首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decline diseases are typically caused by complex abiotic and biotic interactions and characterized by a suite of symptoms indicative of low plant vigour. Diseased trees are frequently infected by Phytophthora, but the complex interactions between pathogen, host and the heterogeneous forest environment mask a comprehensive understanding of the aetiology. In the present study, we surveyed European beech (Fagus sylvatica) stands in Swiss forests with recent increases in bleeding lesions for the presence of Phytophthora. We used a combined approach of analysing soil and bark samples from trees displaying bleeding lesions and trees free from bleeding lesions. Soil baiting revealed a higher prevalence of Phytophthora spp. around trees with bleeding lesions than around trees without bleeding lesions. For the bark samples from bleeding lesions, we used several detection methods. Phytophthora spp. were detected in 74% of the trees by an immunological on‐site diagnostic kit, in 64% by a specific PCR assay, and 38% by isolation on selective media. All samples tested were negative for P. ramorum using qPCR. Overall, nine Phytophthora species were identified by ITS sequencing, the most common of which were P. plurivora, P. gonapodyides, P. × cambivora and P. syringae. We identified distinct species in bleeding lesions and the rhizosphere of the same host tree which suggests a multispecies Phytophthora disease patterns in these declining beech. Among the recovered species, P. × cambivora and P. × serendipita were identified as hybrid genotypes with the former abundant in bleeding lesions.  相似文献   

2.
Phytophthora ramorum is the causal agent of the sudden larch death epidemic in Ireland and the UK. Within the EU, it is a quarantine pathogen and eradication measures are required if it is detected in horticultural or forest environments. Eradication measures in forests include the clearance of susceptible tree hosts from the infected stand along with all host known to support pathogen sporulation within a 250‐m buffer zone of the infected stand. Between 2010 and 2016, these measures have affected over 18,000 ha of Larix kaempferi forests in Ireland and the UK, but the epidemic continues to spread. An assessment of the efficacy of the eradication measures has not been published to date. Here, we provide details of the detection frequency of P. ramorum from aerial (rainwater) and terrestrial (soil, watercourses, plant material) sources in three forest locations in Ireland that had significant areas of L. kaempferi affected by P. ramorum before their removal. Monitoring of six plots with differing infection and eradication management histories was carried out from September 2013 to 2015. Presence of P. ramorum was confirmed by plating plant material onto selective media, followed by morphological identification. Phytophthora ramorum was detected in 65 of 1283 samples, in all sample types and in 17 of the 20 months sampled. Only three of the 295 soil samples were positive for P. ramorum, with all of these coming from an area under perennial standing water. The most positive samples came from a plot where symptomatic Larix trees had not been removed and the findings occurred consistently over the 2‐year study. Plots where infected Larix had been removed were rarely positive for P. ramorum across all the sample types indicating a level of success from the eradication measures in reducing pathogen levels on the sites.  相似文献   

3.
Phytophthora ramorum, the cause of sudden oak death and ramorum blight, has three major clonal lineages and two mating types. Molecular tests currently available for detecting P. ramorum do not distinguish between clonal lineages and mating type is determined by cultural methods on a limited number of samples. In some molecular diagnostic tests, cross‐reaction with other closely related species such as P. hibernalis, P. foliorum or P. lateralis can occur. Regions in the mitochondrial gene Cox1 are different among P. ramorum lineages and mitochondrial genotyping of the North American and European populations seems to be sufficient to differentiate between mating types, because the EU1 lineage is mostly A1 and both NA1 and NA2 lineages are A2. In our study, we were able to identify P. ramorum isolates according to lineage using polymerase chain reaction‐restriction fragment‐length polymorphism (PCR‐RFLP) of the Cox1 gene, first by using ApoI to separate P. ramorum from other species and EU1 from North American populations, and then AvaI to distinguish between NA1 and NA2 genotypes. However, P. foliorum had the same restriction profile as P. ramorum NA1 isolates.  相似文献   

