首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Commercial tunas and billfishes (swordfish, marlins and sailfish) provide considerable catches and income in both developed and developing countries. These stocks vary in status from lightly exploited to rebuilding to severely depleted. Previous studies suggested that this variability could result from differences in life‐history characteristics and economic incentives, but differences in exploitation histories and management measures also have a strong effect on current stock status. Although the status (biomass and fishing mortality rate) of major tuna and billfish stocks is well documented, the effect of these diverse factors on current stock status and the effect of management measures in rebuilding stocks have not been analysed at the global level. Here, we show that, particularly for tunas, stocks were more depleted if they had high commercial value, were long‐lived species, had small pre‐fishing biomass and were subject to intense fishing pressure for a long time. In addition, implementing and enforcing total allowable catches (TACs) had the strongest positive influence on rebuilding overfished tuna and billfish stocks. Other control rules such as minimum size regulations or seasonal closures were also important in reducing fishing pressure, but stocks under TAC implementations showed the fastest increase of biomass. Lessons learned from this study can be applied in managing large industrial fisheries around the world. In particular, tuna regional fisheries management organizations should consider the relative effectiveness of management measures observed in this study for rebuilding depleted large pelagic stocks.  相似文献   

2.
Stock‐based and ecosystem‐based indicators are used to provide a new diagnosis of the fishing impact and environmental status of European seas. In the seven European marine ecosystems covering the Baltic and the North‐east Atlantic, (i) trends in landings since 1950 were examined; (ii) syntheses of the status and trends in fish stocks were consolidated at the ecosystem level; and (iii) trends in ecosystem indicators based on landings and surveys were analysed. We show that yields began to decrease everywhere (except in the Baltic) from the mid‐1970s, as a result of the over‐exploitation of some major stocks. Fishermen adapted by increasing fishing effort and exploiting a wider part of the ecosystems. This was insufficient to compensate for the decrease in abundance of many stocks, and total landings have halved over the last 30 years. The highest fishing impact took place in the late 1990s, with a clear decrease in stock‐based and ecosystem indicators. In particular, trophic‐based indicators exhibited a continuous decreasing trend in almost all ecosystems. Over the past decade, a decrease in fishing pressure has been observed, the mean fishing mortality rate of assessed stocks being almost halved in all the considered ecosystems, but no clear recovery in the biomass and ecosystem indicators is yet apparent. In addition, the mean recruitment index was shown to decrease by around 50% in all ecosystems (except the Baltic). We conclude that building this kind of diagnosis is a key step on the path to implementing an ecosystem approach to fisheries management.  相似文献   

3.
4.
Although small‐scale fisheries (SSF) play an important socio‐economic role in developing nations, overfishing seems to be increasing the risk of stock vulnerability. This study aims to quantify the pressure of SSF on fish stocks in Sunda Strait (Indonesia) using several biological indicators that are important in quantifying fishing pressure. Data on these indicators were collected monthly for three years (2012–2014) in one of the main fishing ports of the area. The results provide evidence that, although SSF would appear to be the most environmentally sustainable of all the fishing techniques being used today in the coastal waters of Indonesia, the impact of SSF fishing on juvenile fishes in certain areas such as the Sunda Strait must not be underestimated. The results also show the need to protect immature fish of species that are not only commercialised but are also important in subsistence fisheries. Although further studies are needed to assess the impact of SSF on fish stocks in the area, it is suggested management recommendations that include the implementation of marine‐protected areas in nursery grounds and establishing minimum landing sizes well above the size‐at‐maturity for each species, are needed.  相似文献   

5.
In Mediterranean European countries, 85% of the assessed stocks are currently overfished compared to a maximum sustainable yield reference value (MSY) while populations of many commercial species are characterized by truncated size‐ and age‐structures. Rebuilding the size‐ and age‐structure of exploited populations is a management objective that combines single species targets such as MSY with specific goals of the ecosystem approach to fisheries management (EAF), preserving community size‐structure and the ecological role of different species. Here, we show that under the current fishing regime, stock productivity and fleet profitability are generally impaired by a combination of high fishing mortality and inadequate selectivity patterns. For most of the stocks analysed, a simple reduction in the current fishing mortality (Fcur) towards an MSY reference value (FMSY), without any change in the fishing selectivity, will allow neither stock biomass nor fisheries yield and revenue to be maximized. On the contrary, management targets can be achieved only through a radical change in fisheries selectivity. Shifting the size of first capture towards the size at which fish cohorts achieve their maximum biomass, the so‐called optimal length, would produce on average between two and three times higher economic yields and much higher biomass at sea for the exploited stocks. Moreover, it would contribute to restore marine ecosystem structure and resilience to enhance ecosystem services such as reservoirs of biodiversity and functioning food webs.  相似文献   

