首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Understanding plant response and resilience to drought under a high CO2 environment will be crucial to ensure crop production in the future. Sorghum bicolor is a C4 plant that resists drought better than other crops, which could make it a good alternative to be grown under future climatic conditions. Here, we analyse the physiological response of sorghum under 350 ppm CO2 (aCO2) or 700 ppm CO2 (eCO2) with drought (D) or without drought (WW) for 9, 13 and 16 days; as well as its resilience under long (R1: 9D + 7R) or short (R2: 13D + 3R) recovery treatments. Sorghum showed elevated rates of gs under aCO2 and WW, which resulted in a significant decrease in Ψw, gs, E, ΦPSII, Fv’/Fm when exposed to drought. Consequently, A was greatly decreased. When re-watered, both re-watering treatments prioritized A recovery by restoring photosynthetic machinery under aCO2, whereas under eCO2 plants required little recovery since plant were hardly affected by drought. However, sorghum growth rate for aboveground organs did not reach control values, indicating a slower long-term recovery. Overall, these results provide information about the resilience of sorghum and its utility as a suitable candidate for the drought episodes of the future.  相似文献   

2.
Little information exists concerning how crops will respond to the predicted increased night temperatures. The objective of this work was to determine if respiration and growth of sorghum [Sorghum bicolor (L.) Moench], a C, plant, and sunflower (Helianthus annuus L.), a C3 plant, are affected when the night temperature is increased by 5°C compared to the long-term (19 year) average night temperature in June in Kansas. Sorghum and sunflower were grown in two walk-in growth chambers with either the ambient night temperature (21C) or a high night temperature (26C). Day temperature was the same for all plants (27C). Both sunflower and sorghum had higher respiration rates under the elevated night temperature than under the ambient temperature. The average respiration rate of sunflower grown under elevated night temperature increased by 19% (0.89 vs. 0.75 μmol m?2 s?1) and that of sorghum by 44 % (0.52 vs. 0.36μmol m?2s?1). After 74 days, sunflower plants grown under the ambient night temperature were 30.2 cm taller than sunflower plants grown under the elevated night temperature; sorghum plants under the ambient temperature were 24.8 cm taller. Sunflower plants grown under the elevated night temperature formed flowers one week earlier than those grown under the ambient temperature. Sorghum formed no flowers by 74 days. Results suggest that, if climate change does increase night temperature, respiration will be increased more in C4, than C3 plants.  相似文献   

3.
Sorghum (Sorghum bicolor L. Moench) is regarded a drought‐tolerant alternative to maize as a bioenergy and fodder crop, but its early‐stage chilling sensitivity is obstructing a successful implementation in temperate areas. While several studies have identified quantitative trait loci (QTL) underlying chilling tolerance‐related traits in sorghum lines, little is known about the inheritance of these traits in F1 hybrids. We have conducted a comprehensive approach to analyse heterosis, combining ability and the relation between line per se and hybrid performance for emergence and early shoot and root development comprising both field trials and controlled environment experiments including chilling tests. To our best knowledge, this is the first study analysing heterosis for sorghum root parameters under chilling. Our results show that most traits are heterotic and that the mid‐parent values are rather poor predictors of hybrid performance. Hybrid breeding programmes should focus on efficient GCA tests and the establishment of genetically diverse pools to maximise heterosis rather than on a too strict selection among lines based on their per se performance. The medium‐to‐high heritabilities estimated for seedling emergence and juvenile biomass suggest that a robust breeding progress for these complex traits is feasible.  相似文献   

4.
Sorghum, Sorghum bicolor L. Moench, is grown mostly in semi-arid climates where unpredictable drought stress constitutes a major production constraint. To investigate hybrid performance at different levels of drought stress, 12 single-cross hybrids of grain sorghum and their 24 parent lines were grown in eight site-season combinations in a semi-arid area of Kenya. In addition, a subset of 20 genotypes was evaluated at the seedling stage under polyethylene glycol (PEG)-induced drought stress. Environmental means for grain yield ranged from 47 to 584 g/m2reflecting the following situations: two non-stress, one moderate pre-flowering, four moderate terminal and one extreme drought stress. Mean hybrid superiority over mid-parent values was 54% for grain yield and 35% for above-ground biomass. Across environments, hybrids out-yielded two local varieties by 12%. Differences in yield potential contributed to grain yield differences in all stress environments. Early anthesis was most important for specific adaptation to extreme drought. Field performance was not related to growth reduction and osmotic adjustment under PEG-induced drought stress. In conclusion, exploitation of hybrid vigour could improve the productivity of sorghum in semi-arid areas.  相似文献   