4.
During the course of surveys for Phytophthora ramorum in coastal forests of California and Oregon, P. nemorosa and P. pseudosyringae were frequently isolated from foliage and stems of the same hosts as P. ramorum. Both species ranged from central California to Oregon within 50 km of the Pacific Ocean. Both were also found in the Sierra Nevada Mountains. Phytophthora nemorosa was primarily found infecting trees in coast redwood forests and was most often isolated from bay laurel leaves (Umbellularia californica), bleeding cankers on the main bole of tanoak (Lithocarpus densiflorus), and leaf and small stem tissue of redwood (Sequoia sempervirens). Phytophthora pseudosyringae was primarily isolated from hosts found in coast live oak woodlands. Bay laurel was the most common host while infection of coast live oak (Quercus agrifolia) stems was less frequent. Inoculation studies confirmed the pathogenicity of P. nemorosa and P. pseudosyringae on their most common hosts.  相似文献   

5.
Following the discovery in 2008 of Phytophthora lateralis in forest soil under old‐growth yellow cedar (Chamaecyparis obtusa var. formosana) in north‐east Taiwan, further sampling was undertaken in the same region. Soil, root and symptomatic foliage samples were collected from five separate sites where C. obtusa was the dominant species in cloud forests at ca. 1800–2500 m. Soil and fine root samples were baited with cedar needles; both direct isolation and cedar needle baiting were used on foliage samples. Phytophthora lateralis was obtained from soil at three of the sites, but only from three of the 27 soil samples overall. Only one of 25 root samples yielded the pathogen, and this was associated with infested soil. Three foliage samples with symptoms visible as dark brown to black frond tips also yielded P. lateralis; these came from two different sites. This is the first record of P. lateralis infecting the foliage of C. obtusa. Moreover, when some of the symptomatic Chamaecyparis foliage segments were incubated, sporangia of P. lateralis formed on the necrotic tissues, sometimes in the axils of needle segments. The study provides evidence that P. lateralis has both a soil/root infecting phase and an aerial or foliar infecting phase in Taiwan, which is consistent with its unusual combination of water‐dispersed (non‐papillate) and aerially dispersed (caducous) sporangia. It also demonstrates the importance of investigating the biology, aetiology and ecological behaviour of Phytophthoras in their native, endemic environments.  相似文献   

6.
During the past decade, and in particular after the wet year 2002 and the dry year 2003, an increasing number of trees and stands of European beech (Fagus sylvatica L.) in Bavaria were showing symptoms typical for Phytophthora diseases: increased transparency and crown dieback, small‐sized and often yellowish foliage, root and collar rot and aerial bleeding cankers up to stem heights of >20 m. Between 2003 and 2007 134 mature beech stands on a broad range of geological substrates were surveyed, and collar rot and aerial bleeding cankers were found in 116 (86.6%) stands. In most stands the majority of beech trees were declining and scattered or clustered mortality occurred. Bark and soil samples were taken from 314 trees in 112 stands, and 11 Phytophthora species were recovered from 253 trees (80.6%) in 104 stands (92.9%). The most frequent species were P. citricola, P. cambivora and P. cactorum. Primary Phytophthora lesions were soon infected by a series of secondary bark pathogens, including Nectria coccinea, and wood decay fungi. In addition, infected trees were often attacked by several bark and wood boring insects leading to rapid mortality. Bark necroses were examined for their probable age in order to determine whether the onset of the current Phytophthora epidemic was correlated to rainfall rates recorded at 22 Bavarian forest ecosystem monitoring stations. A small‐scale survey in nine Bavarian nurseries demonstrated regular infestations of all beech fields with the same range of Phytophthora species. The results indicate that (1) Phytophthora species are regularly associated with beech decline and may also be involved in the complex of ‘Beech Bark Disease’, (2) excessive rainfalls and droughts are triggering the disease, and (3) widespread Phytophthora infestations of nursery stock might endanger current and future silvicultural projects aiming on the replacement of non‐natural conifer stands by beech dominated mixed stands.  相似文献   

