉积率的试验研究   总被引:3,自引:2,他引:1  
为了得到合适的雾滴细度,提高雾滴运动速度,从而提高农药喷施沉积率,该文提出一种基于脉冲宽度调制 (pulse width modulation, PWM)间歇喷雾的沉积率提高方法。试验设置3种流量控制方法(改变液压控制流量;PWM间歇喷雾控制流量以及结合脉宽调制、喷头尺寸和液压调节共同控制流量),采用4组试验对雾滴粒径和速度的影响规律进行研究。研究结果表明,使大喷头在提高工作压力的情况下间歇喷雾,通过系统调节喷雾占空比、压力和喷头大小,可在流量得到控制的同时,产生合适的粒径谱,雾滴速度得到提高,从而改善雾滴沉积率。  相似文献   

11.
标准扇形雾喷头雾化过程测试分析   总被引:6,自引:4,他引:2  
为了描述雾滴颗粒特性与飘失之间的关系,用激光衍射粒度仪(PDPA)对植保机械标准扇型雾喷头的雾化场进行了研究,主要描绘了雾化场雾滴特征参数,并对雾滴尺寸空间分布和雾滴的运动进行分析,确定了飘失区域在雾化场中的位置,为进一步分析雾滴的沉降及漂移特性提供了理论支持。结果表明:在逐渐远离喷头的截面上,雾滴直径分布呈中间小边缘大的凹形椭球面,而轴向速度则是呈中间大边缘小的山丘形分布。雾锥体外层空间区域雾滴密度小,小雾滴能量小且易蒸发,易受周围环境影响发生飘失,是雾滴易飘失区域。  相似文献   

12.
摇臂式喷头(impact sprinkler,PY)出口流体为单相水,全射流喷头(complete fluidic sprinkler,PXH)出口流体为气液两相流,为了深入探索2种类型喷头水滴分布的存在规律及差别,该文采用激光雨滴谱仪测量技术对PY及PXH喷头的水滴分布进行试验研究,采用体积加权法分析了这2种喷头在工作压力为150、200、250、300和350 k Pa情况下,距喷头不同距离处的水滴频率分布、水滴累计频率及中数直径的变化规律。结果表明:1)PXH喷头水滴频率普遍小于PY喷头。PXH喷头和PY喷头水滴频率分布分别符合对数正态分布和正态分布;2)PXH喷头水滴累计频率变化更加均匀,2种喷头的水滴直径分布均符合指数函数分布规律,在距离喷头距离较小时,PXH喷头比PY喷头的拟合精度更高,在距喷头距离为4 m下,PXH喷头拟合函数的R2值较PY喷头高3.5%;3)在低压条件下距喷头不同距离时,PXH喷头的水滴分布更加连续及均匀。建立了2种喷头中数直径与工作压力及距喷头距离的函数。该结果完善了多类型喷头喷洒水力学特性,对研究射流运动模型及喷洒的外特性提供了参考。  相似文献   

13.
农药液滴在植物叶面上最大铺展面积,决定了农药有效成分作用范围、蒸发时间和叶面吸收效果。为了探究液滴粒径、农药润湿性能和叶面倾角对液滴在玉米叶面上铺展面积的影响机理,通过试验方式产生548、675、756、877、973μm粒径的液滴,利用质量分数为0、0.005%、0.01%、0.1%的OP-10表面活性剂代表润湿性能不同的农药,设定叶面倾角为0°、15°、30°、45°、60°、75°,进行全因子试验。结果表明:液滴粒径、表面活性剂浓度、叶面倾角均对铺展面积影响显著(P<0.001),三者增大均能提高液滴在玉米叶面上的最大铺展面积。在不同角度下,增大液滴粒径和溶液的润湿性能都能增加液滴在玉米叶面上的铺展面积。药液润湿性能差时,铺展面积随叶面倾角的变化不够明显,润湿性能较好时,铺展面积呈现出随叶面倾角先上升后下降的趋势,粒径为548μm液滴铺展面积的最大值出现在叶面倾角45°左右。通过表面活性剂的单位浓度铺展面积评估了不同浓度的OP-10液滴的铺展能力,发现0.005%铺展能力大于其他浓度,说明在溶液中加入少量OP-10就可以显著改变溶液润湿性能。研究结果有助于理解叶面铺展润湿机...  相似文献   

14.
喷雾质量在一定程度上影响着"农药有效利用率"。喷雾雾滴密度和大小是影响喷雾质量的2个重要参数。针对目前应用最多的喷雾雾滴测量方法——水敏纸法,水敏纸存在抗湿性能差的缺点,该研究在保证原有使用性能的同时,设计制作一种适合在潮湿环境中使用的喷雾雾滴密度和大小的检测体系。该检测体系由检测卡和检测液两部分组成。检测液中含有能与检测卡反应的NO2-,综合考虑安全性和检测卡使用性能,检测液中Na NO2浓度应尽量接近但不能超过150 mg/L,该文下述试验采用Na NO2质量浓度125 mg/L。研究对检测卡的扩散均匀性和不同卡之间的平行性进行了探究,结果显示在同一检测卡上的相对标准偏差小于等于5.37%,在随机3张检测卡之间的相对标准偏差小于等于12.66%,结果表明该检测卡的均匀性和平行性较好;雾滴实际直径与斑点直径的拟合方程对于该方法制作的检测卡检测雾滴大小时具有较好的通用性;并与市售水敏纸进行检测准确性比较,结果显示在3种不同喷雾压力下,该检测卡检测结果与水敏纸基本相同,且与市售水敏纸同时进行抗湿性检验,结果显示本检测系统的检测卡具有较好的抗湿性能。因此,该文设计的喷雾雾滴密度和大小的检测体系在干燥与潮湿环境中均能良好使用。  相似文献   