6.
7.
The role of spatial management, including marine protected areas, in achieving fisheries outcomes alongside conservation goals is debated. In fisheries that fail to meet fishing mortality targets, closed areas are sometimes implemented to reduce fishing mortality. However, fisheries with stronger management, including rights‐based approaches that can address overcapacity and overfishing problems, often employ spatial management as well. Here, we compare the objectives, design, and performance of spatial management in nine temperate demersal fisheries in North America, Oceania, Europe, and Africa that employ rights‐based systems. Common objectives of spatial management included protecting habitat, juveniles, and spawners and reducing discards. Recovering age structure and creating scientific reference sites were less common objectives, despite being widely cited benefits of spatial management. Some fisheries adopted single closures to achieve single objectives, whereas others adopted diverse networks to achieve multiple objectives. Importantly, many spatial protections are implemented primarily through industry initiatives. Environmental change compromised the efficacy of spatial management in some cases, suggesting the need to design spatial management systems that are robust to changing ocean conditions. Fisheries with diverse and extensive spatial management systems have generally healthier fish stocks. Whether this implies that spatial management contributed substantially to fishery performance is unclear due to an absence of large‐scale, long‐term studies aimed at discerning different drivers of success. Although these targeted monitoring studies of closed areas are limited, such studies are necessary to help resolve the ongoing debate and to enable more purposeful design of spatial management for fisheries and conservation.  相似文献   

8.
Small‐scale fisheries contribute substantially to the sustainability of coastal communities by providing livelihood and economic opportunities and ensuring food security. However, their geographic range of operation overlaps with that of industrial fisheries, increasing the resource competition, risk of vessel collision and inter‐sector conflicts, while jeopardizing the sustainability of fish stocks. When industrial vessels venture into waters that are reserved to artisanal fisheries, their operations become illegal. In Africa, the extent of such operations, beyond their legal implications, has resulted in severe economic, food security and maritime safety issues. In this paper, we use automatic identification system data derived from satellite technology to predict fishing operations and find that industrial fleets spend 3%–6% of their time fishing within inshore areas reserved for small‐scale fisheries between 2012 and 2016, of the total 4.2 million industrial fishing hours within the Exclusive Economic Zones of African countries. We assessed the total fishing effort by this form of illegal fishing operations at 166 million kWhours at least out of 4.9 billion kWhours in total. We discuss this dangerous form of illegal fishing, which often results in deadly collisions with small‐scale sector operators, increases competition and conflicts over fisheries access, threatens the sustainability of fish stocks, and calls for better governance, and protection.  相似文献   

9.
Identifying rates of change in the abundance of sea cucumbers under differing management regimes is fundamental to estimating commercial yields, identifying ecological interactions and facilitating management. Here, we review the status of sea cucumber stocks from a range of Pacific Island countries (Samoa, Tonga, Palau, Fiji and Papua New Guinea), some of which have had a moratorium on exports for up to a decade. We use a time‐series approach to look at variation in sea cucumber presence, coverage and density from survey and re‐survey data. Results give an appreciation of variation between ‘high’ status (less impacted) and depleted stocks. Survey data show marked declines in coverage and abundance as a result of artisanal fishing activity, and although species groups were not lost at a country level, local extirpation and range restriction was noted. Resilience and ‘recovery’ following cessation of fishing varied greatly, both among locations and among the species targeted. Worryingly, even after extended periods of moratorium, the density of some species was markedly low. In many cases, the densities were too low for commercial fishing, and may be at a level where the effective population size is constrained due to ‘Allee’ affects. From these results, we suggest that management regimes presently employed are generally not well aligned with the level of response to fishing mortality that can be expected from sea cucumber stocks. New adaptive, precautionary approaches to management are suggested, which would allow more timely interventions to be made, while refined information on stock dynamics is sought.  相似文献   