5.
Stylosanthes capitata Vogel is a C3 forage legume widely cultivated in tropical and subtropical pastures. However, the nutrient dynamics of this species under future climate change is unknown. Therefore, this study aimed to evaluate the nutrient content, nutrient accumulation, nutrient use efficiency and growth of S. capitata exposed to increased [CO2] and temperature under field conditions using two levels of atmospheric [CO2] (ambient and elevated—600 ppm) and two canopy temperature (ambient and elevated—2°C). Treatments were applied at field conditions, for 30 days, using a free-air carbon dioxide enrichment (FACE) and a free-air temperature-controlled enhancement (T-FACE) systems. Warming showed no effects on macronutrient content, but increased the accumulation of nitrogen, potassium, calcium, magnesium and sulphur, the nutrient use efficiency and root dry mass. Elevated [CO2] alone had no effect on most of the parameters evaluated. However, the combination of elevated [CO2] with warming improved the nutrient accumulation, nutrient use efficiency and whole-plant growth more than under isolated conditions of elevated [CO2] or warming. Based on our short-term results, we concluded that an increment of atmospheric [CO2] and temperature will benefit S. capitata growth, suggesting no alterations in the actual fertilizer programs for this species.  相似文献   

6.
In semiarid regions of the Mediterranean basin, water and salinity stresses restrict crop establishment. The effects of salt and water stress on seed germination and early embryo growth (radicle and shoot growth) were investigated in laboratory in two cultivars of sweet sorghum [Sorghum bicolor (L.) Moench] – cv. ‘90‐5‐2′ and cv. ‘Keller’ – to verify how these stresses may limit crop growth during the very early stages of growing season. Six water potentials (ψ) of the imbibition solution (from 0 to ?1.0 MPa) in NaCl or polyethylene glycol (PEG) for salt and water stress tests, respectively, were studied. Daily germination was recorded, and radicle and shoot lengths and dry weights (DWs) were measured 2 days after initial germination. Seed germination was reduced (8–30% lower than control) by water stress at ψ 相似文献   

7.
M. Havaux 《Plant Breeding》1989,102(4):327-332
Chilling temperatures drastically inhibited the photochemical quenching of chlorophyll fluorescence (qQ) measured in intact leaves photosynthesizing under steady-state conditions. This effect appeared, however, to be characteristic of chilling-susceptible plant species and was not observed in plants which are known to be chilling-tolerant, indicating that the measurement of qQ can serve in practice to estimate rapidly the relative chilling tolerance of crop plants. A large number (28) of sweet sorghum (Sorghum bicolor) and Sudan grass (Sorghum sudanense) genotypes were screened for chilling tolerance using this rapid qQ method. Although sweet sorghum and sudan grass obviously behaved as chilling-sensitive plants, a considerable variation for chilling susceptibility was observed among the different genotypes tested. Some sweet sorghum varieties, such as ‘Dale’ and ‘Keller’, and most of the sudan grass varieties appeared to possess a certain degree of resistance towards low temperature stress, indicating the existence of useful germplasms in Sorghum for improving stress tolerance.  相似文献   

8.
To investigate the interactive effects of drought, heat and elevated atmospheric CO2 concentration ([CO2]) on plant water relations and grain yield in wheat, two wheat cultivars with different drought tolerance (Gladius and Paragon) were grown under ambient and elevated [CO2], and were exposed to post‐anthesis drought and heat stress. The stomatal conductance, plant water relation parameters, abscisic acid concentration in leaf and spike, and grain yield components were examined. Both stress treatments and elevated [CO2] reduced the stomatal conductance, which resulted in lower leaf relative water content and leaf water potential. Drought induced a significant increase in leaf and spike abscisic acid concentrations, while elevated [CO2] showed no effect. At maturity, post‐anthesis drought and heat stress significantly decreased the grain yield by 21.3%–65.2%, while elevated [CO2] increased the grain yield by 20.8% in wheat, which was due to the changes of grain number per spike and thousand grain weight. This study suggested that the responses of plant water status and grain yield to extreme climatic events (heat and drought) can be influenced by the atmospheric CO2 concentration.  相似文献   

