首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The unpredictability of the Mediterranean climate causes fluctuations in wheat yield and quality, but offers the opportunity for obtaining high‐quality durum wheat in terms of grain protein content. Twenty‐five durum wheat genotypes were grown under irrigated and rainfed conditions at each of two latitudes in Spain during 1998 and 1999. Differences between latitudes in grain protein content and chlorophyll content in the flag leaf were attributable to nitrogen fertilization management. Cycle length until anthesis was less affected by the environment than grain‐filling duration, and was longer under irrigated conditions than in the rainfed sites. A negative asymptotic curve was the best equation to fit the relationship between yield and protein content, suggesting that yield improvements in fertile environments may be attained with negligible reductions in protein content. ‘Jabato’, ‘Waha’, ‘Lagost‐3’, ‘Massara‐1’ and ‘Vit?on’ showed medium to high yield, yield stability and high protein content. Chlorophyll content in the flag leaf, measured at anthesis with the soil‐plant analysis development (SPAD) portable field unit, may be useful for the fast and cheap detection of durum wheat genotypes with high grain protein content in drought‐stressed Mediterranean environments.  相似文献   

2.
In Ethiopia, durum wheat is largely used for production of local fermented and flat bread. Two diverse environments (Motta and Adet) were used to evaluate 15 durum wheat genotypes for grain yield and quality traits. The mean flour protein content of genotypes ranged from 10.1 % to 12.5 % and 6.7 % to 8.1 % at Motta and Adet respectively. The mean mixograph development time was 4 min at Motta and 2.8 min at Adet and SDS (Sodium dodecyl sulphate) sedimentation ranged between 10.7 and 32.3 ml across locations. Flour protein content was correlated negatively with mixograph development time and positively with vitreous kernels and single‐kernel hardness at both environments. Mixograph development time was selected to predict the gluten strength. Flour protein content, SDS sedimentation and seed weight were included in a stepwise regression. A prediction model was compiled that explained 69 % of the variation for mixograph development time.  相似文献   

3.
Hessian fly is an important pest of wheat on the North American continent and the temperate Mediterranean drylands. Yield losses caused by this insect in Morocco are the heaviest in the Mediterranean region and are estimated to be 36% on average. Genetic resistance to Mediterranean Hessian fly biotypes has not been found in durum wheat, although large numbers of durum accessions were screened. Genes for resistance were found in common wheat; some of which are transferable to durum. However, there is a need to broaden the genetic base for resistance in durum wheat. The objective of this work was to introgress resistance from selected Triticum araraticum and T. carthlicum accessions using multiple backcross methodology. The experimental recipient durum wheat included numerous adapted and high‐yielding lines. Testing for Hessian fly resistance under controlled conditions and field yield data showed that this programme yields Hessian fly‐resistant durum lines with good yields and adaptation.  相似文献   

4.
谢守华 《粮食储藏》1995,24(2):24-24
对50个面粉样品的面筋吸水率和某些品质指标进行了测定。实验结果表明,标准粉和特制粉的面筋吸水率差异不显著,面筋吸水率和湿面筋蛋白含量显著负相关,两种面粉都达到0.01显著性水平,面筋吸水率和干面筋蛋白含量显著正相关,标准粉和特制粉的相关性分别达到0.05和0.01显著性水平。  相似文献   

5.
Among the most important Mediterranean annual crops, durum wheat is widely grown in drought-prone areas. Therefore, improving water-use efficiency (WUE) of durum wheat represents a major breeding goal. IDu-WUE (Improving Durum wheat for Water Use Efficiency and yield stability through physiological and molecular approaches) is a collaborative project among public and private research centres in Italy, Spain and WANA (West Asia and North Africa) countries (Morocco, Tunisia, Syria and Lebanon) funded by the European Union aimed at investigating the genetic variation for WUE and yield stability in durum wheat grown in Mediterranean droughtprone areas. During the first year of the project, a number of morpho-physiological traits (e.g. early vigour, flowering time, leaf rolling, number of fertile tillers, etc.), WUE, WUE-related traits (e.g. carbon isotope discrimination, canopy temperature, chlorophyll fluorescence, etc.), yield and its components have been investigated in a RIL population (249 lines) and a collection of ca. 190 durum wheat accessions characterized by a high level of linkage disequilibrium (Maccaferri et al., 2005),  相似文献   

