首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Content of aroma compounds and catalytic activity of lipoxygenase (LOX), hydroperoxide lyase (HPL), and alcohol dehydrogenase (ADH) were analyzed in 4- and 15-mm unblanched leek slices packed in atmospheric air (4- and 15-mm) or 100% nitrogen (N) (only 15-mm) seven times during 12 months of frozen storage (12M). Total amount of sulfur compounds was influenced by storage time, slice thickness, and atmosphere (concentration in fresh 4-mm slices = 17.8 mg/L, 4-mm 12M = 3.48 mg/L, fresh 15-mm slices = 2.48 mg/L, 15-mm 12M = 0.418 mg/L and 15-mm N 12M = 1.81 mg/L). The 4-mm slices significantly developed the most aldehydes after 12M (total amount = 9.28 mg/L) compared to 15-mm 12M (6.49 mg/L) and 15-mm N 12M (4.33 mg/L). LOX activity is positively influenced by nitrogen packaging, and HPL activity is influenced by slice thickness, whereas ADH is unaffected by both parameters.  相似文献   

2.
The content of aroma compounds and the catalytic activity of lipoxygenase (LOX), alliinase, hydroperoxide lyase (HPL), and alcohol dehydrogenase (ADH) were analyzed in unblanched and blanched 15-mm leek slices packed in atmospheric air (21% O2) or 100% nitrogen (0% O2) three times during 12 months of frozen storage (12 M). The total amount of sulfur compounds and the total amount of aldehydes were greatly influenced by storage time, atmosphere, and blanching [concentration of sulfur compounds in fresh unblanched (UNB) slices = 1.35 mg/L, fresh blanched (B) slices = 1.09 mg/L, UNB 21% O2 12 M = 0.656 mg/L, UNB 0% O2 12 M = 2.11 mg/L, B 21% O2 12 M = 1.14 mg/L, B 0% O2 12 M = 1.59 mg/L]. B 0% O2 was closest to the original ratio between sulfur compounds and aldehydes after 12 months. The activities of HPL and alliinase were totally lost after 12 months, and ADH showed minimal activity, whereas LOX (UNB 0% O2) showed approximately 25% of the original activity. LOX was the most and HPL the least heat labile enzyme investigated.  相似文献   

3.
The content of aroma compounds and the catalytic activity of lipoxygenase (LOX), alliinase, hydroperoxide lyase (HPL), and alcohol dehydrogenase (ADH) were analyzed in unblanched and blanched 15-mm leek slices packed in atmospheric air (21% O2) or 100% nitrogen (0% O2) three times during 12 months of frozen storage (12 M). The total amount of sulfur compounds and the total amount of aldehydes were greatly influenced by storage time, atmosphere, and blanching [concentration of sulfur compounds in fresh unblanched (UNB) slices = 1.35 mg/L, fresh blanched (B) slices = 1.09 mg/L, UNB 21% O2 12 M = 0.656 mg/L, UNB 0% O2 12 M = 2.11 mg/L, B 21% O2 12 M = 1.14 mg/L, B 0% O2 12 M = 1.59 mg/L]. B 0% O2 was closest to the original ratio between sulfur compounds and aldehydes after 12 months. The activities of HPL and alliinase were totally lost after 12 months, and ADH showed minimal activity, whereas LOX (UNB 0% O2) showed approximately 25% of the original activity. LOX was the most and HPL the least heat labile enzyme investigated.  相似文献   

