首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an in vitro cell culture model using Caco-2 cells the adhesion and invasion properties of 11 Campylobacter (C.) jejuni isolates of different origin were studied. Additionally, we investigated the colonization ability of the strains in a chick model. Virtually, all C. jejuni showed cell adherence in the in vitro assay, but there were large differences in the invasion frequencies among the Campylobacter isolates. The colonization ability in the chick gut also differed markedly and enabled the formation of three groups: non-colonizing, weak or delayed colonization and strong colonization ability. On this occasion, we found a putative correlation between invasion of Caco-2 cells and colonization in the chick gut. Non-colonizers are not invasive or only have small invasion indexes. Strains which colonize weakly or exhibit delayed colonization have a medium invasion index and strong colonizers show markedly higher values of this parameter. The characterization of the flagellin gene of the used C. jejuni strains resulted in eight flaA types. There was no association between flaA type and invasion or colonization ability in the chick gut.  相似文献   

2.
Campylobacter jejuni, a common commensal in chickens, is one of the leading causes of bacterial gastroenteritis in humans worldwide. The aims of this investigation were twofold. First, we sought to determine whether mutations in the C. jejuni ciaB and pldA virulence-associated genes impaired the organism's ability to colonize chickens. Second, we sought to determine if inoculation of chicks with C. jejuni mutants could confer protection from subsequent challenge with the C. jejuni wild-type strain. The C. jejuni ciaB gene encodes a secreted protein necessary for the maximal invasion of C. jejuni into cultured epithelial cells, and the pldA gene encodes a protein with phospholipase activity. Also included in this study were two additional C. jejuni mutants, one harboring a mutation in cadF and the other in dnaJ, with which we have previously performed colonization studies. In contrast to results with the parental C. jejuni strain, viable organisms were not recovered from any of the chicks inoculated with the C. jejuni mutants. To determine if chicks inoculated with the C. jejuni mutants become resistant to colonization by the C. jejuni parental strain upon subsequent challenge, chicks were inoculated either intraperitoneally (i.p.) or both orally and i.p. with the C. jejuni mutants. Inoculated birds were then orally challenged with the parental strain. Inoculation with the C. jejuni mutants did not provide protection from subsequent challenge with the wild-type strain. In addition, neither the C. jejuni parental nor the mutant strains caused any apparent morbidity or mortality of the chicks. We conclude that mutations in genes cadF, dnaJ, pldA, and ciaB impair the ability of C. jejuni to colonize the cecum, that chicks tolerate massive inoculation with these mutant strains, and that such inoculations do not provide biologically significant protection against colonization by the parental strain.  相似文献   

3.
Zhang B  He Y  Xu C  Xu L  Feng S  Liao M  Ren T 《Veterinary microbiology》2012,157(1-2):237-242
Cytolethal distending toxin (CDT) is proposed to be an important virulence determinant of many pathogens. Although two cdt gene cluster loci have been identified in Haemophilus parasuis strain SH0165, the characteristics of CDTs associated with pathogenesis remain unclear. In this study, three CDT-deficient mutants, cdt-1, cdt-2 and the double-knockout cdt-1cdt-2 (Δcdt-1, Δcdt-2 and Δcdt-1Δcdt-2, respectively), were obtained in the H. parasuis serovar 4 clinical strain SC096 using a natural transformation method. Compared to the wild-type SC096 strain, the Δcdt-1, Δcdt-2 and Δcdt-1Δcdt-2 mutants showed subtle growth defects and clearly exhibited an increased sensitivity to the bactericidal action of porcine and rabbit sera. Additionally, these mutants had a significantly reduced ability to adhere to and invade porcine umbilicus vein endothelial cells (PUVEC) and porcine kidney epithelial cells (PK-15). These findings suggest that both CDTs in the H. parasuis SC096 strain are involved in serum resistance and adherence and invasion of host cells.  相似文献   

4.
Colonization of the ceca and organ invasion by different isolates of Campylobacter jejuni were investigated in day-of-hatch leghorn chicks. This model of Campylobacter colonization of the ceca demonstrates that 1) day-of-hatch birds do not naturally contain cecal Campylobacter, 2) ceca can be colonized with C. jejuni by oral gavage and not by cloacal inoculation; 3) C. jejuni can be recovered from the ceca up until at least 7 days postinoculation, 4) cecal colonization occurs when as little as 10(2) colony-forming units is orally inoculated into chicks, and 5) different C. jejuni isolates vary both in their ability to colonize the ceca and in their ability to invade the liver. These studies demonstrate that we have a working animal model for Campylobacter colonization for day-of-hatch chicks. This animal model is being used to examine intervention strategies such as vaccines by which Campylobacter can be reduced or removed from the food animal.  相似文献   

