首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
后掠式叶片轴流泵固液两相流数值模拟与优化   总被引:5,自引:5,他引:0  
针对轴流叶轮在污水固液两相流介质中的磨损问题,该文设计了不同后掠式叶轮结构方案进行优化设计,分别对后掠角度为40°、65°、90°的后掠叶片和原型叶片进行固液两相流数值模拟和试验对比,并分析了不同后掠方案叶轮内固体颗粒的分布特性。数值模拟结果表明,随着后掠角度的增加,叶片压力面固相体积分数会逐渐减少,而叶片吸力面上固相体积分数会先增加后减小,叶轮内固相的径向流动越明显并且叶片后掠角度越大,固相就越难与叶片压力面接触,而越易与叶片吸力面接触;颗粒直径越大,后掠叶片压力面上固相体积分数越大,而叶片吸力面进口边靠近轮毂处的固相体积分数增加;颗粒浓度越大,后掠叶片压力面上固相体积分数减少,叶片吸力面上固相体积分数增加。当优化后的后掠叶片角为90°时,该叶片结构优化了固体颗粒的分布,可大幅降低叶片轮缘处的磨损,提高了轴流叶轮在污水介质中的使用寿命和运行可靠性。  相似文献   

2.
半开式离心泵变工况叶顶间隙的流动特性   总被引:1,自引:5,他引:1  
为研究不同工况下,叶顶间隙对半开式叶轮离心泵内部流场及外特性的影响,该文对某半开式叶轮离心泵内部三维湍流流场进行数值模拟。揭示了离心泵内不同工况下叶轮流道和叶顶间隙层内的流动规律,对比分析了4种不同流量工况下叶顶间隙泄漏涡的流动特性、叶顶间隙层总压与相对速度分布,以及流量的变化对离心泵外特性的影响。结果表明:在小流量(设计流量为1.5 m3/h)时,间隙层内充满了泄漏涡,随着流量的增加涡核逐渐减少;大流量时涡核几乎消失,但此时流体速度激增,流动冲击损失变大在叶轮出口与间隙层附近存在着大面积回流,小流量时回流几乎占据了整个出口。通过模型泵外特性试验,验证了数值计算的准确性。该文为离心泵叶顶间隙设计及水力优化提供了参考。  相似文献   

3.
叶顶间隙大小对螺旋离心泵内部压力脉动的影响   总被引:3,自引:3,他引:0  
叶顶间隙大小是影响半开式螺旋离心泵内外特性的重要因素之一,为充分探究叶顶间隙大小对其内外特性的影响程度及作用机理,该文以一台比转速237的单叶片螺旋离心泵为研究对象,通过设计叶顶间隙专用调节机构,分别调整叶顶间隙大小至0.3、0.5和0.8 mm,与叶轮外径的比值分别为0.13%、0.22%和0.35%。针对3种叶顶间隙大小情况,同时进行外特性试验和压力脉动试验研究。压力脉动的监测点包括叶轮进口边、叶轮中部、蜗壳第三断面和蜗壳隔舌附近。结果表明叶顶间隙大小与叶轮平均直径的比值应介于0.13%~0.22%之间。同时,结合压力脉动试验获得的实测压力波形图、压力系数波形图及频域图,分析了单叶片螺旋离心泵内部压力脉动的规律,为半开式螺旋离心泵的减振降噪提供参考和借鉴。  相似文献   

4.
基于Mixture多相流模型计算双流道泵全流道内固液两相湍流   总被引:3,自引:11,他引:3  
采用Mixture多相流模型、扩展的标准k-ε湍流模型与SIMPLEC算法,应用计算流体力学软件Fluent对双流道泵全流道内的固液两相湍流进行了数值模拟,并将计算结果与清水单相流数值模拟及泵外特性性能试验进行了对比,揭示了不同粒径及颗粒体积浓度条件下双流道泵全流道内的固液两相流动规律.研究结果表明:在叶轮流道内,固相体积浓度分布极不均匀,颗粒主要集中于叶轮出口处的工作面和后盖板上,但是随着颗粒浓度和粒径的减小,会出现颗粒向背面迁移的趋势;在蜗壳流道内,颗粒主要集中于靠近蜗壳出口侧的流道区域,颗粒运动轨迹紊乱,少部分颗粒脱离叶轮后能直接从蜗壳出口流出,大部分颗粒撞击蜗壳壁面,留在蜗壳内转动数圈才能流出;颗粒浓度变化对固相的离析作用影响相对较小;粒径变化对固相的离析作用影响较大,粒径越大,颗粒撞击点愈加集中于叶轮工作面,固相的离析作用越明显;相同体积流量下,泵进出口总压差随颗粒浓度和粒径的增加而减小.  相似文献   