6.
The variability for quality attributes existing in a collection of 154 durum landraces from 20 Mediterranean countries and 18 modern cultivars was determined with the ultimate goal of identifying potential quality-enhancing genotypes for use in breeding programs. Field experiments were conducted during 3 years under rainfed conditions in northeastern Spain. Environmental effects were the most important in determining protein content, grain yield and yellow color index of the endosperm (grain flour), and the least important in determining EU quality index (QI), gluten strength and grain filling rate. QI is a weighed composite index determined from protein content, gluten strength, yellow color index and thousand kernel weight. Multivariate analysis detected four groups; three including landraces and one comprising modern cultivars. Landraces from the eastern Mediterranean countries had the highest mean QI and the widest variability for individual quality traits, but were characterized by relatively small grains. Landraces from the western Mediterranean countries had greater grain filling rates and heavier grains. Protein content, gluten strength and yellow color index were similar between eastern and western groups. The low QI and reduced variability characterizing the landrace group from the north Balkan Peninsula support the hypothesis of a different origin for this group. Modern cultivars, as a group, were the most productive and showed high QI, but they had the lowest grain protein content and phenotypic variability. Landraces that could be used as sources of quality-improving attributes and/or those that could be used in breeding programs without substantial quality handicaps were identified from different groups. Landraces can be particularly useful in breeding programs to improve gluten strength, grain weight and accelerate grain filling rate.  相似文献   

7.
以13个冬小麦品种(系)为材料,对其籽粒物理品质性状(包括千粒重、容重)和面粉品质性状(包括沉淀值、干、湿面筋含量)进行测定,并对各性状指标进行了相关分析和聚类分析,结果表明:容重与千粒重之间呈极显著正相关;干面筋与湿面筋间呈极显著正相关;沉淀值与干面筋呈极显著负相关;其他各指标间均无相关性。供试品种(系)大多数属于高容重、中千粒重、高沉淀值、中等面筋含量的品种。旨在为今后有计划的进行冬小麦品质改良提供信息和依据。  相似文献   

8.
This study was carried out in order to determine the effect of seed size on the growth and yield of durum wheat. Four field experiments, composed of six durum wheat (Triticum turgidum L. var. durum) varieties and three seeding sizes were conducted in north‐east Spain in 2000 and 2001 in randomized complete block designs. The growth of seedlings was dramatically affected by seed size. Large seeds produced greater plot stands, but the plants had fewer tillers, leaves and spikes and less green area and dry weight than plots from small seeds. Grain yield was 16 % greater in plots from large seeds, which resulted in greater biomass, green area index, spikes per m2 and heavier kernels than in plots from small seeds. Kernel weight was the yield component most related to grain yield in the three seed sizes. The percentage of yield variation explained by kernel weight increased as the weight of kernels increased. This was a consequence of the use of larger seeds, the same effect being observed when the comparison was made between varieties with different kernel weights. Selection for heavy kernel varieties may help to improve the yield of durum wheat in Mediterranean environments similar to that prevailing in north‐east Spain.  相似文献   

9.
The determination of the gluten index is a widely used method for analysing the gluten strength of bread wheat and spring durum wheat genotypes. The present work was carried out to study the effect of the genotype, meteorological factors (temperature, precipitation and number of days with Tmax ≥ 30 °C) and agronomic treatments (N fertilisation and plant protection) on the gluten index of winter durum wheat varieties and breeding lines. The results indicated that the gluten index had little dependence on the environment, being determined to the greatest extent by the genotype. Compared with varieties having weak gluten, those with a strong gluten matrix responded less sensitively to changes in environmental conditions. Among the meteorological factors, high temperature at the end of the grain-filling period caused the greatest reduction in the mean gluten index of three varieties (R 2 = 0.462), while the fertiliser was found to be a significant factor affecting the gluten strength of winter durum wheat varieties. Using selection based on the gluten index, the gluten strength of winter durum wheat lines can be improved sufficiently to make them competitive with high quality spring varieties.  相似文献   

