首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was carried out from 1999 to 2003 to determine the genetic and environmental influences of faecal egg count (FEC), an indicator of host resistance, in adult Jamunapari goats with naturally acquired gastrointestinal nematode parasite infections (predominantly Haemonchus contortus). FEC data on 670 records of Jamunapari goats descended from 54 bucks and 208 does were used in this study. Analyses were carried out by restricted maximum likelihood estimation, fitting an animal model. Four different animal models ignoring or including maternal genetic or permanent environmental effects were fitted. Different environmental effects, that is, sampling year, month and the sex of the animals, significantly (P<0.01) influenced FECs in the goats. Direct heritability estimates were inflated substantially for this trait when maternal effects were ignored. The direct heritability estimates for the trait ranged from 0.11 to 0.16 depending on the model used. Low estimates of maternal heritability (m(2)=0.06) and the fraction of variance due to maternal permanent environmental effects (c(2)=0.09) for FECs were observed in the present study. The results suggest that direct and permanent environmental maternal effects were important for this trait; however, maternal additive effects had less impact on this trait. These results also indicate that modest rates of genetic progress appear possible for FECs.  相似文献   

2.
Genetic parameters for faecal egg count were estimated in naturally challenged Avikalin sheep developed and maintained at Central Sheep & Wool Research Institute, Avikanagar, India, over a period of 4 years (2004–2007). The data on faecal egg count for 433 animals descended from 41 sires, and 151 dams were used for the study. Genetic analyses were carried out using restricted maximum likelihood, fitting an animal model and ignoring or including maternal genetic or permanent environmental effects. Direct heritability for the trait was 0.149 ± 0.096 when maternal effects were ignored. In the model which takes in to account direct genetic, maternal genetic and maternal permanent environment effect together, it was observed that maternal heritability (m2) accounts for 0.6% of total variation whereas maternal permanent environmental effect (c2) accounts for 6.14% of total phenotypic variation. Effect of faecal egg count on the growth characteristics was observed to be significant. It was seen that wherever FEC was high, body weight or average daily gain declined in active infective stage. After termination of the infection, these effects were found to be non-significant. Result suggests that direct genetic and maternal permanent environmental effects were important for this trait; thus, they need to be considered for improvement in the trait.  相似文献   

3.
Genetic parameters of mature weight are needed for effective selection and genetic evaluation. Data for estimating these parameters were collected from 1963 to 1985 and consisted of 32,018 mature weight records of 4,175 Hereford cows that were in one control and three selection lines that had been selected for weaning weight, for yearling weight, or for an index combining yearling weight and muscle score for 22 yr. Several models and subsets of the data were considered. The mature weight records consisted of a maximum of three seasonal weights taken each year, at brand clipping (February and March), before breeding (May and June), and at palpation (August and September). Heritability estimates were high (0.49 to 0.86) for all models considered, which suggests that selection to change mature weight could be effective. The model that best fit the data included maternal genetic and maternal permanent environmental effects in addition to direct genetic and direct permanent environmental effects. Estimates of direct heritability with this model ranged from 0.53 to 0.79, estimates of maternal heritability ranged from 0.09 to 0.21, and estimates of the genetic correlation between direct and maternal effects ranged from -0.16 to -0.67 for subsets of the data based on time of year that mature weight was measured. For the same subsets, estimates of the proportions of variance due to direct permanent environment and maternal permanent environment ranged from 0.00 to 0.09 and 0.00 to 0.06, respectively. Using a similar model that combined all records and included an added fixed effect of season of measurement of mature weight, direct heritability, maternal heritability, genetic correlation between direct and maternal effects, proportion of variance due to direct permanent environmental effects, and proportion of variance due to maternal permanent environmental effects were estimated to be 0.69, 0.13, -0.65, 0.00, and 0.04, respectively. Mature weight is a highly heritable trait that could be included in selection programs and maternal effects should not be ignored when analyzing mature weight data.  相似文献   