4.
Three continuous assays are described for lipoxygenase (LOX), hydroperoxide lyase (HPL) and alcohol dehydrogenase (ADH) in leek tissue. The catalytic activity of LOX showed significant difference (significance level 5%) between linolenic acid (9.43 x 10(-)(4) katals per kg protein) and linoleic acid (2.53 x 10(-)(4) katals per kg protein), and the pH-optimum of LOX was 4.5-5.5 against linoleic acid. The catalytic activity of HPL was statistically the same for 9-(S)-hydroperoxy-(10E,12Z)-octadecadienoic acid (1.01 x 10(-)(2) katals per kg protein) and 13-(S)-hydroperoxy-(9Z,11E)-octadecadienoic acid (7.69 x 10(-)(3) katals per kg protein). ADH showed a catalytic activity of 5.01 x 10(-)(4) katals/kg of protein toward hexanal. Model experiments with crude enzyme extract from leek mixed with linoleic acid or linolenic acid demonstrated differences in the amount of produced aroma compounds. Linoleic acid resulted in significantly most hexanal, heptanal, (E)-2-heptenal, (E)-2-octenal, (E,E)-2,4-decadienal, pentanol, and hexanol, whereas linolenic acid resulted in significantly most (E)-2-pentenal, (E)-2-hexenal, (E,Z)-2,4-heptadienal, (E,E)-2,4-heptadienal, and butanol. Leek LOX produced only the 13-hydroperoxide of linoleic acid and linolenic acid.  相似文献   

5.
The odor active compounds in freshly cut leek slices and in blanched and unblanched leek slices stored for 12 months were investigated by a detection frequency method. Fifteen judges were evaluating the three samples randomized. The most important aroma compounds in the freshly cut leek slices were dipropyl disulfide, methyl propenyl disulfide, pentanal, decanal, and propyl propenyl disulfide in order of priority. When stored frozen and unblanched for 12 months, the aroma composition changed and the most important compounds became pentanal, decanal, 2,5-dimethyl furan, unknown compound I, and dipropyl disulfide. Blanching before freezing prevented to some degree these changes but also reduced the perceived intensity of the aroma compounds. The most important aroma compounds in the blanched sample were dipropyl disulfide, unknown compound I, pentanal, 2,5-dimethyl furan, and propyl propenyl disulfide.  相似文献   

6.
The major aroma compounds of commercial sweet cream AA butter quarters were analyzed by GC-olfactometry and GC-MS combined with dynamic headspace analysis (DHA) and solvent-assisted flavor evaporation (SAFE). In addition, the effect of long-term storage (0, 6, and 12 months) and type of wrapping material (wax parchment paper vs foil) on the aroma components and sensory properties of these butters kept under refrigerated (4 degrees C) and frozen (-20 degrees C) storage was evaluated. The most intense compounds in the aroma of pasteurized AA butter were butanoic acid, delta-octalactone, delta-decalactone, 1-octen-3-one, 2-acetyl-1-pyrroline, dimethyl trisulfide, and diacetyl. The intensities of lipid oxidation volatiles and methyl ketones increased as a function of storage time. Refrigerated storage caused greater flavor deterioration compared with frozen storage. The intensity and relative abundance of styrene increased as a function of time of storage at refrigeration temperature. Butter kept frozen for 12 months exhibited lower styrene levels and a flavor profile more similar to that of fresh butter compared to butter refrigerated for 12 months. Foil wrapping material performed better than wax parchment paper in preventing styrene migration into butter and in minimizing the formation of lipid oxidation and hydroxyl acid products that contribute to the loss of fresh butter flavor.  相似文献   

7.
Methanol extracts of various plant parts of Ailanthus altissima were tested against the root knot nematode Meloidogyne javanica . Extracts of bark (ABE), wood (AWE), roots (ARE), and leaves (ALE) from A. altissima were investigated against freshly hatched second-stage juveniles (J(2)). AWE was the most active extract, with EC(50/3d) of 58.9 mg/L, while ALE, ARE, and ABE did not show nematicidal activity. The chemical composition of the extracts of A. altissima was determined by gas chromatography-mass spectrometry, and (E,E)-2,4-decadienal, (E)-2-undecenal, (E)-2-decenal, hexanal, nonanal, and furfural were the most prominent constituents. (E,E)-2,4-Decadienal, (E)-2-decenal, and furfural showed the highest nematicidal activity against M. javanica , with EC(50/1d) = 11.7, 20.43, and 21.79 mg/L, respectively, while the other compounds were inactive at the concentrations tested. The results obtained showed that AWE and its constituents (E,E)-2,4-decadienal and (E)-2-decenal could be considered as potent botanical nematicidal agents.  相似文献   