10.
Total allowable catch restrictions (hereafter referred to as catch quotas) play an important role in maintaining healthy fish stocks. While studies have identified a positive relationship between catch quota implementation and improved stock status, these methods are subject to selection bias as catch quotas are typically applied to stocks that are depleted. We address this challenge using the synthetic control method, which estimates the causal effect of catch quotas on fishing mortality and biomass by predicting a synthetic counterfactual outcome. We focus on high seas stocks (tunas, billfishes, and sharks) managed by tuna Regional Fisheries Management Organizations (tRFMOs), first providing an overview of stock status and current management measures in place. We find that implementation of catch quotas by tRFMOs has more than doubled over the past decade. Second, we predict the hypothetical fishing mortality and biomass trajectory for seven high seas quota-managed stocks in absence of a catch quota. These “synthetic non-quota stocks” are predicted using a weighted selection of high seas non-quota stocks. Credibility of the synthetic non-quota stocks is evaluated through diagnostic checks, and robustness tests assess sensitivity to study design. Five credible fishing mortality synthetic controls are predicted: three add support to the hypothesis that catch quotas successfully reduce fishing mortality, while two find that catch quotas increase fishing mortality. While our analysis is limited in scope, given that all seven quota-managed stocks are managed under a single tRFMO, we highlight the potential for the synthetic control method in fisheries management evaluation.  相似文献   

11.
Fisheries are the most common ecosystem service that fish provide to human populations, yet recreational fisheries are often overlooked when evaluating such services. Here, the socioeconomic profiles of fishers, the composition of their catches and catch per unit effort (CPUE) are described, to estimate the economic value of the recreational fishery on a stretch of the Cuiabá River in the Brazilian Pantanal. Questionnaires were used to obtain socioeconomic information and fishing yield from fishers for 2013 and 2014. Additionally, a census on the number of fishers and fishing platforms along the sampled region was conducted in 2018. This recreational fishery mostly involves middle class adult males, based mostly in the Cuiabá city metropolitan region. They invested, on average, US$41.1 (SD = US$16.5, median = $35.2) per fishing visit, catching around 19 fish species. Overall, mean CPUE from the recreational fishery was 42.20 fish/fisher.day (17.4 kg/fisher/day). Annual economic value of this recreational fishery was estimated at around US$1.8 million, which highlights the importance of this activity to the local economy. Greater environmental conservation efforts are recommend to ensure the long-term viability of this ecosystem service.  相似文献   

12.
Large pelagic fishes are assessed and managed by tuna Regional Fisheries Management Organizations (tRFMOs). These organizations have been criticized for not meeting conservation objectives, which may relate to aspects of governance and management. No previous studies have systematically evaluated why management performance differs among tRFMOs and among stocks within each tRFMO. In this study, we collected data on the nature of research, management, enforcement and socioeconomics of management systems in the five principal tRFMOs of the world's oceans. We quantified influences of economic and fishery‐related factors on these management characteristics and examined how these factors vary among tRFMOs. We found that tRFMOs with a greater number of member countries, a greater economic dependency on tuna resources, a lower mean per capita gross domestic product, a greater number of fishing vessels and smaller vessels were associated with less intensive research, management and enforcement in these tuna fisheries. We also quantified the influence of specific management attributes and of biological, economic and fishery‐related factors on the trends and current status of large pelagic fish stocks in these regions. The most important factors correlated with trends and current stock status were external to the management systems, and included stock size, age at maturity, ex‐vessel price and economic dependency of countries on tuna fisheries. To improve the overall status of large pelagic fish stocks in the global high seas, more intensive data collection, research and management are needed in certain areas, especially in the Indian Ocean, and for certain stocks, especially non‐target species.  相似文献   

13.
Annual fish landings for the Greek seas were analysed for the period 1982–2007 and classified into exploitation categories based on a catch‐based stock classification method. In 2007, about 65% of the Greek stock were characterised as overfished, 32% as fully exploited and only 3% were characterised as developing; collapsed stocks were not recorded. The cumulative percentage of fully exploited and overfished stocks has been increasing over the past 20 years suggesting overexploitation of resources. The results were contrasted against total landings, the fishing‐in‐balance index (FiB) and fishing effort, and some irregularities on the dataset were explained based on current legislation and management measures. A positive correlation between FiB and total fishing effort confirmed the expansion of the Greek fisheries up to 1994, but contraction thereafter. The results suggest that the apparently stable overall catches and decreasing effort may be deceiving, as they hide an underlying pattern of overexploitation in some of the stocks. It was concluded that the Greek fisheries are no longer sustainable and radical management measures are needed.  相似文献   