9.
Striga hermonthica (Del.) Benth. is a parasitic weed on tropical cereals causing serious yield losses in Africa. The use of host crop varieties with improved resistance and tolerance against this parasite is a key component of an integrated control strategy. Breeding for tolerance is however seriously hampered by the absence of reliable and yet practical selection measures. The observation that the photosynthetic rate of tolerant genotypes is less sensitive to Striga infection was used as a starting point to search for suitable selection measures. In a greenhouse pot experiment the effect of Striga infection on the photosynthesis of four sorghum (Sorghum bicolor [L.] Moench) genotypes, differing in Striga tolerance level, was measured at three moments in time (26, 48 and 75 days after sowing). Genotypes were CK60-B, E36-1, Framida and Tiémarifing. Measurements involved CO2-assimilation (A) and three chlorophyll fluorescence characteristics (electron transport rate through photosystem II [ETR], photochemical [Pq] and non-photochemical quenching [NPq]). Striga infection negatively affected A, ETR and Pq. Based on A and Pq, genotypes with superior levels of tolerance (Tiémarifing) could be discriminated from genotypes with superior level of resistance (Framida). Both A and Pq showed high heritabilities and consequently clear and predictable differences between genotypes. Using discriminative ability, heritability and cost effectiveness as main criteria, photochemical quenching (Pq) was concluded to possess the highest potential to serve as indirect selection measure for host plant tolerance to Striga. Screening should preferably be conducted at relatively high Striga infestation levels, between Striga emergence and host plant flowering.  相似文献   

10.
Summary A genetic diversity analysis in a collection of 171 non-restorer lines of sorghum (Sorghum bicolor (L.) Moench) using D2 technique and canonical variate analysis indicated that considerable variation in grain yield has been added to the collection by the addition of lines derived from random mating populations. The efficiency of D2 and canonical variate techniques in distinguishing extremely diverse genotypes was confirmed. However, the two techniques showed weak correspondence in their clusters. The F1 hybrids of 15 diverse lines exhibited no relationship between heterosis or per se performance of crosses and diversity in their parents. Therefore, traditional plant breeding methods are being advocated.Approved by ICRISAT as Journal Article no. 435.  相似文献   

11.
N.V. Nair 《Euphytica》1999,108(3):187-191
Four intergeneric hybrids were produced by crossing sorghum [ Sorghum bicolor (L.) Moench, 2n =20] as a female parent with sugarcane ( Saccharum officinarum L., 2n = 112). The hybrids were morphologically similar to the sugarcane parent, but lacked vegetative vigour. Sorghum characters present in the hybrids included soft texture of the leaves, tight clasping of the leaf sheaths, presence of aerial roots and triangular ligule. All the hybrids were highly susceptible to natural incidence of mites. Somatic chromosome number of the hybrids ranged from 2n = 62–66, indicating n+n transmission. This is the first report of Sorghum × Saccharum hybrids with sorghum cytoplasm. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Perspectives of Sorghum in Europe   总被引:4,自引:0,他引:4  
This paper attempts to review the present status and offers a perspective on sorghum [Sorghum bicolor (L.) Moench] use and breeding in Europe. Topics such as botany, origin, utilization, agronomic performances and improvement of sorghum are discussed. Clearly, producers and users of sorghum should be more familiar with the crop so that they can take advantage of some of the unique characteristics that are associated with sorghum as it relates to Europe.  相似文献   

13.
We investigated the effect of elevated [CO2], [O3] and temperature on plant productivity and if these climate factors interacted with each other in multifactor treatments. The climate effects were studied in 14 different cultivars/lines of European spring oilseed rape (Brassica napus L.) and spring barley (Hordeum vulgare L.). Seven genotypes of each species were cultivated in six single‐ and multifactor treatments with ambient or elevated CO2 (385 ppm and 700 ppm), O3 (20 ppb and 60 ppb) and temperature (12/19 °C and 17/24 °C). Growth and production parameters were measured. Elevated CO2 increased yield and biomass. Seed number increased by about 47 % in barley and by 26 % in oilseed rape, but in oilseed rape, the TSW was significantly decreased, possibly because of shortening of the seed filling period. Higher temperatures decreased yield and biomass significantly in both species. A significantly decreased yield and thousand grain weight was also seen in barley due to elevated O3. The multifactor combination of elevated CO2, O3 and temperature showed a decrease in growth and production in the two species, though not statistically significant for all parameters. This trend suggests that the expected increase in the plant production in northern Europe, indicated by Intergovernmental Panel on Climate Change (IPCC) as a consequence of increased [CO2] and temperature, may not hold, due to interactions between these abiotic factors.  相似文献   