4.
The objective of this work was to estimate covariance functions for direct and maternal genetic effects, animal and maternal permanent environmental effects, and subsequently, to derive relevant genetic parameters for growth traits in Canchim cattle. Data comprised 49 011 weight records on 2435 females from birth to adult age. The model of analysis included fixed effects of contemporary groups (year and month of birth and at weighing) and age of dam as quadratic covariable. Mean trends were taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were allowed to vary and were modelled by a step function with 1, 4 or 11 classes based on animal’s age. The model fitting four classes of residual variances was the best. A total of 12 random regression models from second to seventh order were used to model direct and maternal genetic effects, animal and maternal permanent environmental effects. The model with direct and maternal genetic effects, animal and maternal permanent environmental effects fitted by quadric, cubic, quintic and linear Legendre polynomials, respectively, was the most adequate to describe the covariance structure of the data. Estimates of direct and maternal heritability obtained by multi‐trait (seven traits) and random regression models were very similar. Selection for higher weight at any age, especially after weaning, will produce an increase in mature cow weight. The possibility to modify the growth curve in Canchim cattle to obtain animals with rapid growth at early ages and moderate to low mature cow weight is limited.  相似文献   

5.
The purpose of this study was to estimate the genetic parameters for birth weight of Karayaka lambs by separating direct genetic, maternal genetic, and maternal permanent environmental effects. Records of 1013 Karayaka lambs born between 2005 and 2010 were analyzed. Six different animal models were examined, all including direct additive genetic variance and various combinations of genetic and environmental maternal effects. The most appropriate model was chosen based on log-likelihood ratio tests. Since model 1 had the smallest likelihood value, it was chosen as the best model in this study. Depending on the model, direct heritability varied from 0.37 to 0.55 and maternal heritability ranged from 0.08 to 0.20 for birth weight.  相似文献   

6.
The present study was conducted on 1,002 reproductive records of 430 Jersey crossbred cattle, descended from 57 sires and 198 dams, maintained at the Eastern Regional Station of ICAR-National Dairy Research Institute, Kalyani, Nadia, West Bengal, India to investigate the influence of direct genetic, maternal genetic and maternal permanent environmental effect on three most important reproductive traits viz., number of service per conception (NSPC), days open (DO) and calving interval (CI) of Jersey crossbred cattle. Six single-trait animal models (including or excluding maternal genetic or permanent environmental effects) were fitted to analyse these traits, and the best model was chosen after testing the significant increase in the log-likelihood values when additional parameters were added in the model. Direct heritability estimates for NSPC, DO and CI from the best model were 0.10, 0.14 and 0.20, respectively. The maternal permanent environmental (c2) effects on reproductive traits accounted for almost negligible fraction of the total phenotypic variance in this study. The maternal genetic effects (m2) also contributed very little (0%–3%) to the total phenotypic variance except for CI where it was important and accounted for 20% of phenotypic variance. A significantly large negative genetic correlation was observed between direct and maternal genetic effects for all traits, suggesting the presence of antagonistic relationship between dam's direct additive component and daughter's additive genetic component. Results suggest that both direct and maternal effects were important only for CI but not for other traits. Therefore, both direct additive effects and maternal genetic effect need to be considered for improving this trait by selection.  相似文献   

7.
Weaning weights from nine parental breeds and three composites were analyzed to estimate variance due to grandmaternal genetic effects and to compare estimates for variance due to maternal genetic effects from two different models. Number of observations ranged from 794 to 3,465 per population. Number of animals in the pedigree file ranged from 1,244 to 4,326 per population. Two single-trait animal models were used to obtain estimates of covariance components by REML using an average information method. Model 1 included random direct and maternal genetic, permanent maternal environmental, and residual environmental effects as well as fixed sex x year and age of dam effects. Model 2 in addition included random grandmaternal genetic and permanent grandmaternal environmental effects to account for maternal effects of a cow on her daughter's maternal ability. Non-zero estimates of proportion of variance due to grandmaternal effects were obtained for 7 of the 12 populations and ranged from .03 to .06. Direct heritability estimates in these populations were similar with both models. Existence of variance due to grandmaternal effects did not affect the estimates of maternal heritability (m2) or the correlation between direct and maternal genetic effects (r(am)) for Angus and Gelbvieh. For the other five populations, magnitude of estimates increased for both m2 and r(am) when estimates of variance due to grandmaternal effects were not zero. Estimates of the correlation between maternal and grandmaternal genetic effects were large and negative. These results suggest that grand-maternal effects exist in some populations, that when such effects are ignored in analyses maternal heritability may be underestimated, and that the correlation between direct and maternal genetic effects may be biased downward if grandmaternal effects are not included in the model for weaning weight of beef cattle.  相似文献   

