首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We determined whether canola oil could spare menhaden oil (MO) in diets containing minimal fish meal without affecting sunshine bass, Morone chrysops × Morone saxatilis, production. Seven isonitrogenous, isocaloric (41.7% crude protein and 14.6% crude lipid) diets containing graded levels (0, 20, 40, 60, 80, or 100%) of menhaden to canola oils with 20% menhaden meal (MM) or 100% canola oil with 20% lipid‐extracted MM were fed to sunshine bass (initial weight 9.3 ± 0.16 g; mean ± SD) twice daily to apparent satiation for 10 wk. Sunshine bass fed less than 40% of their dietary lipid as MO exhibited significantly (P < 0.05) lower feed intake and growth rates. Increased concentrations of saturated, n‐3, and n‐3 highly unsaturated fatty acids (FA) in the fillet were associated with MO‐rich diets, while monounsaturated and n‐6 FA were most common in fillets from fish fed diets rich in canola oil. Reducing MO to 40% of the dietary lipid in diets containing minimal fish meal allows for efficient utilization of marine resources without negatively impacting juvenile sunshine bass production.  相似文献   

2.
Channel catfish, Ictalurus punctatus, 88.4 ± 2.6 g/fish, were fed a basal diet amended with 4% of three processed menhaden, Brevoortia tyrannus, oils. These were compared with basal diets amended with 4% corn oil or 4% canola oil. Three replicate aquaria of nine fish each were fed assigned diets twice daily. At 6 wk, fish were group weighed, fillets were collected for sensory evaluation, fatty acid analysis by gas chromatography (GC). In a second study, catfish, 118.8 ± 3.2 g/fish, were stocked into fifteen 0.04‐ha earthen ponds and fed once daily for 16 wk one of four diets containing 2 or 4% of either catfish offal oil or refined (RF) menhaden oil. At harvest, fillets were saved for sensory evaluation and fatty acid analysis. Results showed no significant (P > 0.05) differences among treatments for aquarium study and pond study variables such as weight gain, fillet proximate analysis, or pond production. GC analysis showed that levels of omega‐3 (n‐3) highly unsaturated fatty acids (HUFA) in fillet lipid were significantly (P < 0.05) elevated for fish fed menhaden oil diets. Sensory evaluation revealed that fillets from fish fed RF menhaden oil had satisfactory flavor and could be a source of n‐3 HUFA for humans.  相似文献   

3.
This study was undertaken to evaluate the effect of dietary lipid source [linseed oil (LO, rich in 18:3 n?3); corn oil (CO, rich in 18:2 n?6); olive oil (OO, rich in 18:1n?9); and fish oil (FO, rich in LC‐PUFA)] and level (9% L and 18% L) on growth, body composition and selected plasma biochemistry parameters in hybrid catfish (Pseudoplatystoma reticulatum × Leiarius marmoratus) juveniles. Moreover, liver histology (lipids, glycogen, cell vacuolization) and key metabolic enzyme activities were also evaluated. After 8 weeks of feeding, there were no differences in growth performance and whole‐body composition between groups. Plasma lipoprotein, muscle and liver composition, and G6PD and ME activity were affected by lipid level and source. No differences were observed between groups in hepatic ALT activity; however, AST activity was lower in fish fed the 9% L diets. Overall, liver and muscle fatty acid composition reflected that of diet FA composition, with increased n3/n6 ratio, high HUFA and low MUFA in fish fed FO compared with the VO diets. Higher liver glycogen content was observed in fish fed the 18% L than the 9% L diets, except for fish fed FO diet. Considering the experimental diets used, these results indicate that hybrid catfish can efficiently utilize VO supplementation as an energy source, without affecting growth performance and fillet composition.  相似文献   