8.
Carrots (Daucus carota L.) of cv. Bolero and cv. Carlo were processed into shreds and stored for up to 4 months at -24 degrees C (frozen storage), or the roots were stored for up to 4 months at 1 degrees C (refrigerated storage) followed by processing into shreds. Volatiles from the carrot shreds were collected by dynamic headspace technique and analyzed by GC-FID, GC-MS, GC-MS/MS, and GC-O to determine the volatile composition and aroma active components of carrots stored under different temperature conditions. A total of 52 compounds were quantified, of which mono- and sesquiterpenes accounted for approximately 99% of the total volatile mass. Major volatile compounds were (-)-alpha-pinene, beta-myrcene, (-)-limonene, (+)-limonene, (+)-sabinene, gamma-terpinene, p-cymene, terpinolene, beta-caryophyllene, alpha-humulene, and (E)- and (Z)-gamma-bisabolene. A considerable increase in the concentration of mono- and sesquiterpenes was observed during refrigerated storage, whereas the concentration of terpenoids was around the same level during frozen storage. GC-O revealed that the major volatiles together with (+)-alpha-pinene, (-)-beta-pinene, (+)-beta-pinene, 6-methyl-5-hepten-2-one, (-)-beta-bisabolene, beta-ionone, and myristicin had an odor sensation, which included notes of "carrot top", "terpene-like", "green", "earthy", "fruity", "citrus-like", "spicy", "woody", and "sweet".  相似文献   

9.
Freshness of ice-stored sardine was assessed by two sensory methods, the quality index method (QIM) and the European Union freshness grading system, and by instrumental means using the method of aroma extract dilution analysis. Screening of sardine potent volatiles was carried out at three freshness stages. In the very fresh state, the plant-like fresh volatiles dominated the odor pattern, with the exception of methional. Overall odor changes in sardine throughout storage correlated with changes in the concentration of some potent volatiles: after 2 days of ice storage, (Z)-4-heptenal, (Z)-1,5-octadien-3-one, and methional imparted an overall "fishy" odor character to sardine, whereas at a lower sensory grade (B), the compounds (E)-2-nonenal and (E,Z)-2,6-nonadienal could be, in part, associated with the slightly rancid aroma top notes. Trimethylamine was detected as a highly volatile odorant using solid-phase microextraction (SPME) headspace analysis of refrigerator-stored sardine. Intensity and sensory characteristics of some SPME determined volatiles, for example, 3-methylnonane-2,4-dione, were closely related to overall odor changes. SPME headspace analysis may be useful in the characterization of off-flavors in fish.  相似文献   

10.
Volatiles from stored Kuerle fragrant pears (Pyrus serotina Reld) were studied using high-resolution gas chromatography and the solid-phase microextraction (SPME) method of gas chromatography/mass spectrometry (GC/MS). The dominant components were hexanal, ethyl hexanoate, ethyl butanoate, ethyl acetate, hexyl acetate, ethanol, alpha-farnesene, butyl acetate, and ethyl (E,Z)-2,4-decadienoate. By using GC-olfactometry, it demonstrated that the volatile compounds from SPME were responsible for the aroma of the Kuerle fragrant pear. The levels of sugars, organic acids, and phenolic acids in Kuerle fragrant pears were investigated using high-performance liquid chromatography (HPLC). Fructose was the dominant sugar, followed by glucose and sucrose. With increasing storage time, sucrose levels decreased; however, changes in fructose and glucose levels were not remarkable. There was a slight decrease in flesh firmness during storage. The general soluble solids concentration (SSC) declined slightly after 5 months storage. Some aroma-related volatile components increased during storage, while others decreased, especially the esters. The organic acids and phenolic acids also changed. The flavor of the Kuerle fragrant pears was affected by the change of volatile compounds and changes in chemical and physical properties.  相似文献   