10.
Greenhouse and growth chamber experiments were carried out using seven bread wheat (Triticum aestivum), three durum wheat (T. durum), two rye (Secale cereale), three barley (Hordeum vulgare), two triticale (x Triticosecale Wittmack) and one oat (Avena sativa) cultivars to study response to zinc (Zn) deficiency and Zn fertilisation in nutrient solution and in a severely Zn deficient calcareous soil. Visual Zn deficiency symptoms, such as whitish-brown necrotic patches on leaf blades, developed rapidly and severely in the durum wheat and oat cultivars. Bread wheat showed great genotypic differences in sensitivity to Zn deficiency. In triticale and rye, visual deficiency symptoms were either absent or appeared only slightly, while barley showed a moderate sensitivity. When grown in soil, average decreases in shoot dry matter production due to Zn deficiency were 15% for rye, 25% for triticale, 34% for barley, 42% for bread wheat, 63% for oat and 65% for durum wheat. Differential Zn efficiency among and within cereal species was better related to the total amount of Zn per shoot, but not to the Zn concentration in the shoot dry matter. However, in leaves of Zn efficient rye and bread wheat cultivars, the activity of Zn-containing superoxide dismutase was greater than in Zn inefficient bread and durum wheat cultivars, suggesting higher amounts of physiologically active Zn in leaf tissue of efficient genotypes. When grown in nutrient solution, there was a poor relationship between Zn efficiency and release rate of Zn-chelating phytosiderophores from roots, but uptake of labelled Zn (65Zn) and its translocation to the shoot was higher in the Zn efficient rye and bread wheat cultivars than in inefficient bread and durum wheat cultivars. The results demonstrate that susceptibility of cereals to Zn deficiency decline in the order durum wheat > oat > bread wheat > barley > triticale > rye. The results also show that expression of high Zn efficiency in cereals was causally related to enhanced capability of genotypes to take up Zn from soils and use it efficiently in tissues. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Heat stress during grain filling has been documented to decrease wheat grain yield and quality in arid regions worldwide. We studied the effect of heat stress on wheat flour quality in heat tolerant cultivars to define the effects of heat stress on flour quality and to identify germplasm combining traits for heat tolerance and good flour quality. We studied the kernel phenotypic traits, the expression of seed storage proteins (SSPs), and the resulting flour quality under heat and normal conditions. Under heat stress, all cultivars yielded narrow-shaped seeds, and increased protein contents as compared to the control plants grown under normal conditions. The specific sedimentation values used to estimate the gluten quality varied between cultivars. We identified cultivars that could maintain good flour quality under heat stress conditions: ‘Imam’, which possessed the Glu-D1d allele responsible for the suitable bread-making; ‘Bohaine’, which displayed high expression level of SSPs; and ‘Condor’, which possessed slight variations in the ratio of each SSP under heat stress conditions. Combining the desirable traits from these cultivars could yield a wheat cultivar with heat tolerance and good flour quality.  相似文献   