5.
为了研究颗粒参数与螺旋离心泵过流部件表面磨损特性的影响,该文结合数值计算与试验方法,分别引入Mclaury和OKA 2种磨损预测模型对螺旋离心泵内固液两相流场进行求解,并将2种模型中所包含的关联因子函数进行了推导和分析,建立了颗粒参数与过流部件表面磨损的内在关联。结果表明:所采用的数值计算模型准确性较好,相对误差在可接受范围内;叶片工作面的磨损主要集中在叶片头部和螺旋段轮缘附近,叶片背面磨损主要发生在叶轮离心段,蜗壳内壁主要磨损区域为隔舌和靠近出口断面附近;颗粒粒径在0.05~0.16 mm范围内,粒径的增加促进磨损,而当粒径大于0.16 mm后,磨损增长放缓;颗粒体积分数在3%~6%范围内,颗粒体积分数的增加会加剧磨损,而从6%增加到7%时,隔舌处磨损持续增加,在周向角度为101°~326°的截面范围内,颗粒体积分数的增加会抑制蜗壳内壁磨损;颗粒速度与磨损呈正相关,且对磨损的影响较大,不同速度下蜗壳内壁各部位的磨损率变化趋势相近。在此基础上,给出了固液两相流泵水力设计和结构设计的优化方向,该文为提高两相流泵抗磨损性能提供了参考。  相似文献   

6.
渣浆泵叶轮磨损的数值模拟及试验   总被引:7,自引:7,他引:0  
为研究渣浆泵运行过程中叶轮的磨损情况,该文以一台离心式工程塑料渣浆泵为研究对象,对其全流场进行了结构化网格划分,首先对包括设计工况点在内的5个工况进行了清水条件下的数值模拟,并与试验数据进行对比,发现最大误差不超过5%,设计工况点误差不超过3%,说明所用数值模拟方法得到的结果是可信的。随后基于ANSYS CFX商用软件中的Particle欧拉多相流模型,对模型泵内流场进行了固液两相数值模拟并进行了快速磨损试验,模拟与试验结果表明:叶轮磨损较严重的部位位于叶片进口边、流道中前段靠近叶片压力面的后盖板内侧、叶片压力面与后盖板交界处及叶片压力面端面;背叶片的磨损主要发生在叶片压力面外缘,并由此处开始往轮毂处发展,磨损形状大致呈抛物线型,分析认为隔舌处的高压引起流道中颗粒相回流撞击背叶片外缘是造成背叶片磨损的主要原因。通过模拟结果与试验结果的对比,证明所采用的数值模拟方法可以有效地预测渣浆泵运行时叶轮的磨损,其结果可较好地解释磨损产生的原因,该研究可为今后渣浆泵叶轮抗磨损性能的优化设计提供参考。  相似文献   

7.
针对轴流泵在输送污水介质中的磨损和缠绕问题,设计了外特性相同但后掠角分别为40°和60°后掠叶片,并采用Particle颗粒模型进行固液两相流数值模拟,发现设计流量工况下60°后掠叶片固相分布情况要优于40°后掠叶片,60°后掠叶片压力面上的固相体积分数平均比40°后掠叶片上的固相体积分数小0.1,60°后掠叶片吸力面上的固相体积分数平均比40°后掠叶片小0.2。进一步对60°后掠叶片进行研究,发现随着颗粒直径的增加,叶片上的固相体积分数随之增加,且固相集中的区域都很相似;随着初始颗粒体积分数的增加,60°后掠叶片上的固相体积分数也随之增加,但初始颗粒体积分数越大,对后掠叶片压力面上固相体积分数的影响越小。为检验后掠叶片的抗缠绕能力,对60°后掠叶片进行缠绕试验,发现单独的后掠叶片形式的轴流叶轮不易发生缠绕,但当叶轮与套筒配合后,若面对大量棉线,容易在进口边轮缘处发生堆积。该研究为输送污水介质轴流泵的抗磨损和抗缠绕性能的研究提供了参考。  相似文献   