8.
A total of 11,815 weight records from 23,94 Japanese Black calves was used to estimate direct, maternal, direct permanent environmental, and maternal permanent environmental effects on growth from birth to 356 d of age. The data were collected from a herd of Japanese Black cattle in Shiroshi city, Miyagi prefecture, Japan. A random regression model, including parity of dam and year-season of calving-sex of calf as fixed effects and animal, dam, animal permanent environmental, and maternal permanent environmental as random effects, was fitted to the data using Legendre polynomials for age of calf. Direct heritability estimates increased from 0.38 at birth to 0.65 at 120 d of age, decreased to 0.38 at 300 d, and then increased again up to 0.47 at 356 d. The ratio of animal permanent environmental variance to phenotypic variance decreased from 0.41 at birth to 0.12 at 90 d, and then increased gradually up to 0.40 at 270 d and oscillated around this value up to the end of the test period. Maternal genetic heritabilities increased from 0.04 at birth to 0.09 at 120 d and then decreased to 0.06 thereafter, whereas the variance ratios due to maternal permanent environment were fairly constant across the age trajectory, fluctuating around the value of 0.03. Direct genetic, phenotypic, maternal genetic, animal permanent environmental, and maternal permanent environmental correlations between different ages were all positive, and they generally decreased as the interval between ages increased. These correlations were lower between weights from nonadjacent ages than those between weights from adjacent ages. Results suggest that selection on preweaning weights would have a positive effect on weights at later ages.  相似文献   

9.
Goat production is widespread in the tropics. Goats are very susceptible to gastrointestinal nematode infection, but there is less evidence of their genetic resistance. Genetic resistance of Creole goats to gastrointestinal nematodes has been studied at Guadeloupe in the French West Indies since 1995. The objective of this research was to investigate genetic variation for resistance to gastrointestinal nematode infection, in order to introduce this trait into breeding schemes. Genetic variability was assessed within a Creole experimental flock. Forty-nine sire groups were characterized at weaning and 55 during fattening after weaning. Kids were naturally infected, mainly by Haemonchus contortus and Trichostrongylus colubriformis. Fecal egg counts were determined once at weaning and every 6 and 7 wk after drenching during fattening. Blood samples were collected every 7 wk during fattening for determination of packed cell volume. Live weights were recorded at weaning and at the beginning and middle of every infection period during fattening. Genetic parameters were estimated using the REML for multivariate animal models. The heritability estimate for transformed fecal egg count was 0.37+/-0.06 at weaning. During fattening, it increased from 0.14+/-0.05 at 4 mo to 0.33+/-0.06 at 10 mo. Heritabilities of packed cell volume ranged from 0.10 to 0.33. At weaning, maternal heritability of fecal egg count reached 0.26 and direct heritability 0.20. After 6 mo of age, maternal effects were found to be unimportant for fecal egg count and packed cell volume. Live weights presented significant genetic variability. Genetic relationships between fecal egg counts and live weight in infected pastures were never significant. Genetic correlations between packed cell volume and live weight decreased from 0.47 to 0.10 from weaning to 10 mo of age. These results demonstrated the feasibility of breeding for improved resistance to nematodes in Creole kids.  相似文献   