4.
This study was conducted to determine the effects of increasing dietary lipid concentrations on fillet characteristics of post-juvenile rainbow trout. A feeding trial was conducted with fish meal based diets containing 10, 15, 20, 25, or 30% lipid for 24 wk. Menhaden oil was the lipid ingredient. Weight gain was significantly greater in fish fed the 30% lipid diet than in fish fed either 10%, 15% or 20% lipid diets. There were no significant differences in visceral somatic index. Fillet lipid concentration of fish fed the 30% lipid diet (9.2-g lipid/ 100-g fillet) was significantly higher (P < 0.05) than fish fed either the 10% or 15% lipid diets (5.8- and 6.9-g lipid/100-g fillet, respectively). In samples stored for 3 d at 5 C or S wk at -20 C, sensory panelists reported that the cooked fillets from fish fed the 30% lipid diet were "more fishy" than fish fed the 15% lipid diet, and preferred the cooked fillets from the 15% lipid treatment over the 30% lipid treatment. Triangle tests and fillet colorimetry showed no significant differences between fillets from fish fed the 15% and 30% lipid diets at any sampling time point. No significant differences in fillet concentrations of thiobarbituric reactive substances were observed among dietary treatments stored at either 5 C or -20 C. These results suggest that two main effects of feeding a 30% lipid diet (with fish oil as the lipid source) are a higher lipid concentration in the fillet and a "fishier" aroma compared to fillets from fish fed a 15% lipid diet.  相似文献   

5.
A study was conducted to determine the effect of increasing dietary levels of fish oil on vitamin E requirement and their effect on growth performance, liver vitamin E status, and tissue proximate and fatty acid compositions of channel catfish. Basal purified diets (42% protein and 3,800 kcal DE/kg) supplemented with 6, 10, and 14% menhaden fish oil were each supplemented with 50, 100, and 200 mg vitamin E/kg (3 × 3 factorial experiment). Each diet was fed to juvenile channel catfish in three random aquaria to apparent satiation twice daily for 12 weeks. Weight gain, feed intake, and feed efficiency ratio were not affected by dietary levels of fish oil, vitamin E, or their interaction. Survival rate at the end of week 12 was significantly lower for fish fed diets containing 14% fish oil, regardless of vitamin E content. Whole-body moisture significantly decreased and lipid increased when dietary lipid levels were increased to 10 or 14%. Dietary vitamin E levels had no effect on body proximate composition. Lipid content of liver was not influenced by dietary levels of fish oil and vitamin E or their interaction. Hepatosomatic index significantly decreased with increasing lipid levels but was not affected by dietary levels of vitamin E. Liver vitamin E increased with increasing dietary vitamin E but decreased with increasing fish oil levels. Fatty acid composition of whole body and liver reflected that of dietary lipid but was not influenced by dietary levels of vitamin E. Whole-body saturates increased, whereas MUFA decreased with increasing dietary levels of fish oil. Liver saturates were not affected by fish oil levels, but MUFA and n-6 decreased and increased, respectively, with increasing fish oil levels. Total n-3 and n-3 HUFA in both tissues increased with increasing fish oil levels in diets, but liver stored much higher levels of these fatty acids.  相似文献   

6.
Growth performance, immune responses and disease resistance were studied in juvenile channel catfish, Ictalurus punctatus, fed a commercial diet (35.3% crude protein and 5.6% lipid) supplemented with menhaden fish oil at levels of 0, 3, 6, and 9% for 15 wk. Dietary fish oil levels did not significantly influence growth performance of catfish. Fatty acid compositions of whole‐body and liver reflected dietary fatty acid composition. No differences were found in hematological values, except that fish fed the 9% fish oil diet had significantly lower hematocrit. The resistance of erythrocytes to hemolysis in hypotonic solutions increased with increasing fish oil levels and the highest resistance was seen with the 9% fish oil diet. Fish fed 6 and 9% added fish oil diets had significantly higher serum protein levels than that of control fish. Serum lysozyme activity of fish fed 3 and 6% added fish oil diet was significantly higher than that of the control. Complement activity and chemotaxis ratio significantly decreased in fish fed diets with 6 or 9% added fish oil. The 3% added fish oil diet, however, had significantly highest natural hemolytic complement activity. Mortality from Edwardsiella ictaluri 14 d postchallenge and antibody titers to E. ictaluri did not differ among treatments.  相似文献   