7.
Cherry laurel (Prunus laurocerasus) is a native plant species in Serbian forests, but is also widely used for ornamental plantings. Following two extremely wet summers in 2014 and 2015, in spring and summer of 2016 and 2017, numerous cherry laurel plants with symptoms indicative for Phytophthora diseases, like wilting and chlorosis of leaves, dieback and bleeding bark necroses, were recorded in a park in Belgrade and in two ornamental nurseries in central Serbia. From necrotic bark samples and rhizosphere soil, self‐sterile Phytophthora isolates with woolly colonies were obtained. Due to the production of ellipsoid and elongated, non‐papillate sporangia in water and of ornamented oogonia with two‐celled antheridia in mating tests with tester strains of both Phytophthora × cambivora and P. cryptogea, these isolates were identified as P. ×cambivora which was confirmed by ITS sequence analysis. Pathogenicity of P. ×cambivora from cherry laurel (PCCL) was tested by inoculating one‐year‐old seedlings of cherry laurel under the bark. P. ×cambivora from European beech (PCB), and isolates of P. cactorum (CAC), P. cryptogea (CRY), P. plurivora (PLU) and P. ×serendipita (SER) were included as comparison. Three and a half months after inoculation, nine of the twelve plants in PCB, three in PCCL and CAC and two in PLU declined with longitudinal necroses and chlorosis, wilting and premature shedding of leaves. These results demonstrate the ability of P. ×cambivora to infect and cause decline of cherry laurel plants. The particularly high aggressiveness of the P. ×cambivora isolate from beech shows that this pathogen poses a serious risk to cherry laurel in the rare natural communities of cherry laurel and beech in Serbia.  相似文献   

8.
Seven different Phytophthora species were used to test the foliar susceptibility of the common eastern US oak species and understory plants to Phytophthora infection. The Phytophthora species employed were Phytophthora cambivora, Phytophthora cinnamomi, Phytophthora citricola, Phytophthora europaea, Phytophthora quercetorum, Phytophthora quercina‐like and Phytophthora sp1. Inoculation of detached‐leaves with agar plugs containing mycelia of Phytophthora provided an estimate of their relative susceptibility. Lesions were always greater when foliage was wounded and young. On deciduous plants, lesion sizes were considerably reduced with the increasing foliar age, although with evergreen plants lesion sizes remained similar regardless of foliar age when more aggressive isolates were tested. Infections seldom resulted when foliage was not wounded. With young and mature foliage, P. citricola usually produced the largest lesions. Young foliage of Quercus rubra was the most susceptible to infection followed by Castanea dentata for both wounded and non‐wounded inoculations. Mature foliage of Hamamelis virginiana, Kalmia latifolia and Quercus alba were the most susceptible to wound and non‐wound inoculations.  相似文献   

9.
In recent years, Common ash (Fraxinus excelsior) throughout Europe has been severely impacted by a leaf and twig dieback caused by the hyphomycete Chalara fraxinea. The reasons for its current devastating outbreak, however, still remain unclear. Here, we report the presence of four Phytophthora taxa in declining ash stands in Poland and Denmark. Phytophthora cactorum, Phytophthora plurivora, Phytophthora taxon salixsoil and Phytophthora gonapodyides were isolated from rhizosphere soil samples and necrotic bark lesions on stems and roots of mature declining ash trees in four stands. The first three species proved to be aggressive to abscised roots, twigs and leaves of F. excelsior in inoculation experiments. Soil infestation tests also confirmed their pathogenicity towards fine and feeder roots of ash seedlings. Our results provide first evidence for an involvement of Phytophthora species as a contributing factor in current decline phenomena of F. excelsior across Europe. Specifically, they may act as a predisposing factor for trees subsequently infected by C. fraxinea. Phytophthora species from ash stands also proved to be aggressive towards a wide range of tree and shrub species commonly associated with F. excelsior in mixed stands. Although damage varied considerably depending on the Phytophthora species/isolate–host plant combination, these results show that many woody species may be a potential source for survival and inoculum build‐up of soilborne Phytophthora spp. in ash stands and forest ecosystems in general.  相似文献   

10.
Phytophthora species secrete several proteins during their interaction with plants. Some of these proteins manipulate host metabolism favouring infection, while others can be recognized by plants thus triggering defence. Elicitins are known to elicit plant defences, leading to resistance. Here, we characterized the elicitin α‐plurivorin and proved that it was essential for the virulence of Phytophthora plurivora towards Fagus sylvatica. The immunodepletion of this peptide impaired its penetration into host tissue and in parallel P. plurivora lost its ability to colonize beech roots. Furthermore, the lack of α‐plurivorin inside the host led to an up‐regulation of several defence‐related genes of both salicylic acid and jasmonate/ethylene pathways, suggesting that α‐plurivorin might act as an effector‐triggered susceptibility during infection. Consequently, plants survived infection with P. plurivora after α‐plurivorin immunodepletion, whereas the majority of the infected control plants had died at the end of the experiment. Because canonical elicitins are ubiquitously secreted by many Phytophthora species, it is possible that these molecules may play a similar role in other susceptible interactions, being a potential target for controlling Phytophthora diseases.  相似文献   