5.
Seventy-five strains of Campylobacter jejuni and C. coli, which were isolated from a variety of animal species, primarily poultry, were examined for production of toxin. Polymyxin extracts were tested in in vitro assays using CHO-KI, FCL (foetal calf lung), Vero, HeLa and CEF (chicken embryo fibroblast) cells. The toxic effects observed were cell rounding and death. Extracts from almost all C. jejuni and C. coli strains were toxic to both CHO-KI and FCL cells and 69.0% of C. jejuni isolates and 75% of C. coli isolates were also toxic to CEF cells. 50.7% of C. jejuni extracts were toxic to Vero cells and 46.5% toxic to HeLa cells. None of the C. coli isolates were toxic to either of these cell lines. None of the strains tested produced cytotonic enterotoxin. No differences in toxigenicity patterns were evident between Campylobacter isolated from different sources.  相似文献   

6.
Although poultry meat is now recognized as the main source of Campylobacter jejuni gastroenteritis, little is known about the strategy used by the bacterium to colonize the chicken intestinal tract. In this study, the mechanism of C. jejuni colonization in chickens was studied using four human and four poultry isolates of C. jejuni. The C. jejuni strains were able to invade chicken primary cecal epithelial crypt cells in a predominantly microtubule-dependent way (five out of eight strains). Invasion of cecal epithelial cells was not accompanied by necrosis or apoptosis in the cell cultures, nor by intestinal inflammation in a cecal loop model. C. jejuni from human origin displayed a similar invasive profile compared to the poultry isolates. Invasiveness of the strains in vitro correlated with the magnitude of spleen colonization in C. jejuni inoculated chicks. The C. jejuni bacteria that invaded the epithelial cells were not able to proliferate intracellularly, but quickly evaded from the cells. In contrast, the C. jejuni strains were capable of replication in chicken intestinal mucus. These findings suggest a novel colonization mechanism by escaping rapid mucosal clearance through short-term epithelial invasion and evasion, combined with fast replication in the mucus.  相似文献   

7.
空肠弯曲杆菌是一种人畜共患的食物源性病原菌,可引起人和动物细菌性腹泻,且该菌的感染率逐年递增。鞭毛是细菌菌体的一种特殊结构,与菌体的运动性密切相关,有助于其躲避有害环境,同时鞭毛在细菌的致病性等方面也起着重要作用。研究发现,空肠弯曲杆菌的发病机制与鞭毛在宿主上皮细胞的定植力、黏附、侵袭力及毒素的产生密切相关。文章概述了空肠弯曲杆菌鞭毛结构、功能、调控机制及相关基因等方面的研究进展,通过归纳总结已知基因缺失突变对鞭毛的影响,从分子水平了解鞭毛的调控机制,从而探讨空肠弯曲杆菌的致病机理,以期为降低其感染率提供理论依据。  相似文献   

8.
ABSTRACT: Campylobacter contaminated broiler chicken meat is an important source of foodborne gastroenteritis and poses a serious health burden in industrialized countries. Broiler chickens are commonly regarded as a natural host for this zoonotic pathogen and infected birds carry a very high C. jejuni load in their gastrointestinal tract, especially the ceca. This eventually results in contaminated carcasses during processing. Current intervention methods fail to reduce the colonization of broiler chicks by C. jejuni due to an incomplete understanding on the interaction between C. jejuni and its avian host. Clearly, C. jejuni developed several survival and colonization mechanisms which are responsible for its highly adapted nature to the chicken host. But how these mechanisms interact with one another, leading to persistent, high-level cecal colonization remains largely obscure. A plethora of mutagenesis studies in the past few years resulted in the identification of several of the genes and proteins of C. jejuni involved in different aspects of the cellular response of this bacterium in the chicken gut. In this review, a thorough, up-to-date overview will be given of the survival mechanisms and colonization factors of C. jejuni identified to date. These factors may contribute to our understanding on how C. jejuni survival and colonization in chicks is mediated, as well as provide potential targets for effective subunit vaccine development.  相似文献   