7.
An 8‐week feeding trial was conducted on juvenile beluga sturgeon Huso huso to evaluate the effects of different dietary lipid levels and sources on growth performance, physiological indices, proximate composition and fatty acid (FA) profile. Four practical diets, which had either low level (120 g/kg) of canola oil (LCO) and fish oil (LFO) or high level (240 g/kg) of canola oil (HCO) and fish oil (HFO), were fed to triplicate groups of 25 beluga (mean initial body weight 207 ± 0.5 g). The growth performance of beluga was improved by replacing dietary fish oil with canola oil and increasing dietary lipid level. Except the number of red blood cells, lymphocytes, neutrophils and eosinophils, the rest of haematological factors including the values of haemoglobin, haematocrit, number of white blood cells, mean corpuscular haemoglobin concentration, cholesterol and triglyceride concentrations and the number of basophils and monocytes were not significantly affected by dietary lipid sources or levels. Results showed that both moisture and crude fat of the beluga muscle were affected by dietary lipid. The highest moisture and the lowest fat contents were found in the muscle of beluga fed fish oil (LFO). Moreover, the lowest moisture and the highest fat contents were observed in the muscle of beluga fed canola oil (HCO) (< .05). The FA profile of the beluga muscle was significantly influenced by dietary treatments. The highest monounsaturated fatty acids, total n‐6 fatty acids containing linoleic acid and arachidonic acid, and total unsaturated fatty acids were found in fish fed canola oil (LCO and/or HCO) (< .05). However, n‐3 fatty acids containing linolenic acid, eicosapentaenoic acid and docosahexaenoic acid were not affected by the diet (> .05). FA profile of the beluga muscles reflected the proportions of CO and FO in the diet except that there was a decrease in oleic acid and linolenic acid, but an increase in arachidonic acid (C20:4n‐6), eicosapentaenoic acid and docosahexaenoic acid. The obtained data showed that canola oil is an excellent source of supplemental dietary lipid in a practical fish‐meal‐based diet of beluga sturgeon under the experimental conditions. Moreover, the data demonstrated that increasing dietary lipid up to 240 g/kg in beluga sturgeon resulted to improve growth performance and haematology.  相似文献   

8.
The effect of using a finishing diet containing menhaden fish oil on the fatty acid composition of fingerling channel catfish, Ictalurus punctatus, was evaluated in a 12‐wk growth trial. Three isocaloric, isonitrogenous practical diets with three different sources of lipids (menhaden oil [MO], catfish oil [CO], or beef tallow [BT]) were formulated (35% crude protein). No differences in eicosapentaenoic acid, docosahexaenoic acid, or arachidonic acid were observed to occur in catfish fed MO or CO diets; however, these fatty acids were significantly lower in fish fed BT diet. No differences were observed for unsaturated fatty acid content in channel catfish fed a diet containing MO for 8 or 12 wk. In addition, no differences in production characteristics were observed to occur when catfish were fed diets containing CO, MO, or BT as the dietary lipid source, which indicates that BT, CO, and MO are equally effective as sources of energy. It is apparent from these results that CO may be successfully substituted for MO in formulated diets without adversely affecting n‐3 highly unsaturated fatty acid content in channel catfish.  相似文献   

9.
Rainbow trout (186 g) were fed three test diets where the lipid source (150 g kg?1) was either menhaden oil (MO), pollock oil (PO) or canola oil (CO) for eight weeks to an average weight of 370 g. The CO group was then divided into two groups, one continuing on the CO diet and the other switched to the PO diet (CO–PO). After nine additional weeks of feeding, the average fish weight approximately doubled (719–749 g). No significant differences were found in average final weight or fillet yield among dietary treatment groups. Fatty acid profiles of fillets from trout fed MO, PO or CO‐supplemented diets reflected the fatty acid profiles of the added oils, whereas the fatty acid profile of fillet from trout in the CO–PO group exhibited values similar to those of fish fed PO. The ratio of ω3 : ω6 FA was nearly 2.5 times higher in fillets from the CO–PO group compared to the CO group. Sensory analysis showed that panelists preferred CO‐fed fillets over those fed MO, PO, or CO–PO. Phase‐feeding CO and PO reduced fish oil use and resulted in fillets with double the content of Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA) over CO‐fed fish, similar to levels in MO‐fed fish.  相似文献   