14.
Climate change is projected to redistribute fisheries resources, resulting in tropical regions suffering decreases in seafood production. While sustainably managing marine ecosystems contributes to building climate resilience, these solutions require transformation of ocean governance. Recent studies and international initiatives suggest that conserving high seas biodiversity and fish stocks will have ecological and economic benefits; however, implications for seafood security under climate change have not been examined. Here, we apply global‐scale mechanistic species distribution models to 30 major straddling fish stocks to show that transforming high seas fisheries governance could increase resilience to climate change impacts. By closing the high seas to fishing or cooperatively managing its fisheries, we project that catches in exclusive economic zones (EEZs) would likely increase by around 10% by 2050 relative to 2000 under climate change (representative concentration pathway 4.5 and 8.5), compensating for the expected losses (around ?6%) from ‘business‐as‐usual’. Specifically, high seas closure increases the resilience of fish stocks, as indicated by a mean species abundance index, by 30% in EEZs. We suggest that improving high seas fisheries governance would increase the resilience of coastal countries to climate change.  相似文献   

15.
Estimating collateral mortality from towed fishing gear   总被引:6,自引:0,他引:6  
More than 50% of the world's total marine catch (approximately 81 million tonnes) is harvested using towed fishing gears (i.e. Danish seines, dredges and otter and beam trawls). As for all methods, the total fishing mortality of these gears comprises the reported (landed) and unreported catch and other unaccounted, collateral deaths due to (i) avoiding, (ii) escaping, (iii) dropping out of the gear during fishing, (iv) discarding from the vessel, (v) ghost fishing of lost gear, (vi) habitat destruction or subsequent (vii) predation and (viii) infection from any of the above. The inherent poor selectivity of many towed gears, combined with their broad spatial deployment, means that there is considerable potential for cumulative effects of (i)–(viii) listed above on total fishing mortality, and subsequent wide‐scale negative impacts on stocks of important species. In this paper, we develop a strategy for minimizing this unwanted exploitation by reviewing all the primary literature studies that have estimated collateral, unaccounted fishing mortalities and identifying the key causal factors. We located more than 80 relevant published studies (between 1890 and early 2006) that quantified the mortalities of more than 120 species of escaping (26 papers) or discarded (62 papers) bivalves, cephalopods, crustaceans, echinoderms, elasmobranches, reptiles, teleosts and miscellaneous organisms. Seven of these studies also included the estimates of mortalities caused by dropping out of gears, predation and infection [(iii), (vii) and (viii) listed above]. Owing to several key biological (physiology, size and catch volume and composition), environmental (temperature, hypoxia, sea state and availability of light) and technical (gear design, tow duration and speed) factors, catch‐and‐escape or catch‐and‐discarding mechanisms were identified to evoke cumulative negative effects on the health of most organisms. We propose that because the mortalities of discards typically are much greater than escapees, the primary focus of efforts to mitigate unaccounted fishing mortalities should concentrate on the rapid, passive, size and species selection of non‐target organisms from the anterior sections of towed gears during fishing. Once maximum selection has been achieved and demonstrated to cause few mortalities, efforts should be made to modify other operational and/or post‐capture handling procedures that address the key causal factors listed above.  相似文献   

16.
Ecosystem‐based management of fisheries aims to allow sustainable use of fished stocks while keeping impacts upon ecosystems within safe ecological limits. Both the FAO Code of Conduct for Responsible Fisheries and the Aichi Biodiversity Targets promote these aims. We evaluate implementation of ecosystem‐based management in six case‐study fisheries in which potential indirect impacts upon bird or mammal predators of fished stocks are well publicized and well studied. In particular, we consider the components needed to enable management strategies to respond to information from predator monitoring. Although such information is available in all case‐studies, only one has a reference point defining safe ecological limits for predators and none has a method to adjust fishing activities in response to estimates of the state of the predator population. Reference points for predators have been developed outside the fisheries management context, but adoption by fisheries managers is hindered a lack of clarity about management objectives and uncertainty about how fishing affects predator dynamics. This also hinders the development of adjustment methods because these generally require information on the state of ecosystem variables relative to reference points. Nonetheless, most of the case‐studies include precautionary measures to limit impacts on predators. These measures are not used tactically and therefore risk excessive restrictions on sustainable use. Adoption of predator reference points to inform tactical adjustment of precautionary measures would be an appropriate next step towards ecosystem‐based management.  相似文献   