10.
A procedure to take into account the nongenetic relationship between maternal effects in adjacent generations is presented. It considers a correlation between maternal environments provided by a dam and its daughters (lambda). The dispersion structure of the maternal animal model was modified to include a correlation matrix (E) that relates the maternal permanent environmental effects. The structures of the E matrix and its inverse (E(-1)) are described. Both matrices are completely defined by the correlation coefficient lambda. An algorithm to compute these matrices from pedigree information was also developed. Furthermore, a Bayesian analysis of this model including the lambda parameter was developed using Gibbs sampling, with Metropolis steps for the nonstandard conditional distributions. With simulated data, the proposed model reduced the bias in all estimates of dispersion parameters when an antagonism between the maternal effects received by a daughter and its future maternal environment existed. This model also provides an estimate of the environmental relationship between the maternal effects of dams and daughters by the lambda parameter. The same Bayesian analysis was also carried out with weaning weight data of the Bruna dels Pirineus breed. The posterior means (standard deviation) of (co)variance ratios were .214 (.081) for direct heritability (h2d), .107 (.033) for maternal heritability (h2m), .047 (.020) for the proportion of variance due to maternal environmental effects (c2m), and -.034 (.043) for the genetic correlation between direct and maternal effects (r(dm)). The posterior mean of lambda parameter was -.190, and 76% of its marginal posterior distribution took negative values. As occurred with simulated data, considering the maternal environmental correlation in the analysis implied higher h2m estimates, lower c2m and h2d estimates, and less negative values for the marginal posterior distribution of r(dm). These results were considered as evidence of the environmental antagonism between maternal effects provided by a dam and its daughters to weaning weight of their progeny in the Bruna dels Pirineus breed.  相似文献   

11.
Genetic and environmental parameters for mature weight in Angus cattle   总被引:2,自引:0,他引:2  
Genetic and environmental variances and covariances and associated genetic parameters were estimated for weaning weight, asymptotic mature weight, and repeated mature weights. Data consisted of a set of weight measurements of 3,044 Angus cows born between 1976 and 1990. Mature weight was predicted by individually fitting Brody growth curves (asymptotic weight) and by using weights repeatedly measured after 4 yr of age. Variance and covariance components for mature weight were estimated by REML from a single-trait animal model with asymptotic weight, a two-trait animal model with asymptotic and weaning weight, and a two-trait animal model with repeated weights and weaning weight. Weaning and cow contemporary groups were defined as fixed effects. Random effects for weaning weight included direct genetic, maternal genetic, and permanent environmental effects; and for mature weight, direct genetic and repeated measurements (if in the model). Heritability estimates for weaning weight were similar for both two-trait models (.53 and .59). Estimates of heritability for mature weight were .44, .52, and .53 for the single-trait model with asymptotic weight, two-trait model with asymptotic weight, and two-trait model with repeated measures weights, respectively. The estimate of the genetic correlation between mature and weaning weight was higher for the repeated measures model (.85 vs. .63). A lower heritability estimate for mature weight from the single-trait model was likely due to postweaning culling. Therefore, a genetic evaluation of mature weight from field data should include a trait recorded earlier in life that is less subjected to selective data reporting.  相似文献   

12.
Survival of 16,838 potential embryos was determined by counting corpora lutea and fetuses at 50 d of gestation for 1,081 litters by 225 sires. These data, coded as 1 or 0 depending on whether an ovulation was represented by a fetus, were used to estimate direct and maternal additive genetic variances and their covariance for embryonic survival. Data were from first-parity gilts of a Large White-Landrace composite population subdivided into two lines, one selected for an index of ovulation rate and embryonic survival for seven generations and a contemporary control line. Variance components were obtained by ANOVA and expectations of covariances among relatives and by derivative-free restricted maximum likelihood (DFREML) in an animal model. As a trait of the embryo, heritability of direct effects obtained with ANOVA was 3.8%, heritability of maternal effects was 1.5%, and the genetic correlation between them was -.51. After adjustment of embryonic survival for ovulation rate, lower estimates of each parameter were obtained with ANOVA. Heritability of embryonic survival as a trait of the dam was 9 to 10%. Estimates of heritability of both direct and maternal effects obtained with DFREML were less than 1% and the genetic correlation between them was -.64. When survival of embryos from only those dams with 15 or more ovulations was analyzed, heritability of maternal effects was 4.4%. Estimates of common environmental effects on embryonic survival ranged from 5 to 7%.  相似文献   