10.
The present study examines the effect of four semi‐purified diets (casein–gelatin based) where the source of fatty acids was free (esterified) oleic acid and linoleic acid (LA) (LOA diet), linseed and olive oil (predominantly LA and linolenic acid) (LO diet), cod liver oil (rich in highly unsaturated fatty acids) (CLO diet), and soybean lecithin (phospholipids; mostly LA) (LE diet) on the growth of juvenile South American catfish (surubim, Pseudoplatystoma fasciatum, Pimelodidae) (0.98 ± 0.04 g individual weight). Fish were fed at a restricted–readjusted feeding rate for 8 wk. At the end of the experiment, LE‐diet‐fed fish grew significantly larger than those of the other three groups (P < 0.05). Considerable cannibalism was observed in all the treatments. It is suggested that the quantitative growth performance may possibly change under other conditions, with less or no cannibalism. Survival did not differ significantly among the fish fed four different diets. Muscle and liver lipid contents did not vary among dietary treatments (P > 0.05), but whole‐body lipid concentrations were affected by dietary treatments. Fish fed LE diet contained significantly lower lipid level than those fed three other diets (P < 0.05). Muscle and liver fatty acid profiles reflected dietary fatty acid composition. Arachidonic acid level was significantly higher in muscle and liver of fish fed LOA and LE diets than in those fed LO and CLO diets. The results suggest that the efficiency of elongation and desaturation of 18C fatty acids depends on the dietary lipid source, and South American catfish has considerable capacity to transform linoleate to arachidonate.  相似文献   

11.
Corn germ meal (CGM) is a by‐product of corn milling. On the basis of its nutrient composition and digestibility values, it appears to be a suitable ingredient for use in channel catfish, Ictalurus punctatus, diets. A study was conducted to examine the use of various levels of CGM in diets for pond‐raised channel catfish. Four 28% protein diets containing 0, 15, 25, and 35% CGM were evaluated. Fingerling channel catfish (mean initial weight: 71 g/fish) were stocked into 24, 0.04‐ha ponds at a rate of 14,826 fish/ha. Fish were fed once daily to apparent satiation for a 167‐d growing season. No significant differences were observed in total amount of diet fed, diet consumption per fish, net yield, weight gain, feed conversion ratio, survival, fillet yield, and fillet protein, fat, and moisture concentrations among fish fed diets containing various levels of CGM. Carcass yield decreased linearly as dietary CGM levels increased. Depending on prices, CGM can be used interchangeably with corn gluten feed in channel catfish diets as replacements for corn, wheat middlings, and soybean meal to reduce feed cost.  相似文献   

12.
Ten-week experiment was carried out on Japanese sea bass (5.87 ± 0.02 g) to study the effects of replacement of fish oil with six alternative lipid sources: pork lard, PL; beef tallow, BT; poultry fat, PF; soybean oil, SO; corn oil, CO; and a mixed-fat (MF: tallow, 60%; soy oil, 20%; fish oil, 20%) on growth performance and fatty acid (FA) composition in fillet and liver. Seven isoenergetic and isonitrogenous experimental diets were formulated, containing 10% of added lipid. Fish oil was used in control diet, which was substituted by 50% with the alternative lipid sources in the other six diets.