9.
Acute hypotonic stress becomes a threat to the survival of bacteria in the environment. Mechanosensitive channels play an essential role in the maintenance of bacterial cell integrity during hypoosmotic shock. A database search suggested that Campylobacter jejuni, a major worldwide cause of bacterial gastroenteritis in humans, possesses two putative mechanosensitive channels, designated Cjj0263 and Cjj1025, in C. jejuni strain 81-176. Osmotic downshock experiments demonstrated that a mutant lacking Cjj0263 showed a severe defect in survival of hypoosmotic shock, while a mutant lacking Cjj1025 exhibited the same survival capacity as the wild type. We further examined the colonization ability of each mutant using the one-day old chick model. Cjj0263 or Cjj1025 mutants were able to colonize chick ceca at the same level as the wild type, but a Cjj0263 Cjj1025 double mutant revealed significantly reduced ability to colonize chick ceca. To examine whether C. jejuni that have grown in the digestive tract of chicks are protected against acute hypotonic stress, bacteria in ceca were directly exposed to water. The wild type was able to survive acute osmotic downshift, but the Cjj0263 mutant suffered a substantial loss of viability when subjected to a rapid osmotic downshock. Immunoblot analysis suggested that both Cjj0263 and Cjj1025 were glycosylated via the N-linked protein glycosylation pathway, but glycan modification of these proteins was unlikely to have a major effect on their function and stability. Our data suggest that Cjj0263, a mechanosensitive channel, has a pivotal role in protection against hypoosmotic stress experienced during environmental transmission.  相似文献   

10.
In this study, the presence of 20 putative virulence genes was examined in 11 Campylobacter jejuni isolates with different colonization and invasion abilities as determined in a chick colonization model and on Caco-2 cells, respectively. The majority of the genes were detected in all strains. Among them, there were genes of the flagellar secretion apparatus like flhA, flhB, flgB, flgE2, the flagellin genes flaA and flaB, invasion-associated genes like ciaB and iamA, the cytotoxin genes cdtA-C, the adhesion related gene cadF, and some genes involved in the colonization process (docA, docB). The plasmid gene virB11 could not be detected in any strain. Specific differences between the isolates were observed only in genes cgtB and wlaN involved in lipo-oligosaccharide (LOS) biosynthesis. The gene cgtB was only detectable in three of five strains with strong colonization and invasion abilities. Probably, wlaN can overcome the lack of cgtB in the two cgtB- isolates.  相似文献   

11.
The aim of the study was to evaluate the colonizing ability and the invasive capacity of selected Campylobacter jejuni strains of importance for the epidemiology of C jejuni in Danish broiler chickens. Four C. jejuni strains were selected for experimental colonization studies in day-old and 14-day-old chickens hatched from specific pathogen free (SPF) eggs. Of the four C. jejuni strains tested, three were Penner heat-stable serotype 2, flaA type 1/1, the most common type found among broilers and human cases in Denmark. The fourth strain was Penner heat-stable serotype 19, which has been shown to be associated with the Guillain Barré Syndrome (GBS) in humans. The minimum dose for establishing colonization in the day-old chickens was approximately 2 cfu, whereas two- to threefold higher doses were required for establishing colonization in the 14-day-old chickens. Two of the C. jejuni strains were shown to be invasive in orally challenged chickens as well as in three different human epithelial cell lines.  相似文献   

12.
It is difficult to use tissue culture assays to investigate adherence and other properties of Edwardsiella tarda because the organism is invasive and produces a potent hemolysin. We therefore relied on polymerase chain reaction (PCR) to determine the occurrence of genes for enterotoxins (LT-I, EAST-1), Shiga toxin (Stx-1, Stx-2), cytotoxic necrotizing factors (CNF-1, CNF-2), aerobactin, invasion plasmid of enteroinvasive Escherichia coli, EPEC adherence factor (EAF), intimin (Eae), enterohemolysin (EntHly) and hemolysin (Hly) in 53 isolates of E. tarda from humans and fish from several countries. All isolates were negative for all genes investigated by PCR. Adhesion to and invasion of HeLa cells were determined by using the unusually short incubation time of 1h or 30 min. All isolates adhered and invaded in these tests. Finally, a random amplified polymorphic DNA (RAPD) test distinguished, with a few exceptions, isolates of human and fish origin.  相似文献   