13.
Beef cattle producers in Brazil use body weight traits as breeding program selection criteria due to their great economic importance. The objectives of this study were to evaluate different animal models, estimate genetic parameters, and define the most fitting model for Brahman cattle body weight standardized at 120 (BW120), 210 (BW210), 365 (BW365), 450 (BW450), and 550 (BW550) days of age. To estimate genetic parameters, single-, two-, and multi-trait analyses were performed using the animal model. The likelihood ratio test was verified between all models. For BW120 and BW210, additive direct genetic, maternal genetic, maternal permanent environment, and residual effects were considered, while for BW365 and BW450, additive direct genetic, maternal genetic, and residual effects were considered. Finally, for BW550, additive direct genetic and residual effects were considered. Estimates of direct heritability for BW120 were similar in all analyses; however, for the other traits, multi-trait analysis resulted in higher estimates. The maternal heritability and proportion of maternal permanent environmental variance to total variance were minimal in multi-trait analyses. Genetic, environmental, and phenotypic correlations were of high magnitude between all traits. Multi-trait analyses would aid in the parameter estimation for body weight at older ages because they are usually affected by a lower number of animals with phenotypic information due to culling and mortality.  相似文献   

14.
Beef outputs from dairy farms make an important contribution to overall profitability in Irish dairy herds and are the sole source of revenue in many beef herds. The aim of this study was to estimate genetic parameters for animal BW and price across different stages of maturity. Data originated from 2 main sources: price and BW from livestock auctions and BW from on-farm weighings between 2000 and 2008. The data were divided into 4 distinct maturity categories: calves (n = 24,513), weanlings (n = 27,877), postweanlings (n = 23,279), and cows (n = 4,894). A univariate animal model used to estimate variance components was progressively built up to include a maternal genetic effect and a permanent environmental maternal effect. Bivariate analyses were used to estimate genetic covariances between BW and price per animal within and across maturity category. Direct heritability estimates for price per animal were 0.34 ± 0.03, 0.31 ± 0.05, 0.19 ± 0.04, and 0.10 ± 0.04 for calves, weanling, postweanlings, and cows, respectively. Direct heritability estimates for BW were 0.26 ± 0.03 for weanlings, 0.25 ± 0.04 for postweanlings, and 0.24 ± 0.06 for cows; no BW data were available on calves. Significant maternal genetic and maternal permanent environmental effects were observed for weanling BW only. The genetic correlation between price per animal and BW within each maturity group varied from 0.55 ± 0.06 (postweanling price and BW) to 0.91 ± 0.04 (cow price and BW). The availability of routinely collected data, along with the existence of ample genetic variation for animal BW and price per animal, facilitates their inclusion in Irish dairy and beef breeding objectives to better reflect the profitability of both enterprises.  相似文献   

15.
Estimates of direct and maternal genetic parameters in beef cattle were obtained with a random regression model with a linear spline function (SFM) and were compared with those obtained by a multitrait model (MTM). Weight data of 18,900 Gelbvieh calves were used, of which 100, 75, and 17% had birth (BWT), weaning (WWT), and yearling (YWT) weights, respectively. The MTM analysis was conducted with a three-trait maternal animal model. The MTM included an overall linear partial fixed regression on age at recording for WWT and YWT, and direct-maternal genetic and maternal permanent environmental effects. The SFM included the same effects as MTM, plus a direct permanent environmental effect and heterogeneous residual variance. Three knots, or breakpoints, were set to 1, 205, and 365 d. (Co)variance components in both models were estimated with a Bayesian implementation via Gibbs sampling using flat priors. Because BWT had no variability of age at recording, there was good agreement between corresponding components of variance estimated from both models. For WWT and YWT, with the exception of the sum of direct permanent environmental and residual variances, there was a general tendency for SFM estimates of variances to be lower than MTM estimates. Direct and maternal heritability estimates with SFM tended to be lower than those estimated with MTM. For example, the direct heritability for YWT was 0.59 with MTM, and 0.48 with SFM. Estimated genetic correlations for direct and maternal effects with SFM were less negative than those with MTM. For example, the direct-maternal correlation for WWT was -0.43 with MTM and -0.33 with SFM. Estimates with SFM may be superior to MTM due to better modeling of age in both fixed and random effects.  相似文献   