11.
In this study, we investigated whether birds could be vectors facilitating long‐distance spread of Phytophthora ramorum in Britain. Migratory bird species associated with the main sporangium‐producing host plants and most likely to pick up P. ramorum spores were considered. Swabs were taken from the flank and “feet” of 1,014 birds over a 12‐month period (April 2011–March 2012) in the west of Britain and subsequently analyzed for the presence of P. ramorum using nested PCR. Ten positive samples from 10 birds were identified: three in Cornwall, one in Devon, three in Gloucestershire, two in north Wales and one in Merseyside. Phytophthora ramorum was detected on samples from four species of thrushes (Redwing Turdus iliacus, Fieldfare T. pilaris, Blackbird T. merula and Song Thrush T. philomelos) and one species of warbler (Chiffchaff Phylloscopus collybita). All birds that tested positive were sampled in late autumn and winter (October–February), when long‐distance movements (over 100 km) would have stopped. The low incidence of P. ramorum found using PCR suggests that the incidence of inoculum, whether viable or not, on birds was low. The apparently low incidence of inoculum on birds suggests migratory passerine birds can carry P. ramorum inoculum on their feathers and “feet,” albeit at low frequency. The dates of positive samples indicate that birds would not have been moving long distances at the time but further work is needed to estimate the extent of their contribution to the spread of P. ramorum in Britain.  相似文献   

12.
Variation in virulence was examined among isolates of Phytophthora ramorum from epidemiologically important or infectious (non‐oak) and transmissive dead‐end (oak) hosts from North America. Twelve isolates representative of the genetic, geographic and host range of P. ramorum in the western United States were inoculated on leaves of Umbellularia californica (bay laurel or bay) and stems of Quercus agrifolia (coast live oak). In spite of extreme genetic similarity among the isolates employed, and even within the same genotype, significant differences in lesion size were measured, suggesting virulence in this pathogen is also controlled by epigenetic factors. A strong positive correlation between lesion size on bay laurel and coast live oak provides experimental evidence P. ramorum is a generalist pathogen that lacks host specificity. Isolates from non‐transmissive oaks were significantly less pathogenic both on oaks and bays than isolates from infectious hosts. These results are essential to further our understanding of the epidemiology and evolutionary potential of this pathogen. A quantitative differential in virulence of isolates from hosts with different epidemiological roles has been described for many animal diseases, but is a novel report for a plant disease.  相似文献   

13.
Sweet chestnut (Castanea sativa) is an important tree species in the Marmara and Aegean regions of Turkey as these two regions produce the great majority of edible nuts, especially those used for marron glacé production. Chestnut forests and orchards in these regions showing severe dieback symptoms not associated with chestnut blight were investigated to determine the role of Phytophthora spp. in the decline syndrome. Soil samples were collected from around 108 symptomatic chestnut trees at 29 sites and Phytophthora spp. isolated using soil baiting technique and selective medium. Species isolated were identified by cultural characteristics and ITS sequencing. Phytophthora cambivora was the dominant species detected in 13 sites, followed by P. cinnamomi (5 sites), P. plurivora (3 sites) and P. cryptogea (1 site). Phytophthora x cambivora was present in both regions, while P. cinnamomi was found only in the Marmara region in coastal areas around Istanbul. When inoculated at the stem bases of 3‐year‐old chestnut saplings, P. cinnamomi produced significantly longer necrotic lesions (7.8–12.0 cm) than P. x cambivora (2.6–6.3 cm) by 12 days after inoculation. Phytophthora plurivora was the least aggressive species causing only small lesions. Phytophthora cryptogea, which represents the first record on chestnut in Turkey, produced intermediate sized lesions in between P. x cambivora and P. plurivora. These results indicate that P. x cambivora and in some areas P. cinnamomi play major roles in the observed dieback of sweet chestnut in western Turkey.  相似文献   