11.
Using a dynamic headspace system with Tenax trap, GC-MS, GC-olfactometry (GC-O), and multivariate analysis, the aroma chemistry of six distinctly different rice flavor types (basmati, jasmine, two Korean japonica cultivars, black rice, and a nonaromatic rice) was analyzed. A total of 36 odorants from cooked samples were characterized by trained assessors. Twenty-five odorants had an intermediate or greater intensity (odor intensity >or= 3) and were considered to be major odor-active compounds. Their odor thresholds in air were determined using GC-O. 2-Acetyl-1-pyrroline (2-AP) had the lowest odor threshold (0.02 ng/L) followed by 11 aldehydes (ranging from 0.09 to 3.1 ng/L), guaiacol (1.5 ng/L), and 1-octen-3-ol (2.7 ng/L). On the basis of odor thresholds and odor activity values (OAVs), the importance of each major odor-active compound was assessed. OAVs for 2-AP, hexanal, ( E)-2-nonenal, octanal, heptanal, and nonanal comprised >97% of the relative proportion of OAVs from each rice flavor type, even though the relative proportion varied among samples. Thirteen odor-active compounds [2-AP, hexanal, ( E)-2-nonenal, octanal, heptanal, nonanal, 1-octen-3-ol, ( E)-2-octenal, ( E, E)-2,4-nonadienal, 2-heptanone, ( E, E)-2,4-decadienal, decanal, and guaiacol] among the six flavor types were the primary compounds explaining the differences in aroma. Multivariate analysis demonstrated that the individual rice flavor types could be separated and characterized using these compounds, which may be of potential use in rice-breeding programs focusing on flavor.  相似文献   

12.
Fresh citrus honey was stored at 10, 20, and 40 degrees C for 12 months. The effect of storage on the quality of honey was evaluated using physicochemical parameters, volatile compounds, mono-, di-, and trisaccharides, and sensory analysis. Diastase activity and HMF were out of the legal limit in honey stored 12 months at 40 degrees C. Volatile compounds (especially terpenes and terpene derivatives), monosaccharides, and disaccharides presented important losses during honey storage at any temperature. Honey storage at 10 or 20 degrees C maintained their floral, fresh, citric, and fresh fruit aroma, while the intensities of these attributes were diminished. Storage at 40 degrees C during 12 months resulted in the appearance of attributes such as "medicinal, smoked, toasted, cooked vegetable, and ripened fruit", associated with compounds formed during the Maillard reaction or through degradation of sugars such as volatile pyrroles, furanones, pyranones, and pyrazines, which appeared or increased in concentration during honey storage mainly at high temperature.  相似文献   

13.
An aroma extract dilution analysis applied on an aroma distillate prepared from fresh apricots revealed (R)-gamma-decalactone, (E)-beta-damascenone, delta-decalactone, and (R/S)-linalool with the highest flavor dilution (FD) factors among the 26 odor-active compounds identified. On the basis of quantitative measurements performed by application of stable isotope dilution assays, followed by a calculation of odor activity values (OAVs), beta-ionone, (Z)-1,5-octadien-3-one, gamma-decalactone, (E,Z)-2,6-nonadienal, linalool, and acetaldehyde appeared with OAVs >100, whereas in particular certain lactones, often associated with an apricot aroma note, such as gamma-undecalactone, gamma-nonalactone, and delta-decalactone, showed very low OAVs (<5). An aroma recombinate prepared by mixing the 18 most important odorants in concentrations as they occurred in the fresh fruits showed an overall aroma very similar to that of apricots. Omission experiments indicated that previously unknown constituents of apricots, such as (E,Z)-2,6-nonadienal or (Z)-1,5-octadien-3-one, are key contributors to the apricot aroma.  相似文献   