12.
基因型、地点及其互作对内蒙古小麦主要品质性状的影响   总被引:3,自引:0,他引:3  
选用来自我国春播麦区高、中、低3种筋力类型的9个品种, 于2003和2004年分别种植在内蒙古6个代表性地点, 研究了不同品种在年份和地点间籽粒硬度、蛋白质含量、和面仪参数和淀粉糊化特性等主要品质性状的变化规律。结果表明, 所测品质性状受基因型和地点效应的影响均达极显著水平, 除籽粒蛋白质含量外, 其他品质性状受基因型和地点互作效应的影响达显著或极显著水平。强筋类品种的蛋白质含量、灰分含量、沉降值、和面时间、耐揉性和峰值黏度均较高, 出粉率和稀澥值中等。中筋类品种出粉率、和面时间和耐揉性较高, 灰分含量、峰值黏度和稀澥值较低。弱筋类品种的灰分含量、峰值黏度和稀澥值较高, 籽粒硬度、蛋白质含量、出粉率、沉降值、和面时间、耐揉性低。所有品种品质性状在地点间存在较大差异, 乌海市灰分含量、和面时间和耐揉性高, 籽粒硬度、沉降值、峰值黏度和稀澥值较低。杭锦后旗出粉率高, 蛋白含量和沉降值较低, 其他性状表现中等。呼和浩特市籽粒硬度、蛋白含量、面粉灰分、沉降值、和面时间和耐揉性高, 出粉率、峰值黏度和稀澥值低。赤峰市多数性状表现中等。通辽市籽粒硬度、蛋白质含量、峰值黏度、稀澥值和耐揉性较高, 其他性状表现中等。额尔古纳市蛋白含量和沉降值较高, 和面时间和耐揉性低。初步认为强筋和中筋类品种较适于种植在呼和浩特市与乌海市, 不适于种植在额尔古纳市; 2个弱筋类品种在6个地点均不太适宜种植。  相似文献   

13.
对小麦淀粉和谷朊粉的生产方法,即面团水洗法和离心分离法进行了概述;论述淀粉与谷朊粉分离对面粉品质的要求,以及面粉主要组分(蛋白质、淀粉、非淀粉多糖、脂类)对小麦淀粉和谷朊粉分离效果的影响。  相似文献   

14.
Over recent years, quality has become an important commercial issue for durum wheat breeders. Modern breeding methods are most efficient for producing and supplying the best quality raw materials to the pasta industry. Here we assessed the effectiveness of molecular marker-assisted selection of quality traits in durum wheat. To this end, DNA and quality trait markers were jointly used to analyze quality-related traits in a durum wheat collection. A total of 132 durum wheat (Triticum turgidum ssp. durum) Mediterranean landraces, international lines, and Moroccan cultivars were analyzed for seven important qualityrelated traits including thousand-kernel weight (TKW), test weight (TW), gluten strength, yellow pigment (YP), and grain protein content (GPC). Additionally, 18 simple sequence repeat (SSR) markers previously reported to be associated with different quality traits were analyzed. Of these, 14 (78%) were polymorphic and four were monomorphic. There were between two and seven alleles per locus, with an average of four alleles per locus. The average phenotypic variation value (R2) ranged from 2.81 to 20.43%. Association analysis identified nine markers significantly associated with TKW, TW, and YP, followed by eight markers associated with GPC, six markers associated with yellow index b, four markers associated with brightness L, and three markers associated with SDS-sedimentation volume. This study highlights the efficiency of SSR technology, which holds promise for a wide range of applications in marker-assisted wheat breeding programs.  相似文献   