14.
Eucalyptus grandis and its hybrids, as well as Acacia mearnsii, are important non‐native trees commonly propagated for forestry purposes in South Africa. In this study, we conducted pathogenicity trials to assess the relative importance of five commonly isolated Phytophthora spp. (Phytophthora alticola, P. cinnamomi, P. frigida, P. multivora and P. nicotianae) from the plantation environment on E. grandis and A. mearnsii seedlings. Overall E. grandis was more susceptible to the tested Phytophthora spp. than A. mearnsii. Phytophthora cinnamomi was the only pathogen that had a significant negative effect on both the host tree species, leading to a reduction in root and shoot weight as well as to death in the case of E. grandis. Phytophthora alticola and P. nicotianae exclusively affected E. grandis and A. mearnsii, respectively. This study updated the current knowledge on the pathogenicity of Phytophthora spp. on two important non‐native commercially propagated tree species from South Africa.  相似文献   

15.
The epidemic of bud rot disease affecting oil palm in Colombia is primarily caused by Phytophthora palmivora. The pathogen has a cosmopolitan presence that includes Southeast Asia, but to date, bud rot has not been reported in this region. This study provides an overview of the potential risk of Malaysian P. palmivora isolates cross‐infecting other host species, including cocoa, durian, rubber and Malaysian oil palm planting materials (Dura × Pisifera, D × P). On cocoa pods, the durian isolate PP7 caused dark brown necrotic lesions. Detached leaf bioassays showed that P. palmivora isolates PP3 and PP7 infected different hosts, except rubber foliage without wounding. Inoculation tests on cocoa, durian and rubber seedlings caused brown necrotic lesions when stems were wounded, with 10% mortality in cocoa and durian at 17 days post‐inoculation (dpi). However, no further infection was observed, and lesions closed within 14–28 dpi on the non‐wounded seedlings. Pathogenicity tests of oil palm seedlings inoculated with isolates PP3 and PP7 indicated that Malaysian P. palmivora isolates were not pathogenic to oil palms based on localized infection observed only through wounding. Overall, the work demonstrated that Malaysian P. palmivora isolates were able to cross‐infect multiple hosts but did not show severe infections on oil palms.  相似文献   

16.
The foliage of seven different genera of conifers including 10 species and 17 different cultivars was tested for its susceptibility against two isolates of Phytophthora lateralis from two different lineages. Detached green shoot tips were floated in zoospore suspension and the lesion size was assessed after 7 days. xCupressocyparis leylandii, Juniperus media and Cedrus deodara were the most resistant hosts, whereas Chamaecyparis obtusa was most susceptible. Thuja plicata and Thuja occidentalis, Chamaecyparis pisifera and Chamaecyparis lawsoniana, Taxus baccata and Cupressus macrocarpa were of medium susceptibility. For comparison, a small subset of four hosts was also tested for stem susceptibility. The stems of whole potted plants were inoculated with the same two isolates as used for the leaf susceptibility tests. Chamaecyparis lawsoniana was highly susceptible, whereas the stems of xC. leylandii, T. baccata and T. plicata were not susceptible. Most conifers were similarly affected by both tested lineages of P. lateralis although the isolate of the Pacific Northwest lineage caused slightly longer lesions on C. lawsoniana in the stem inoculation tests.  相似文献   

17.
Described as one of the most destructive pathogens of agricultural crops and forest trees, Phytophthora is a genus of microorganisms containing over 100 known species. Phytophthora alni has caused collar and root disease in alders throughout Europe, and a subspecies has recently been isolated in North America. Reports of canopy dieback in red alder, Alnus rubra, prompted a survey of their overall health and to determine whether P. alni was present in western Oregon riparian ecosystems. Over 1100 Phytophthora isolates were recovered, representing 20 species and 2 taxa. Phytophthora‐type cankers were observed in many trees, and their incidence was positively correlated with canopy dieback. High levels of mortality for red alder were not observed, which suggests these Phytophthora species are not aggressive pathogens. To test this hypothesis, three stem wound inoculations and one root dip were conducted on red alder seedlings using 13 Phytophthora species recovered from the riparian survey. Ten of the 13 Phytophthora species produced significant lesions in at least one pathogenicity test. Phytophthora siskiyouensis produced the largest lesions on red alder from the two stem wound inoculation tests conducted under summer conditions, while P. taxon Pgchlamydo caused the largest lesions during the winter stem wound inoculation test. Phytophthora gonapodyides, P. taxon Pgchlamydo and P. siskiyouensis have previously been found associated with necrotic alder roots and bole cankers in the field, and with the pathogenicity results reported here, we have established these species as causes of Phytophthora root disease and Phytophthora bole canker of alder in Oregon. While none of the Phytophthora species were especially aggressive towards red alder in the pathogenicity tests, they did cause localized disease symptoms. By weakening the root systems or boles of alders, the Phytophthoras could be leaving alders more susceptible to other insects and pathogens.  相似文献   