Weight gain (WG), specific growth rate (SGR), Feed conversion ratio (FCR) feed intake and hepatosomatic index (HSI) of fish fed the experimental diets were not significantly different (P > 0.05). Protein efficiency ratio (PER) in fish fed the PF diet were significantly lower than those of fish fed SO and CO diets. Significant differences in carcass moisture and lipid contents of carcass and liver were observed among fish fed the dietary treatments. Generally, the fatty acid composition of fish fillets and livers reflected the dietary FA composition.  相似文献   


13.
A factorial experiment was conducted to examine effects of dietary protein concentration (24, 28, 32, or 36%) and feeding regimen (feeding once daily or every other day [EOD]) on channel catfish, Ictalurus punctatus, production in earthen ponds. Compared with fish fed daily, fish fed EOD had lower feed consumption, weight gain, net production, and percentage of market‐size fish but had high feed efficiency and required fewer hours of aeration. Fish fed EOD also had lower carcass yield, fillet yield, and visceral and fillet fat. There was a significant interaction between dietary protein and feeding regimen for weight gain. No significant differences were observed in weight gain of fish fed daily with diets containing various levels of protein, whereas weight gain of fish fed EOD with a 24% protein diet was lower than those fed EOD with higher protein diets. Results suggest that response of channel catfish to dietary protein levels depends on whether the fish were fed daily or EOD. Feeding EOD to satiation improved feed efficiency and required less aeration compared with fish fed daily but also reduced net production and processing yield; therefore, EOD feeding should be examined closely before implementation.  相似文献   

14.
A comparative study was conducted on growth and protein requirements of channel catfish, Ictalurus punctatus, and blue catfish, Ictalurus furcatus. Four diets containing 24, 28, 32, or 36% protein were fed to both channel (initial weight 6.9 g/fish) and blue (6.6 g/fish) catfish for two growing seasons. There were significant interactions between dietary protein and fish species for weight gain and feed conversion ratio (FCR). No significant differences were observed in weight gain of channel catfish fed various protein diets, whereas higher protein diets (32 and 36%) resulted in better weight gain in blue catfish than lower protein diets (24 and 28%). No consistent differences were observed in the FCR of channel catfish fed various levels of dietary protein, whereas significantly higher FCRs were noted in blue catfish fed the 24 and 28% protein diets compared with fish fed 32 and 36% protein diets. Regardless of dietary protein levels, blue catfish had higher carcass, nugget, and total meat yield, and higher fillet moisture and protein, but lower fillet yield and fillet fat. Regardless of fish species, fish fed the 36% protein diet had higher carcass, fillet, and total meat yield than fish fed the 28 and 32% protein diets, which in turn had higher yields than fish fed the 24% protein diet. It appears that blue catfish can be successfully cultured by feeding a 32% protein diet.  相似文献   

15.
The effects of dietary lipid from four experimental diets on the fatty acid (FA) composition and cholesterol (CHOL) content of spermatozoa and spermatozoal plasma membranes and their consequences for sperm viability after cryopreservation were evaluated in rainbow trout Oncorhynchus mykiss (Walbaum). The four sources of lipid were herring oil (adequate n‐3 FA), menhaden oil (high n‐3 FA), safflower oil (high n‐6 FA) or tallow (high saturated FA), and they comprised 12% of the total diet. Spermatozoa from fish fed the tallow diet had significantly (P < 0.05) higher CHOL levels than spermatozoa from the fish fed the other diets. The spermatozoal plasma membranes from fish fed the tallow diet had significantly (P < 0.05) higher CHOL and monounsaturated fatty acid levels than those from fish fed the menhaden or safflower oil diets, but were not different from membranes of fish fed the herring oil diet. Cryopreserved spermatozoa from fish fed the tallow or herring oil diets exhibited less membrane damage (P < 0.05) and produced a higher percentage (P < 0.05) of eyed embryos compared with spermatozoa from the menhaden or safflower oil‐fed fish. Therefore, it would appear that high levels of CHOL and monounsaturated fatty acids provided the spermatozoa with increased resistance to cryopreservation damage.  相似文献   