14.
Cashew apple nectar is a secondary product from the production of cashew nuts and possesses an exotic tropical aroma. Aroma volatiles in pasteurized and reconstituted (from concentrate) Brazilian cashew apple nectars were determined using GC-MS and split, time-intensity GC-olfactometry (GC-O)/GC-FID. Methional, (Z)-1,5-octadien-3-one, (Z)-2-nonenal, (E,Z)-2,4-decadienal, (E,E)-2,4-decadienal, beta-damascenone, and delta-decalactone were identified for the first time in cashew apple products. These compounds plus butyric acid, ethyl 3-methylbutyrate, 2-methylbutyric acid, acetic acid, benzaldehyde, homofuraneol, (E)-2-nonenal, gamma-dodecalactone, and an unknown were the most intense aroma volatiles. Thirty-six aroma volatiles were detected in the reconstituted sample and 41 in the pasteurized sample. Thirty-four aroma active components were common to both samples. Ethyl 3-methylbutyrate and 2-methylbutyric acid were character impact compounds of cashew apple (warm, fruity, tropical, sweaty). Using GC-pFPD, 2-methyl-3-furanthiol and bis(2-methyl-3-furyl) disulfide were identified for the first time in cashew apple. Both were aroma active (meaty).  相似文献   

15.
Buckwheat is a pseudocereal with a strong characteristic aroma. Compounds responsible for the aroma of buckwheat groats were recently identified, but the distribution of aromatic compounds between different fractions of the buckwheat kernel (flour, bran, and husk) is not yet known. In this study, the composition of aromatic compounds in buckwheat seed fractions was investigated and compared to the composition of aromatic compounds in groats produced from the same batch of buckwheat seeds. Volatiles from each sample were extracted with simultaneous distillation/extraction with a Likens‐Nickerson apparatus. Extracts were analyzed by gas chromatography coupled with mass spectrometry (GC‐MS) with electron ionization. Apart from the aroma molecules present in all fractions, compounds that are present only in flour or bran, but not in groats, were also found. Furthermore, some compounds were identified only in buckwheat groats but not in buckwheat flour or bran [octanal, (E,E)‐2,4‐heptadienal, (E)‐2‐decenal, and (E,E)‐2,4‐decadienal], others were identified only in husks [(E)‐2‐hexenal, heptanal, (E,E)‐2,4‐hexadienal, phenylacetaldehyde, and alpha‐bisabolol].  相似文献   

16.
Volatiles of a wild mandarin, Mangshanyegan (Citrus nobilis Lauriro), were characterized by GC-MS, and their aroma active compounds were identified by aroma extract dilution analysis (AEDA) and gas chromatography-olfactometry (GC-O). The volatile profile of Mangshanyegan was compared with those of other four citrus species, Kaopan pummelo (Citrus grandis), Eureka lemon (Citrus limon), Huangyanbendizao tangerine (Citrus reticulata), and Seike navel orange (Citrus sinensis). Monoterpene hydrocarbons predominated in Mangshanyegan, in particular d-limonene and β-myrcene, which accounted for 85.75 and 10.89% of total volatiles, respectively. Among the 12 compounds with flavor dilution factors (FD) = 27, 8 oxygenated compounds, including (Z)- and (E)-linalool oxides, were present only in Mangshanyegan. The combined results of GC-O, quantitative analysis, odor activity values (OAVs), and omission tests revealed that β-myrcene and (Z)- and (E)-linalool oxides were the characteristic aroma compounds of Mangshanyegan, contributing to the balsamic and floral notes of its aroma.  相似文献   

17.
The flavor of a commercially available strawberry drink was investigated with special regard to the changes of the sensory properties during the shelf life of the product. The experiments were performed using gas chromatographic methods after liquid-liquid extraction and after solid-phase microextraction of the headspace. A trained sensory test panel was used to substantiate the results from instrumental analyses. The relative concentrations of several compounds were followed over a storage period of six weeks at elevated temperature (37 degrees C), which corresponds to about 12 months storage at room temperature. Significant concentration changes of several flavor compounds were determined after a short storage time. These results correlate highly with changes in the aroma observed by the sensory test panel. Further on, changes in the sensorial relevance of aroma active compounds were monitored by comparative aroma extract dilution analysis of extracts of the fresh product and the product at the end of the declared shelf-life time. The results showed a significant decrease in flavor dilution factors of compounds with characteristic fruity attributes.  相似文献   