15.
Fifty-six bread wheat cultivars and advanced lines from major Chinese wheat growing regions and 10 Australian cultivars were grown in Anyang located in Yellow and Huai Valleys and Chengdu located in Yangtze region. The genotypes were examined for their suitability to produce northern style Chinese steamed bread (CSB) and used to investigate the association between wheat quality traits and performance of northern style CSB under manual and mechanized processing conditions. Anyang-sown wheat samples showed better grain quality characteristics and CSB quality than the Chengdu-sown materials. These differences were largely due to adverse climatic conditions prevailing in Chengdu that resulted in the deterioration of flour whiteness, Farinograph stability, and starch quality. Therefore, Chengdu was generally unfavorable for producing good quality wheat. However, significant variability among cultivars was observed in Chengdu, and Batavia, Dollar bird, and Tasman from Australia and Jing 411, Xiaoyan6, and Shaan 229 from China showed very good CSB quality under manual conditions, and Hartog, Batavia, Tasman, and Vulcan from Australia, and Jing 411 and Dongfeng 1from China were identified to confer good CSB quality under mechanized conditions. The wide range of CSB quality variations indicates that genetic improvement of CSB quality is possible in both environments. Protein content, gluten strength, and extensibility were positively associated with loaf volume and steamed bread elasticity. The relationship between gluten strength, extensibility, and appearance and stickiness were highly dependent on processing methods, i.e., negatively using a manual method and positively or slightly negatively using a mechanized process. Therefore, wheat quality requirement for CSB depends on CSB processing conditions. Medium protein content and medium-to-strong gluten strength with good extensibility is desirable for mechanized methods, but weak-to-medium gluten type for manual methods. High flour whiteness and RVA peak viscosity was found desirable for CSB quality regardless of the processing method used. Flour whiteness, falling number, and peak viscosity appeared to be more crucial in determining CSB quality in Chengdu, although protein content and Farinograph stability also contributed to appearance, elasticity, and stickiness. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Grain and flour samples of 42 high latitude spring bread wheat genotypes from Kazakhstan and Siberia evaluated in a multi-location trial were analyzed for grain concentrations of protein, zinc (Zn) and iron (Fe), as well as flour quality characteristics. The genotypes showed high grain protein concentrations (14–19%), but low dough strength was a common feature for most of them. Significant positive correlations were found between grain protein and flour protein, gluten, gliadin, gli/glu ratio, Zn, and Fe contents. Grain protein was also correlated positively with hardness, sedimentation, farinograph dough development time (DDT), stability time and ash content. Grain Fe concentration was positively associated with sedimentation, stability time, water absorption and valorimeter value, suggesting that improvements in micronutrient concentrations in the grain parallels enhancement in gluten strength. Interestingly, glutenin content correlated negatively with the concentrations of grain and flour protein, gluten, and minerals; and also with gluten deformation index (IDK), DDT, and stability time. Conversely, gliadin content showed strong positive correlations with the concentrations of grain and flour protein, gluten, and minerals. Gliadin also correlated positively, but in lesser magnitude, with DDT, stability time and IDK. Environment and G×E interaction were important sources of variation for some quality characteristics. This was reflected in the low broad sense heritability (H) values for traits related to flour strength, such as sedimentation, IDK, stability time and gliadin content. Breeding strategies, including three testing locations at the advanced selection stages, are adequate for the enhancement of most of the quality traits, but faster improvement in flour strength could be achieved with a larger number of locations.  相似文献   

17.
The reduced nutrient and water availability of the sorption‐weak silty sand soil in Thyrow when compared with the loamy sand soil in Berge enhanced the negative effects of unfavourable weather conditions. Winter wheat reacted to weather conditions and soil quality substantially more sensitively than winter triticale, so that the cultivation of wheat on very light sandy soil is combined with a higher risk. Reduced yields resulting from site differences are, for both cereals, mainly a result of reduced ear densities. Low grain yields as in the dry year 2003 led to high crude protein contents, this being more pronounced for winter wheat than for triticale and on the poor silty sand soil in Thyrow to a greater degree than on the loamy sand soil in Berge. For the starch content the contrary holds true. Grain yields were, to a greater extent, decisive for the protein and starch yields than the content values. For both cereals, the sedimentation value, the wet gluten value, the gluten index and the falling number resulted in principally higher values in the dry year 2003 and on the loamy sand soil when compared with the wet year 2004 and the silty sand soil. Only the wet gluten content was not clearly influenced by soil quality. All parameters describing bread‐making quality are clearly lower for winter triticale than for winter wheat. Especially, the falling number was not satisfactory, so that the tested triticale varieties seem only to be suitable for bread‐making by mixing with wheat flour. The internal grain quality of winter wheat varieties is extensively genetically determined. Weather and soil‐induced variations in the quality parameters were, with only few exceptions, greater for winter wheat than for triticale.  相似文献   