16.
The effect of varying dietary lipid and n‐3 polyunsaturated fatty acids (PUFAs) on growth, feed efficiency, protein and energy utilization, carcass quality, and nonspecific immune functions was investigated in rainbow trout reared at two different water temperatures (7.5 and 15 C). Six diets were formulated to contain 47% digestible protein and 21 MJ/kg digestible energy. Three of the diets were formulated to contain increasing lipid levels (10, 16, and 18%) and three additional diets formulated to 18% lipid with different lipid sources. Varying dietary lipid and n‐3 PUFA levels had little effect on growth and on protein and energy utilization. Diet composition only had limited effect on susceptibility of the flesh to rancidity and on the nonspecific immunity of the fish. Increasing lipid levels did not affect fish carcass or fillet proximate composition. Replacing half of fish oil with beef tallow resulted in lower n‐3 PUFAs in fish fillet but did not affect nutrient digestibility or growth performance of fish even at 7.5 C. Increasing dietary n‐3 levels using a fish oil concentrate resulted in significant enrichment of n‐3 PUFAs and elevated n‐3 : n‐6 ratio of the whole body and carcass. Water temperature significantly affected apparent digestibility coefficient (ADC) of protein and energy but did not affect the ADC of lipid, nor did it affect nitrogen and energy retention efficiencies. The study suggests that highly saturated fats, such as beef tallow, can be used to partially replace fish oil without negative effect on digestibility and growth even at low water temperature. High dietary n‐3 PUFAs levels can be used to enrich n‐3 PUFAs of the flesh without negative effect on the immune response.  相似文献   

17.
This study was conducted to investigate the influence of dietary lipid source and n‐3 highly unsaturated fatty acids (n‐3 HUFA) level on growth, body composition and blood chemistry of juvenile fat cod. Triplicate groups of fish (13.2 ± 0.54 g) were fed the diets containing different n‐3 HUFA levels (0–30 g kg?1) adjusted by either lauric acid or different proportions of corn oil, linseed oil and squid liver oil at 100 g kg?1 of total lipid level. Survival was not affected by dietary fatty acids composition. Weight gain, feed efficiency and protein efficiency ratio (PER) of fish fed the diets containing squid liver oil were significantly (P < 0.05) higher than those fed the diets containing lauric acid, corn oil or linseed oil as the sole lipid source. Weight gain, feed efficiency and PER of fish increased with increasing dietary n‐3 HUFA level up to 12–16 g kg?1, but the values decreased in fish fed the diet containing 30 g kg?1 n‐3 HUFA. The result of second‐order polynomial regression showed that the maximum weight gain and feed efficiency could be attained at 17 g kg?1 n‐3 HUFA. Plasma protein, glucose and cholesterol contents were not affected by dietary fatty acids composition. However, plasma triglyceride content in fish fed the diet containing lauric acid as the sole lipid source was significantly (P < 0.05) lower than that of fish fed the other diets. Lipid content of fish fed the diets containing each of lauric acid or corn oil was lower than that of fish fed the diets containing linseed oil or squid liver oil only. Fatty acid composition of polar and neutral lipid fractions in the whole body of fat cod fed the diets containing various levels of n‐3 HUFA were reflected by dietary fatty acids compositions. The contents of n‐3 HUFA in polar and neutral lipids of fish increased with an increase in dietary n‐3 HUFA level. These results indicate that dietary n‐3 HUFA are essential and the diet containing 12–17 g kg?1 n‐3 HUFA is optimal for growth and efficient feed utilization of juvenile fat cod, however, excessive n‐3 HUFA supplement may impair the growth of fish.  相似文献   

18.
Pike perch (Sander lucioperca) has been identified as specie destined to diverse European inland aquaculture, but knowledge on the nutritional requirements is weak. Therefore, we investigated the effect of varying dietary fatty acid (FA) profile by partial replacement of fish oil (FO) with vegetable oils on growth, FA and body composition of juvenile pike perch. An extruded basal diet containing 59 g kg?1 crude lipids (FO) was added with 60 g kg?1 FO, 60 g kg?1 linseed oil (LO) or 60 g kg?1 soybean oil (SO). The resulting dietary FA composition differed mainly in the triglyceride fraction and was characterized by highest amounts of linolenic acid (18:3 n‐3) in the LO diet and linoleic acid in the SO diet. Diet enriched with FO contained highest contents of highly unsaturated FA 20:5 n‐3 (eicosapentaenic acid) and 22:6 n‐3 (docosahexaenic acid). Pike perch were held in a recirculation system and each feeding group (in triplicate) was fed with experimental diets at a daily rate of 35 g kg?1 of biomass for 57 days by automatic feeders. Weight gain and specific growth rate of experimental feeding groups ranged between 18.47 and 19.58 g and 1.37–1.45% day?1 and was not affected by the dietary composition indicating that FO can be replaced by vegetable oils without negative impact on growth performance. In contrast to the whole body and muscle composition, liver tissue was affected by the varying diets. Liver tissues of fish fed diets enriched with vegetable oils showed significantly increased lipid contents of 162 (LO) and 147 (SO) g kg?1 and indicate decreased lipid utilization compared with fish fed FO diet (liver lipid content 112 g kg?1). Nevertheless, hepatosomatic index of pike perch was not influenced by dietary lipid composition. The FA profile of pike perch was generally determined by the dietary FAs.  相似文献   