13.
乳酸杆菌与肠道黏附相关表面因子及其机制的研究进展   总被引:1,自引:0,他引:1  
乳酸杆菌为应用最早、研究最多的益生菌种之一.乳酸杆菌通过表面分子对肠道形成黏附和定植而发挥生理作用,包括养分消化吸收、排斥病原菌和调节免疫等.本文就乳酸杆菌表面蛋白(S层蛋白、引物酶sortase依赖蛋白、黏膜结合蛋白和胞外间质黏附的调节性表面蛋白)和非蛋白类黏附相关因子(脂磷壁酸和细胞外多糖)结构及其在黏附中作用的研...  相似文献   

14.
The resistance to cecal colonization by Campylobacter jejuni was assessed by challenging three crossbred stocks of commercially available broiler chickens. These three stocks, designated A, B, and C, were related as follows: Offspring from four pedigreed grandparent flocks were used as progenitors. Stock B was derived by cross-breeding grandparent 1 with grandparent 3. Stocks A and C were crossbreeds from grandparents 1 and 2 and grandparents 3 and 4, respectively. Campylobacter jejuni were gavaged into 48-hour-old chicks, using the same levels of challenge dose for each of the different chicken stocks. Six days post-challenge, the birds were sacrificed, and cecal contents were plated onto Campylobacter-selective media. Results from two replicate trials with three isolates of C. jejuni indicated that chicken stock A was colonized in only two of 60 ceca, stock B in six of 60, and stock C in 19 of 60 chicken ceca. Statistical analysis of these data indicate that resistance to cecal colonization by C. jejuni was significantly (P less than 0.05) influenced through chicken host lineage.  相似文献   

15.
16.

Background

The cell invasiveness of Mycoplasma gallisepticum, the causative agent of respiratory disease in chickens and infectious sinusitis in turkeys, may be a substantial factor in the well-known chronicity of these diseases and in the systemic spread of infection. To date, not much is known about the host factors and mechanisms involved in promotion or obstruction of M. gallisepticum adherence and/or cell invasion.In the current study, the influence of extracellular matrix (ECM) proteins such as fibronectin, collagen type IV and heparin, as well as plasminogen/plasmin, on the adhesion and cell invasion levels of M. gallisepticum to chicken erythrocytes and HeLa cells was investigated in vitro. Two strains, Rhigh and Rlow, which differ in their adhesion and invasion capacity, were analyzed by applying a modified gentamicin invasion assay. Binding of selected ECM molecules to M. gallisepticum was proven by Western blot analysis.

Results

Collagen type IV, fibronectin, and plasminogen exerted positive effects on adhesion and cell invasion of M. gallisepticum, with varying degrees, depending on the strain used. Especially strain Rhigh, with its highly reduced cell adhesion and invasion capabilities seemed to profit from the addition of plasminogen. Western and dot blot analyses showed that Rhigh as well as Rlow are able to adsorb horse fibronectin and plasminogen present in the growth medium. Depletion of HeLa cell membranes from cholesterol resulted in increased adhesion, but decreased cell invasion.

Conclusion

ECM molecules seem to play a supportive role in the adhesion/cell invasion process of M. gallisepticum. Cholesterol depletion known to affect lipid rafts on the host cell surface had contrary effects on cell adherence and cell invasion of M. gallisepticum.  相似文献   

17.
Campylobacter jejuni is the leading cause of food-borne bacterial gastroenteritis in humans in the United States. Infectious bursal disease virus (IBDV) causes an immunosuppressive disease in young chickens. To analyze a possible role of IBDV-induced immunosuppression in colonization and shedding of C. jejuni, two experiments were conducted. In both experiments, group 1 consisted of noninoculated control chickens, groups 2 and 3 were inoculated with varying doses of C. jejuni, and groups 4 and 5 were inoculated initially with IBDV followed by doses of C. jejuni similar to groups 2 and 3. Campylobacter jejuni was recovered from the cloaca and cecum, but not the small intestines, from all chickens in groups 2 and 3. In groups 4 and 5, C. jejuni was recovered from the small intestines, cecum, and cloaca from all chickens. The amount (colony-forming units/sample) of C. jejuni recovered from chickens in groups 4 and 5 was significantly greater (P < 0.05) than the amount recovered from chickens in groups 2 and 3; and C. jejuni was also present sooner in these groups than in groups 2 and 3. Bursa samples from chickens in groups 4 and 5 were significantly smaller (P < 0.05) than in the other groups. Additionally, real-time polymerase chain reaction results for IBDV were positive in groups 4 and 5 and negative in all other groups. This study indicated that IBDV infection exacerbated colonization and shedding of C. jejuni, presumably through the immune suppression this virus causes in chickens. It highlights the need for further investigation into the role of immunosuppression in preharvest control strategies for food-borne disease-causing agents.  相似文献   