16.
The genotype of an individual and the environment as the maternal ability of its dam have substantial effects on the phenotype expression of many production traits. The aim of the present study was to estimate the (co)variance components for worm resistance, wool and growth traits in Merino sheep, testing the importance of maternal effects and to determine the most appropriate model for each trait. The traits analyzed were Greasy Fleece Weight (GFW), Clean Fleece Weight (CFW), average Fibre Diameter (FD), Coefficient of Variation of FD (CVFD), Staple Length (SL), Comfort Factor (CF30), Weaning Weight (WWT), Yearling Body Weight (YWT) and Faecal worm Egg Count (FEC). The data were recorded during a 15-year period from 1995 to 2010, from Uruguayan Merino stud flocks. A Bayesian analysis was performed to estimate (co)variance components and genetic parameters. By ignoring or including maternal genetic or environmental effects, five different univariate models were fitted in order to determine the most effective for each trait. For CVFD and YWT, the model fitting the data best included direct additive effects as the only significant random source of variation. For GFW, CFW, FD, SL and CF30 the most appropriate model included direct-maternal covariance; while for FEC included maternal genetics effects with a zero direct-maternal covariance. The most suitable model for WWT included correlated maternal genetic plus maternal permanent environmental effects. The estimates of direct heritability were moderate to high and ranged from 0.15 for log transformed FEC to 0.74 for FD. Most of the direct additive genetic correlation (rg) estimations were in the expected range for Merino breed. However, the estimate of rg between FEC and FD was unfavourable (−0.18±0.03). In conclusion, there is considerable genetic variation in the traits analyzed, indicating the potential to make genetic progress on these traits. This study showed that maternal effects are influencing most of traits analyzed, thus these effects should be considered in Uruguayan Merino breeding programs; since the implementation of an appropriate model of analysis is critical to obtain accurate estimates.  相似文献   

17.
Variance components and genetic parameters were estimated for post-weaning (i.e., at 6, 9, and 12 months of age) body measurements in Muzaffarnagari sheep maintained at the Central Institute for Research on Goats, Makhdoom, Mathura, India over a period of 29 years (1976 through 2004). Records of 2,965 lambs descended from 162 rams and 1,213 ewes were used in the study. Analyses were carried out by REML fitting an animal model and ignoring or including maternal genetic or permanent environmental effects. Six different animal models were fitted for all traits. The best model was chosen after testing the improvement of the log-likelihood values. Direct heritability estimates were inflated substantially for all traits when maternal effects were ignored. Moderate estimates of direct heritability for body length (0.11–0.15), height at withers (0.14–0.19), and heart girth (0.14–0.24) of lambs were observed at post-weaning stages of growth. Results suggest that only direct additive genetic effects were important for body measurements at post-weaning stages of growth, and hence, modest rates of genetic progress were possible for post-weaning body measurements.  相似文献   