19.
This study was conducted to find the optimum level of dietary protein and lipid that could produce the highest growth, best feed utilization, and body composition of African catfish, Clarias gariepinus (9.5–10.3 g). Nine diets (three protein levels × three lipid levels) containing 25, 30, or 35% crude protein (CP) with 6, 9, and 12% lipids were formulated. Fish were fed one of the tested diets at the rate of 5% of body weight for the first 8 wk and 3% for the rest of the study. Diets were offered 6 d a week, twice a day (900 and 1400 h) for 13 wk. Fish growth increased significantly with increasing either protein or lipid levels, and the maximum growth was obtained in fish fed diets containing 30% CP with 12% lipid or 35% CP with 9% lipid. The lowest fish growth was obtained at 25% CP with 6% lipid. The optimum feed intake, feed conversion ratio, energy utilization, protein efficiency ratio, and protein growth rate were also recognized in fish fed the above diets. No significant differences in moisture and ash contents in fish fed diets containing different protein and lipid levels were recorded. The protein and lipid contents in the fish body tended to increase with increasing protein and lipid levels in diets. However, the higher protein contents were obtained in fish fed diets containing 35% CP with 6 or 9% lipid, while the lowest ones were obtained at 25% CP with 6 or 9% lipid. The higher lipid contents were obtained at 30 or 35% CP with 12% lipid, while the lowest ones were obtained at 25 or 35% CP with 6% lipid. The present study indicates that the increase of dietary lipid level has a protein-sparing effect, and the diet containing 30% CP with 12% lipid would be suitable for the optimum growth and effective protein utilization of fingerling African catfish.  相似文献   

20.
Abstract A 3 × 3 factorial experiment was conducted using three strains of channel catfish Ictalurus punctatus, USDA102, USDA103, and Mississippi normal (MN), and three concentrations of dietary protein. Three practical diets were formulated to contain 25, 35, or 45% crude protein with digestible energy/protein ratio of 10.0, 8.1, or 6.8 Kcal/g, respectively. Juvenile channel catfish (mean initial weight: 15.1 g/fish) were fed the experimental diets twice daily to approximate satiation for 8 wk. Regardless of dietary protein concentration, the USDA 103 strain consumed more feed, gained more weight, and converted feed more efficiently than other two strains. The MN strain consumed less feed and gained less weight than the other strains. Regardless of the strain of channel catfish, differences in weight gain, feed consumption, and feed conversion ratio were observed among fish fed diets containing various levels of protein with the 35% protein diet being the best. Neither dietary protein concentration nor strain had significant effect on fillet protein level. Data pooled by fish strain showed that fish of MN strain had lower fillet fat and higher moisture than fish of other two strains. Data pooled by dietary protein showed that fish fed the 45% protein diet had a lower level of fillet fat than fish fed the 35% protein diet, but this did not appear to be a strain effect, rather it was a result of decreased feed consumption. Results from this study clearly demonstrate that per formance of the USDA103 strain of channel catfish was superior to other strains tested. The growth characteristics of the USDA103 strain of channel catfish make the strain a promising candidate for commercialization. However, data are needed on performance of the strain from fingerling to marketable size under conditions similar to those used for the commercial culture of channel catfish prior to their release to the catfish industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号