18.
Lam KM 《Avian diseases》2004,48(3):488-493
Mycoplasma gallisepticum (MG) was used to expose chicken peripheral blood lymphocytes (PBLs), red blood cells (RBCs), heterophils, and chicken tumor cells (MSB-1 and HD-11 cells). Incubation of PBLs with MG for 3 hr resulted in extensive clumping of lymphocytes. Incubation of the MSB-1 cells with MG also caused clumping of the cells, with many of the cells showing perforations and others showing capping of the surface projections. Incubation of RBCs with MG resulted in an altered cell surface morphology, a decrease in cell size, and perforation. There were no discernible changes on the surface of the heterophils and the HD-11 cells. However, the HD-11 cells appeared to have a decreased ability to attach to the surface of the plastic and to have a decreased ability to respond to chemoattractant fMLP after 24 hr of incubation. These results suggest that, under the conditions used, MG caused certain damage to peripheral blood cells and a significant decrease in chemotactic response in the HD-11 cells.  相似文献   

19.
Cattle are a major reservoir of Escherichia coli 0157:H7, an important zoonotic pathogen that causes hemorrhagic colitis and hemolytic uremic syndrome (HUS). Colonization of cattle occurs predominantly in the large intestine, and may especially target follicle-associated epithelium (FAE) in the terminal rectum. Bacterial colonization involves induction of attaching-effacing (A/E) lesions, mediated by type III secreted proteins and an outer membrane protein called intimin. ToxB, encoded on plasmid pO157, contributes to adherence of E. coli O157:H7 through promotion of the production and/or secretion of type III secreted proteins. Production of type III secreted proteins and intestinal colonization appear to involve quorum-sensing mechanisms. In the human host, E. coli O157:H7 may have a preference for FAE in the distal small intestine. The H7 flagellum induces production of chemokines such as interleukin 8, and neutrophilic infiltration of the intestinal mucosa, which in turn may enhance Shiga toxin (Stx) uptake across the intestinal epithelium. Both Stx and cytokine responses play critical roles in the induction of the vascular lesions that underlie hemorrhagic colitis and HUS. In cattle, Stx binds to intestinal crypt cells and submucosal lymphocytes but not vascular endothelium. The role played by Stx in cattle may be to suppress mucosal immunity, yet enhance other effects that promote intestinal colonization.  相似文献   

20.
Campylobacter jejuni (C. jejuni) is the most common cause of human acute bacterial gastroenteritis. Poultry is a major reservoir of C. jejuni and considered an important source of human infections, thus, it is important to understand the host response to C. jejuni from chicken origin. In this study, we demonstrated firstly that a chicken isolate SC11 colonized chicks faster than clinical isolate NCTC11168. Using the SC11, we further studied the host responds to C. jejuni in terms of inflammatory response and involvement of cellular signaling pathways. Infection of C. jejuni SC11 was able to activate phosphatidylinositol 3-kinase (PI3K)/Akt pathway and induce pro-inflammatory interleukin-8 (IL-8) as well as anti-inflammatory cytokine IL-10 in human intestinal epithelial cell line Colo 205. The signalling pathways PI3K/Akt and mitogen-activated protein (MAP) kinases ERK and p38 were involved in C. jejuni-induced IL-8 and IL-10 expression. Inhibition of PI3K resulted in augmentation of C. jejuni-induced IL-8 production, concomitant with down-regulation of IL-10 mRNA, indicating an anti-inflammatory response was activated and associated with the activation of P13K/Akt. Similar effect was observed for cytolethal distending toxin (CDT) deficient mutants. Moreover, we demonstrated that heat-killed bacteria were able to induce IL-8 and IL-10 expression to a lower level than live bacteria. We therefore conclude that C. jejuni activate a PI3K/Akt-dependent anti-inflammatory pathway in human intestinal epithelial cells which may benefit the intracellular survival of C. jejuni during infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号