18.
五九香梨贮藏期间挥发性化合物和理化性状的变化(英)   总被引:2,自引:0,他引:2  
利用高效液相色谱法测定贮藏期间五九香梨的糖和有机酸的组成及变化,采用固相微萃取方式(SPME)进行萃取,并结合气相色谱和质谱(GC/MS)分析检测梨果实中的挥发性香气成分。得出以下主要结论:果糖是五九香梨的主要糖类,其次是葡萄糖和蔗糖。随着贮藏期的延长,果糖先有增加的趋势,在贮藏的第三个月内,果糖含量处于最高,而蔗糖和葡萄糖减少趋势不明显。五九香梨果实中的主要有机酸是苹果酸和柠檬酸,整个贮藏期间,柠檬酸和酒石酸含量处于上升趋势,苹果酸和奎宁酸含量在第一、二月贮藏期间增加,而后开始下降;莽草酸含量在贮藏期第一到第三阶段上升,而后略下降;琥珀酸含量在第一到第二阶段变化不明显,接着有上升的趋势,在第三阶段含量达到最高,第四和第五阶段略低于第三阶段;乙酸含量变化不明显。梨果实的硬度略有下降,贮藏的前3个月,可溶性固形物含量有上升的趋势,随后开始缓慢下降。五九香梨的主要香气成分化合物有乙酸己酯 (49.35%),乙酸丁酯 (19.56%),己酸乙酯 (5.16%),丁酸乙酯 (4.92%),乙酸乙酯 (1.08%),(E,Z)-2,4-癸二烯酸乙酯 (0.84%)等。在整个贮藏期间,部分香气成分随着贮藏期的延长而略有增加,尤其是酯类化合物。结果显示:果实硬度、可溶性固形物、糖、有机酸和香气的组成与变化对五九香梨果实的品质都有一定的影响。  相似文献   

19.
The objective of the present study was to purify and characterize the lipoxygenase (LOX) from banana leaf (Giant Cavendishii, AAA), an unutilized bioresource. LOX was extracted, isolated, and purified 327-fold using 25-50% saturation of ammonium sulfate fractionation, hydroxyapatite column separation, and gel filtration on Superdex 200. The molecular mass of the purified LOX was 85 kDa, K(m) was 0.15 mM, and V(max) was 2.4 microM/min.mg using linoleic acid as substrate. Triton X-100 was required in the extraction medium; otherwise, no LOX activity was detected. LOX activity increased with the concentration of Triton X-100 with an optimum at 0.1%. The optimal pH of the purified LOX from banana leaf was 6.2, and optimal temperature was 40 degrees C. The LOX showed the highest reactivity toward 18:2 followed by 18:3 and 20:4. A very low reaction rate was observed toward 20:5 and 22:6. On the basis of retention time in normal phase HPLC, the products of 18:2 or 18:3 catalyzed by purified LOX were hydroperoxyoctadecadienoic acid or hydroperoxyoctadecatrienoic acid. It seems that 9-LOX is the predominant enzyme in banana leaf. Banada leaf dried at 110 degrees C for 2 h developed algal aroma. Banana leaf extract stored at 10 degrees C for 12 h formed an oolong tea-like flavor. Banana leaf extract reacted with 18:2 or soybean oil pretreated with bacterial lipase produced green and melon-like aroma, whereas the same reaction with 18:3 produced a sweet, fruity, cucumber-like flavor note.  相似文献   

20.
The effects of concentrated carrot protein (CCP) containing 15.4% (w/w) carrot (Daucus carota) antifreeze protein on texture properties of frozen dough and volatile compounds of crumb were studied. CCP supplementation lowered the freezable water content of the dough, resulting in some beneficial effects including holding loaf volume steadily and making the dough softer and steadier during frozen storage. Furthermore, SPME-GC-MS analysis showed CCP supplementation did not give any negative influences on volatile compounds of crumb and gave a pleasant aroma felt like Michelia alba DC from trans-caryophyllene simultaneously. Combining our previous results that CCP supplementation improves the fermentation capacity of the frozen dough, CCP could be used as a beneficial additive for frozen dough processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号