14.
Roots strongly influence the growth and yield of field crops. We characterized root morphological traits of 10 winter wheat varieties in order to determine the extent they were influenced by the environments and impacted grain yield under two irrigation regimes at Bushland (a cooler, drier site with clay loam soil) and Uvalde (a warmer, wetter site with clay soil) in Texas, USA, from 2015 to 2017. Major root traits, including root diameter, specific root length (SRL), root surface area (SSA), tissue mass density (TMD), root length density (RLD), and root weight density, were measured and related to one another and to grain yield. RLD of wheat decreased but SRL and SSA increased with soil depth. Irrigation was second to environment in affecting root traits. Compared with Uvalde, the environment of Bushland promoted deeper root growth, higher TMD, but reduced SRL and SSA. Water deficit inhibited RLD and root: shoot ratio at Bushland, but moderately promoted them at Uvalde. Both SRL and RLD were positively associated with grain yield, with the former relation stronger under drought. The dichotomy of “conservative” versus “acquisitive” root strategy partially explained the variations of root traits of winter wheat in contrasting environments.  相似文献   

15.
Sorghum (Sorghum bicolor L. Moench) seeds were examined to determine the influence of exposure to ascending and descending imbibition temperature regimes on plumule and radicle axes behaviour of seed after treatment. Treatments included soaking in distilled water, 4.5 % NaCl or 4.5 % KCl for 3 days at three ascending or descending temperatures ranging from 11 to 21 °C. Root growth was enhanced by descending temperatures (21, 16 and 11 °C) over the 3‐day period, whereas ascending temperatures (11, 16 and 21 °C) increased growth differences between shoots and roots. Shoot–root growth was affected by imbibition temperature to a greater extent than germination. However, seed soaking treatments in NaCl or KCl did not improve root or shoot growth, but did improve germination rates.  相似文献   

16.
Sorghum [Sorghum bicolor (L.) Moench] is a drought‐tolerant crop, and its productivity in rain fed environments has increased since the 1950s. This increase is due to changes in agronomic practices and hybrid improvement. The objective of this study was to determine what aspects of grain sorghum morphology, physiology and water use have changed with hybrid improvement and might have contributed to this yield increase. A 2‐year greenhouse experiment was conducted with one hybrid from each of the past five decades. The hybrids were studied in well‐watered and pre‐ and post‐flowering water deficit conditions. Total water use, transpiration, stomatal conductance and photosynthesis were measured during the growing period. Biomass and biomass components were measured at harvest. There was no consistent change in the leaf physiological parameters resulting from hybrid advancement. In contrast, total water use increased in rate of 8.5 cm3 kg soil?1 year?1 from old to new hybrids in the well‐watered treatments. Root biomass also increased in rate of 0.2 g plant?1 year?1. Leaf biomass and panicle length also was greater for the newest compared with the older hybrids. Hybrid advancement was related to increase in panicle length but decrease in peduncle length. Results indicated that hybrid development programmes created hybrids with improved drought avoidance, due to better root density of newly released hybrids, or hybrids with better resource use which ultimately increased yield under rain fed conditions.  相似文献   

17.
The rise of atmospheric CO2 concentration ([CO2]) affects stomatal conductance and thus transpiration and leaf temperature. We evaluated the effect of elevated [CO2] levels under different water supply on daily sap flow and canopy microclimate (air temperature (Tc) and vapour pressure deficit (VPD)) of maize. The crop was cultivated in circular field plots under ambient (AMB, 378 μmol mol?1) and elevated [CO2] (FACE, 550 μmol mol?1) using free‐air CO2 enrichment with sufficient water in 2007, while in 2008 a DRY semicircle received only half as much water as compared to the WET semicircle from mid of July. In 2007, sap flow was measured in WET simultaneously under AMB and FACE conditions and was significantly decreased by elevated [CO2]. In 2008, sap flow was measured in all four treatments but not simultaneously. Therefore, data were correlated with potential evaporation and the slopes were used to determine treatment effects. Drought reduced whole‐plant transpiration by 50 % and 37 % as compared to WET conditions under AMB and FACE, respectively. Moreover, CO2 enrichment did not affect sap flow under drought but decreased it under WET by 20 % averaged over both years. The saving of water in the period before the drought treatment resulted in a displacement of dry soil conditions under FACE as compared to AMB. Under WET, CO2 enrichment always increased Tc and VPD during the day. Under DRY, FACE plots were warmer and drier most of the time in August, but cooler and damper short after the start of drought in July and from the end of August onwards. Thus, the CO2 effect on transpiration under drought was variable and detectable rather easy by measuring canopy microclimate.  相似文献   