18.
Estimates of genetic parameters resulting from various analytical models for birth weight (BWT, n = 4,155), 205-d weight (WWT, n = 3,884), and 365-d weight (YWT, n = 3,476) were compared. Data consisted of records for Line 1 Hereford cattle selected for postweaning growth from 1934 to 1989 at ARS-USDA, Miles City, MT. Twelve models were compared. Model 1 included fixed effects of year, sex, age of dam; covariates for birth day and inbreeding coefficients of animal and of dam; and random animal genetic and residual effects. Model 2 was the same as Model 1 but ignored inbreeding coefficients. Model 3 was the same as Model 1 and included random maternal genetic effects with covariance between direct and maternal genetic effects, and maternal permanent environmental effects. Model 4 was the same as Model 3 but ignored inbreeding. Model 5 was the same as Model 1 but with a random sire effect instead of animal genetic effect. Model 6 was the same as Model 5 but ignored inbreeding. Model 7 was a sire model that considered relationships among males. Model 8 was a sire model, assuming sires to be unrelated, but with dam effects as uncorrelated random effects to account for maternal effects. Model 9 was a sire and dam model but with relationships to account for direct and maternal genetic effects; dams also were included as uncorrelated random effects to account for maternal permanent environmental effects. Model 10 was a sire model with maternal grandsire and dam effects all as uncorrelated random effects. Model 11 was a sire and maternal grandsire model, with dams as uncorrelated random effects but with sires and maternal grandsires assumed to be related using male relationships. Model 12 was the same as Model 11 but with all pedigree relationships from the full animal model for sires and maternal grandsires. Rankings on predictions of breeding values were the same regardless of whether inbreeding coefficients for animal and dam were included in the models. Heritability estimates were similar regardless of whether inbreeding effects were in the model. Models 3 and 9 best fit the data for estimation of variances and covariances for direct, maternal genetic, and permanent environmental effects. Other models resulted in changes in ranking for predicted breeding values and for estimates of direct and maternal heritability. Heritability estimates of direct effects were smallest with sire and sire-maternal grandsire models.  相似文献   

19.
ABSTRACT

1. The objective of the study was to investigate the influence of maternal and parent of origin effects (POE) on genetic variation of Iranian native fowl on economic traits.

2. Studied traits were body weights at birth (BW0), at eight (BW8) and 12 weeks of age (BW12), age (ASM) and weight at sexual maturity (WSM), egg number (EN) and average egg weight (AEW).

3. Several models, including additive, maternal additive genetics, permanent environmental effects and POE were compared using Wombat software. Bayesian Information Criterion (BIC) was used to identify the best model for each trait. The chance of reranking of birds between models was investigated using Spearman correlation and Wilcoxon rank test.

4. Based on the best model, direct heritability estimates for BW0, BW8, BW12, ASM, WSM, EN and AEW traits were 0.05, 0.21, 0.23, 0.30, 0.39, 0.22 and 0.38, respectively. Proportion of variance due to paternal POE for BW8 was 4% and proportion of variance due to maternal POE for BW12 was 5%.

5. Estimated maternal heritability for BW0 was 0.30 and for BW8 and BW12 were 0.00 and 0.01, respectively, which shows that maternal heritability was reduced by age.

6. Based on the results, considering POE for BW8 and BW12 and maternal genetic effects for BW0 improved the accuracy of estimations and avoid reranking of birds for these traits.  相似文献   

20.
Weaning weights from nine sets of Angus field data from three regions of the United States were analyzed. Six animal models were used to compare two approaches to account for an environmental dam-offspring covariance and to investigate the effects of sire x herd-year interaction on the genetic parameters. Model 1 included random direct and maternal genetic, maternal permanent environmental, and residual effects. Age at weaning was a covariate. Other fixed effects were age of dam and a herd-year-management-sex combination. Possible influence of a dam's phenotype on her daughter's maternal ability was modeled by including a regression on maternal phenotype (fm) (Model 3) or by fitting grandmaternal genetic and grandmaternal permanent environmental effects (Model 5). Models 2, 4, and 6 were based on Models 1, 3, and 5, respectively, and additionally included sire x herd-year (SH) interaction effects. With Model 3, estimates of fm ranged from -.003 to .014, and (co)variance estimates were similar to those from Model 1. With Model 5, grandmaternal heritability estimates ranged from .02 to .07. Estimates of maternal heritability and direct-maternal correlation (r(am)) increased compared with Model 1. With models including SH, estimates of the fraction of phenotypic variance due to SH interaction effects were from .02 to .10. Estimates of direct and maternal heritability were smaller and estimates of r(am) were greater than with models without SH interaction effects. Likelihood values showed that SH interaction effects were more important than fm and grandmaternal effects. The comparisons of models suggest that r(am) may be biased downward if SH interaction and(or) grandmaternal effects are not included in models for weaning weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号