18.
Summary Among the cultivars of bread wheat, durum wheat and barley grown in the South of Italy, genetic variation for adaptation to the high temperature and drought stress conditions typical of the Mediterranean environment has been found.The basic data have been extrapolated from 5 years of Italian national network cultivar trials, where 20–30 cultivars were grown in replicated plot trials in 30–50 locations per year, including some where stress strongly affected grain yield.After careful identification of the most representative years and testing sites it was possible to characterise the cultivars on the basis of the grain yield in stress conditions and the Fischer & Maurer (1978) susceptibility index and to find genotypic differences sufficiently repeatable in years.The cultivars giving the best yield under stress associated with low susceptibility indices were in bread wheat: Etruria, Spada, Pandas, Centauro, Oderzo, Costantino and Gladio, in durum wheat: Aldura, Arcangelo, Adamello, Vespro and Capeiti, in barley: Fleuret, Barberousse, Jaidor, Express, Trebbia, Georgie, Dahlia, Criter and Magie.  相似文献   

19.
Wheat seed storage protein fingerprint is used to determine the gluten protein pattern in studies aimed at improving flour quality. Wild wheat with high seed protein content is used extensively in wheat breeding programs. Although the wild wheat growth and protein content may be influenced by environmental conditions, the gluten-protein pattern is generally considered as indicative of a genotype, without the superimposition of environmental influences. The effects of soil type, habitat, and deficiencies of N, P, K and S on seed storage protein composition were examined in nine accessions of wild wheat (Triticum turgidum var. dicoccoides) and three varieties (two T. aestivum and one T. durum). Soil from ten natural habitats of the wild wheat that had not previously received any fertilizers or manures was sampled and used to grow wheat in a greenhouse. Seed storage protein composition was characterized by SDS-PAGE. Although deficiencies in soil nutrient caused variations in the seed storage proteins, the genotype was the main factor determining the seed storage protein composition. Seed storage protein composition of genotypes varied when grown under different mineral nutrient conditions. Only one genotype was stable showing almost identical protein patterns under all growing conditions studied without any qualitative change in fingerprint pattern. In the other genotypes, as well as the cultivars, the seed storage protein was affected at least to some extent by the soil. The ‘soil effect’ is summarized in terms of three main quantitative changes in the seeds: 1 – the relative amounts of the high-molecular-weight proteins; 2 – the relative amounts of proteins in the range of 45 and 65 kD; 3 – the percentage distribution of the HMW glutenin and other groups of seed storage proteins. The soild induced also qualitative differences in the composition of seed storage proteins, mostly in those of 45–65 kD. These differences were observed whenever a deficiency of S, N, P, K or Mg was identified. Therefore, in breeding programs that use seed storage protein fingerprints of wild wheat germplasms should be exercise caution when the germplasms selected from wild habitats. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Under Mediterranean conditions, drought affects cereals production principally through a limitation of grain filling. In this study, the respective role of post‐anthesis photosynthesis and carbon remobilization and the contribution of flag leaf, stem, chaff and awns to grain filling were evaluated under Mediterranean conditions in durum wheat (Triticum turgidum var. durum) cultivars. For the purpose, we examined the effects of shading and excision of different parts of the plant and compared carbon isotope discrimination (Δ) in dry matter of flag leaf, stem, chaff, awns and grain at maturity and in sap of stem, flag leaf, chaff and awns, this last measurement providing information on photosynthesis during a short period preceding sampling. Source–sink manipulations and isotopic imprints of different organs on final isotope composition of the grain confirmed the high contribution of both carbons assimilated by ears and remobilized from stems to grain filling, and the relatively low contribution of leaves to grain filling. Grain Δ was highly and significantly associated with grain yield across treatments, suggesting the utilization of this trait as an indicator of source–sink manipulations effects on grain yield. Chaff and awns Δ were better correlated with grain Δ than stem and leaf Δ, indicating that chaff were more involved in grain filling than other organs. Moreover, in chaff, sap Δ was highly significantly correlated with dry matter Δ. These results suggest the use of Δ for a rapid and non‐destructive estimation of the variation in the contribution of different organs to grain filling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号