15.
静电雾化过程中粒径分布的预测   总被引:1,自引:0,他引:1  
运用信息熵方法对静电雾化过程中的雾滴尺寸分布进行了统计模拟,获得了预测粒径分布的统计模型。采用改进的Newton-Raphson算法对模型进行了数值计算,该模型可实现射流模式下的雾滴直径分布的预测。结果表明,射流模式下粒径分布较窄,最大粒径是最小粒径的2~3倍。通过与其他学者的试验数据比较表明,模型预测结果除了在较小流量情况下外,总体上与试验结果较为相符。该文的研究结果对静电雾化效果的优化及控制有一定的参考价值。  相似文献   

16.
微酸性电解水为畜牧业初步应用的环保消毒剂,为精确喷雾以减少残留,先利用称重法测量它在不同孔径及压力下的雾滴沉积量,研究该沉积量对杀菌效果影响,确定对衣物表面消毒最佳单位沉积量。随后对比不同雾滴粒径对衣物表面细菌的杀灭效果,以确定喷雾消毒方式。结果表明,不同压强及喷头下,雾滴沉积量具显著性差异(P0.05)。且呈中间密集、两端稀疏特征;随压强及孔径增大,两端呈先升后降趋势。微酸性电解水(pH值6.15~6.35,有效氯浓度135 mg/L)对衣物表面消毒最佳沉积量为1.49×10~(-2)g/cm~2。大雾滴(80~90μm)杀菌率在同时间下显著高于小雾滴(P0.05),但其空间分布均匀性显著(P0.05)低于小雾滴(≤30μm)。雾滴粒径及沉积量对微酸性电解水杀菌效果具显著影响(P0.05)。  相似文献   

17.
The soil-water contact angle is used as a measure of the surface hydrophobicity of soils. The contact angle for particular solid–liquid combination is considered to vary with the drop size. In this paper, we focused on examining the drop size dependence of contact angle on soil surfaces compared with homogeneous solid surfaces, and determining its relation to the droplet geometry and line tension. The contact angle estimated using geometric parameters of the droplets (θ G) showed decreasing trend with increasing drop size from 5 to 50?µL irrespective of the deformations in the droplet shape in larger drops. This was considered to be a result of the corresponding deviations of the geometric parameters of the droplets. The directly measured contact angle (θ A) first decreased and then increased with increasing drop size from 5 to 50?µL. The drop size at lowest θ A for hydrophobized silica sand with 1?g?kg–1 stearic acid (SA) and the acryl surfaces was 20?µL, whereas that for hydrophobized silica sand with 5?g?kg–1 SA and siliconed paper was 30?µL. The decrease in θ A with increasing drop size was explained as a result of the line tension effect using the modified Young's equation. Despite the surface heterogeneity, all the surfaces tested in this study showed positive line tensions on the order of 10?µJ?m–1. Irrespective of the heterogeneity of the surfaces, the θ A in this experiment agreed with the modified Young's equation for drop sizes up to about 20–30?µL, where the θ A and θ G were also in good agreement. Drop size dependence of contact angle was independent of the level of surface hydrophobicity. The θ A on all the examined surfaces started to increase with increasing drop size when the deformation index, I d, exceeded 5%, where the wetting radius, R exceeded the capillary length. The increase in θ A with increasing drop size was attributed to the deformations of water drops due to the effect of gravity.  相似文献   

18.
基于拉瓦尔效应的超音速喷嘴雾化性能分析与试验   总被引:1,自引:0,他引:1  
为提高喷嘴的雾化性能,得到理想的雾滴粒径和均匀的雾云分布,该文首先对超音速雾化喷嘴的雾化原理进行了分析,应用拉瓦尔喷管超音速原理,对雾化喷嘴内部阀芯的锥形结构作了改进,结合Fluent流体动力学软件,分析了拉瓦尔式阀芯结构内部流场速度分布规律,然后通过喷雾试验对比分析了改进前后喷嘴的雾化效果,并探究了不同运行参数对拉瓦尔式结构喷嘴雾化性能的影响规律。数值仿真结果表明,拉瓦尔式阀芯能够产生超音速气流,对增大气液两相速度差具有显著效果;试验结果表明,改进后的拉瓦尔式喷嘴在雾化性能和效果上优于原锥形式喷嘴,气压和气液压力比的增大以及水压的减小均有利于雾滴粒径的减小,其中气液压力比在0~3区间内,雾滴粒径下降幅度高达90.56%,当气液压力比为6时,雾滴粒径达到最小值18.52μm。该文研究内容可为超音速雾化喷嘴进一步研究以及新型喷雾设备的研发提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号