18.
Twelve active ingredients were screened for their ability to control foliage disease caused by Phytophthora kernoviae and Phytophthora pluvialis. Inhibition of mycelial growth and sporangial production of both pathogens were assessed in in vitro assays after exposure to three concentrations of each active ingredient. While most of these active ingredients inhibited mycelial growth in vitro, due to their widespread use, phosphite, copper oxychloride and metalaxyl‐M were selected for further study. Four rates of each active ingredient were applied to two Pinus radiata genotypes, and detached needle assays at 6 and 90 days post‐treatment were used to determine treatment efficacy and persistence. Untreated needles showed significantly larger lesions than all fungicide‐treated needles after exposure to P. pluvialis or P. kernoviae on both sampling dates. Efficacy and persistence of the three active ingredients did not increase with increase in concentration. Larger lesions were formed on more susceptible genotype after inoculation with both Phytophthora species, even when higher rates of active ingredients were applied. Phosphite, copper oxychloride and metalaxyl‐M have potential to protect commercially planted P. radiata from these two Phytophthora species.  相似文献   

19.
Phytophthora ramorum is the oomycete pathogen responsible for Sudden Oak Death on the West Coast of the USA and Sudden Larch Death in the British Isles. It also causes twig dieback and leaf blight on a series of ornamental hosts (e.g. Rhododendron, Viburnum, Pieris and Camellia) commonly grown in plant nurseries, traded by garden centres and cultivated in public and private gardens. The role of the plant trade in the dispersal of P. ramorum has been well documented, but there is a need for regional analyses of which environmental variables can predict disease expression in the trade and in the wild, so as to be able to better predict the further development of this worldwide plant health issue. In this study, we analyse data on the incidence of P. ramorum (2002–2009, thus before the reports in Japanese larch plantations) in counties in England and Wales as a function of environmental variables such as temperature and rainfall, controlling for confounding factors such as county area, human population and spatial autocorrelation. While P. ramorum county incidence in nurseries and retail centres was positively related to county area and human population density, county incidence in gardens and the wild did not show such correlations, declined significantly towards the East and was positively correlated with disease incidence in the trade. The latter finding, although not conclusively proving causation, suggests a role of the trade in the dispersal of this pathogen across English and Welsh landscapes. Combined together, P. ramorum county incidence in the trade and in the semi‐natural environment increased with increasing precipitation and with declining latitude. This study shows the importance of environmental variables in shaping regional plant epidemics, but also yields results that are suggestive of a role of people in spreading plant diseases across entire countries.  相似文献   

20.
Phytophthora ramorum is an invasive plant pathogen and the cause of considerable and widespread damage in nurseries, gardens and natural woodland ecosystems of the USA and Europe. It is considered to be a significant plant disease as it could cause biodiversity loss and severe economic losses in plant industries in areas where it is not yet known to exist, such as Australasia. Foliar susceptibility and sporulation potential were tested using detached‐leaf assays for 70 Australian native plant species sourced from established gardens and arboreta in California using a NA2 isolate of P. ramorum. Correa‘Sister Dawn’, Eucalyptus regnans, Isopogon cuneatus, I. formosus, Leptospermum scoparium, L. lanigerum and Melaleuca squamea were identified as potentially highly susceptible host species. Hedycarya angustifolia, Olearia argophylla, Phyllocladus aspleniifolius, Pittosporum undulatum and Podocarpus lawrencei were identified as potentially resistant. All 70 species were able to be infected with P. ramorum, as confirmed by reisolation. Putative sporulating hosts include five members of the Myrtaceae, Agonis flexuosa, Corymbia ficifolia, Eucalyptus haemastoma, E. delegatensis and E. viminalis. As a part of a precautionary strategy, the potentially highly susceptible species found in this study are suitable candidates for targeted surveillance programmes in high‐risk incursion areas of Australia and within the global horticultural trade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号