18.
The effect of elevated tropospheric ozone concentration [O3] on root processes in wheat systems of different O3 sensitivity is not well understood. Two wheat cultivars (cv. Y15 and YN19) with contrasting O3 tolerance were grown in a fully open‐air O3 enrichment platform for one season. We found that elevated O3 (EO3) (50% above the ambient O3) significantly decreased the total biomass at all key growth stages and the yield of the O3‐sensitive cultivar YN19 but did not affect those of the O3‐tolerant cultivar Y15. EO3 significantly decreased the root biomass of two wheat cultivars at the jointing and grain‐filling stages. EO3 significantly decreased the root length, length density, surface area and volume of the two cultivars at the jointing stage but increased those of YN19 at the grain‐filling stage. EO3 significantly increased the root activities (specific root respiration rates) of Y15 and YN19 at the jointing, heading and grain‐filling stages. EO3 significantly decreased the contribution of fresh root respiration to soil respiration (CRS) of YN19 at the jointing stage but increased it at the heading stage; however, it did not change the CRS of Y15 at any growth stages. This study indicates that the effects of EO3 on root morphology and activity varied among wheat cultivars, and suggest that we can breed O3‐tolerant cultivars to maintain crop yield under higher [O3] scenarios.  相似文献   

19.
Screening sorghum genotypes for salinity tolerant biomass production   总被引:1,自引:0,他引:1  
Genetic improvement of salt tolerance is of high importance due to the extent and the constant increase in salt affected areas. Sorghum [Sorghum bicolor (L.) Moench] has been considered relatively more salt tolerant than maize and has the potential as a grain and fodder crop for salt affected areas. One hundred sorghum genotypes were screened for salinity tolerance in pots containing Alfisol and initially irrigated with a 250-mM NaCl solution in a randomized block design with three replications. Subsequently 46 selected genotypes were assessed in a second trial to confirm their responses to salinity. Substantial variation in shoot biomass ratio was identified among the genotypes. The performance of genotypes was consistent across experiments. Seven salinity tolerant and ten salinity sensitive genotypes are reported. Relative shoot lengths of seedlings were genetically correlated to the shoot biomass ratios at all stages of sampling though the relationships were not close enough to use the trait as a selection criterion. In general, the whole-plant tolerance to salinity resulted in reduced shoot Na+ concentration. The K+/Na+ and Ca2+/Na+ ratios were also positively related to tolerance but with a lesser r 2. Therefore, it is concluded that genotypic diversity exists for salt tolerance biomass production and that Na+ exclusion from the shoot may be a major mechanism involved in that tolerance.  相似文献   

20.
Water shortages have become more chronic as periodic droughts prolong and water demand for urban and agricultural use increases. Plant drought responses involve coordinated mechanisms in both above‐ and below‐ground systems, yet most studies lack comparisons of root and canopy responses under water scarcity and recovery. This is particularly true of research focused on warm‐season turfgrasses in sandy soils with extremely low water holding capacity. To address the lack of examination of coordinated stress and recovery responses, this study compared the above‐ and below‐ground plant responses during a dry‐down period of 21 days and recovery among four warm‐season turfgrass species in the field. Canopy drought responses and recovery were quantified using digital image analysis. In situ root images were captured using a minirhizotron camera system. Common bermudagrass [Cynodon dactylon (L.) Pers.] endured the entire drought period without losing 50% green cover while other species lost 50% green cover in 11–34 days predicted from the regression. The interspecific differences in drought resistance were mainly due to root characteristics. Other drought mechanisms appear to be responsible for differences identified in drought resistance between “Zeon” and “Taccoa Green” manilagrass [Zoysia matrella (L.) Merr.]. Recovery was delayed for up to 2 weeks in the second year, warranting further evaluation for turfgrass persistence under long‐term drought. Three‐week drought posed no threat to the survival of zoysiagrass. Species and genotypic variations were found in achieving full post‐recovery, which can be used to develop water conservation strategies and to adjust consumer expectations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号