17.
Competitive shore‐based sport fishing is a popular recreational activity in the Maltese Islands. However, prior to this study, no scientific research surveys had been carried out during sport fishing competitions to investigate catches. Collaboration with Maltese sports fishermen was developed to target sustainable management. Recreational fishing catches were recorded between July 2012 and December 2015 by means of 1,633 roving‐access creel surveys, conducted during 79 sport fishing competitions, totalling a fishing effort of 7,548 hr. A total of 29,916 fish belonging to 80 species from 26 different families were caught at a mean catch‐per‐unit‐effort (CPUE) of 4.16 fish angler/hr (SD ± 3.79) and 0.18 kg angler/hr (SD ± 0.17) but with seasonal variation. Catch‐and‐release practices were implemented by all Maltese sport fishing clubs, however, the mean mortality rate stood at 35.5% (SD ± 42.1), indicating that more effort is required to improve survival of fish. The study outcomes provide conservation recommendations.  相似文献   

18.
Impact assessments of fishing on a stock require parameterization of vital rates: growth, mortality and recruitment. For ‘data‐poor’ stocks, vital rates may be estimated from empirical size‐based relationships or from life‐history invariants. However, a theoretical framework to synthesize these empirical relations is lacking. Here, we combine life‐history invariants, metabolic scaling and size‐spectrum theory to develop a general size‐ and trait‐based theory for demography and recruitment of exploited fish stocks. Important concepts are physiological or metabolic scaled mortalities and flux of individuals or their biomass to size. The theory is based on classic metabolic relations at the individual level and uses asymptotic size W as a trait. The theory predicts fundamental similarities and differences between small and large species in vital rates and response to fishing. The central result is that larger species have a higher egg production per recruit than small species. This means that density dependence is stronger for large than for small species and has the consequence that fisheries reference points that incorporate recruitment do not obey metabolic scaling rules. This result implies that even though small species have a higher productivity than large species their resilience towards fishing is lower than expected from metabolic scaling rules. Further, we show that the fishing mortality leading to maximum yield per recruit is an ill‐suited reference point. The theory can be used to generalize the impact of fishing across species and for making demographic and evolutionary impact assessments of fishing, particularly in data‐poor situations.  相似文献   

19.
Estimated declines in shark and ray populations worldwide have raised major, widespread concern about the impacts of global fisheries on elasmobranchs. The mechanisms causing elasmobranch mortality during fisheries’ capture are not fully understood, but we must gain greater clarity on this topic for fisheries managers to develop effective conservation plans to mitigate further population declines. To evaluate how two important factors, respiratory mode and fishing gear type, impact elasmobranch survival, we compiled publicly available data sources on the immediate mortality percentages of 83 species and post‐release mortality percentages of 40 species. Using Bayesian models, we found that sharks and rays captured in longlines had significantly lower immediate mortality than those caught in trawls or gillnets. Our models also predicted the mean total discard mortality (combined immediate and post‐release mortality) percentages of obligate ram‐ventilating elasmobranchs caught in longline, gillnet and trawl gear types to be 49.8, 79.0 and 84.2%, respectively. In contrast, total discard mortality percentages of stationary‐respiring species were significantly lower (longline capture mean = 7.2%, gillnet capture mean = 25.3%, trawl capture mean = 41.9%). Our global meta‐analysis provides the first quantified demonstration of how mortality is affected by these two factors across a broad range of species. Our results and approach can be applied to data‐deficient elasmobranchs and fisheries to identify species that are likely to experience high rates of mortality due to respiratory mode and/or fishing methods used, so that appropriate mitigation measures can be prioritized and investigated.  相似文献   

20.
In the domain of decision‐support tools for the management of marine fish resources, considerable attention has been paid to the development of models explaining how fish stocks change over space and time. In most models, fishing effort is assumed to be exogenous and determined by factors such as management. Increasingly, there has been a call for bio‐economic models to also account for the dynamics of fishing fleets, recognizing that fishers respond to changing environmental, institutional and economic conditions. A growing literature has sought to explicitly model the endogenous determinants of the capacity of fishing fleets, the intensity of its use and its temporal and spatial allocation across fishing opportunities. We review this literature, focusing on empirical applications of the behavioural models that have been put forward to explain and predict observed fleet dynamics. We find that although economic factors are usually included as a dominant driver in most studies, this is often based on the use of proxy variables for the key economic drivers, for which adequate data are lacking. Also, while many studies acknowledge that social and social–psychological factors play a significant role in explaining observed fishing behaviour, their inclusion in fishing fleet dynamic models is still very limited. Progress in this domain can only be achieved via the development of multidisciplinary research programmes focusing on applied quantitative analysis of the drivers of fishing fleet dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号