8.
该文利用高速摄影和压力脉动测量结果,以某一模型轴流泵为研究对象,研究了轴流泵叶顶涡空化机理,探讨了不同流量、不同空化数下的叶顶空化形态及垂直空化涡发展的瞬态特性,分析了叶顶空化形态与压力脉动结果之间的关系。试验结果表明,小流量(0.6~0.8)Qopt(Qopt=365 m3/h)工况下,更易空化初生且叶顶空化形态更不稳定,随着空化数的降低,叶顶空化更加剧烈;垂直空化涡自叶顶三角形云状空化尾缘脱落,垂直于叶片压力面向相邻叶片移动,造成流道堵塞,影响泵的水力性能。随着流量的降低,垂直空化涡初生点向叶顶尾缘移动;减小空化数,其尺度与强度增大。压力脉动与空化结构图像对比表明,叶片吸力面为传感器所在圆周压力最低处。叶顶空化区为低压区范围,在大流量1.2Qopt工况下,叶顶泄漏涡涡带为狭长的低压区。随着流量与空化数的降低,叶顶泄漏涡与叶顶相连形成三角形空化云,形成较大范围的低压区。垂直空化涡的脱落使得云状空化面积减小,低压区范围减小。垂直空化涡向相邻叶片压力面移动中,与脱落的叶顶泄漏涡尾缘混合作用,使压力回升过程中产生波动。空化结构对轴流泵叶轮叶顶区压力具有重要影响。  相似文献   

9.
轴流泵小流量工况条件下叶顶泄漏空化特性   总被引:5,自引:5,他引:0  
为了研究轴流泵小流量工况下叶顶泄漏涡的空化问题,该文以TJ04-ZL-02轴流泵水力模型为研究对象,基于修正的空化模型和SST k-ω湍流模型,分析了叶顶间隙泄漏涡的空化特性。数值计算结果表明,叶顶间隙内泄漏流在工作面拐角处产生分离涡空化,其与叶顶泄漏涡空化共同构成轴流泵的初生空化;在同一空化数下,不同叶片弦长系数的截面空化情况不同,随着弦长系数的增加,叶顶泄漏涡的空化区域和空泡体积分数逐渐增大。随着空化数减小,叶顶泄漏涡的卷吸区也出现空泡团,并与涡带连成一片形成空泡云。在小流量工况下,叶顶区工作面和背面压差较大,间隙轴向速度均出现矢量负值。高速摄影试验结果表明,在小流量工况下,随着空化数的降低,空化现象率先出现间隙内部,接着空化程度不断增加,泄漏涡导致的空泡急剧增加,形成的空泡云在叶片尾部区域发生爆破。当空化数为σ=0.187~0.232时,空泡布满了叶片背面,且叶顶区的空泡在轴向厚度增大,且在叶片后缘出现了明显的空泡脱落现象。  相似文献   

10.
粒子成像测速(PIV)技术是随高速摄影技术和计算机图像处理技术发展起来的一种速度量测技术。该文将PIV技术应用于离心泵流道中固粒速度场的研究。开发了一套Windows界面的速度分析软件,分析了具有不同物理特性的橡皮泥、核桃壳和砂子等固体颗粒在流道中的运动。研究表明固粒的密度影响其在叶轮中的相对运动轨迹,固粒的粒径和形状则主要影响其运动速度大小;揭示了开式叶轮比闭式叶轮效率低、磨损快的原因是固粒受到水流泄漏的影响,其相对速度比在闭式叶轮中的大。研究结果有助于解释离心泵内磨粒磨损现象。  相似文献   

11.
泵内大颗粒固液两相流流动试验   总被引:1,自引:1,他引:0  
为了研究泵内大粒径球形颗粒运动规律,该研究以一台单级单吸悬臂式离心泵作为研究对象,采用高速摄影试验测试的方法对大粒径球形颗粒在固液两相流泵内的运动轨迹、通过性能以及颗粒与隔舌的碰撞规律进行了研究。测试结果表明:不同粒径的球形颗粒在泵内的轨迹变化规律相似,在叶轮进口处均有向叶片背面运动的趋势,而在运动过程中又逐渐脱离叶片背面,向下一叶片工作面靠近;泵内不同粒径颗粒运动趋势基本相同,但相对运动轨迹长度有所改变;粒径为8 mm和10 mm时颗粒平均过泵时间相对于粒径为6 mm时分别下降了15.15%和11.03%。颗粒体积分数对泵内对颗粒运动轨迹的影响较小,不同体积分数下泵内颗粒的运动轨迹基本重合;体积分数为3%和5%时颗粒平均过泵时间相比体积分数1%时分别上升了4.38%和3.21%。颗粒体积分数为1%、3%和5%时,颗粒与隔舌的碰撞的概率分别为0.5%,0.69%和0.9%;颗粒粒径为6 mm,8 mm和10 mm时颗粒与隔舌发生碰撞的概率分别为0.69%,0.63%和0.55%。研究结果可为运输大颗粒两相流泵的结构设计和防磨损研究提供参考。  相似文献   

12.
为了研究固液两相流离心泵输送含有多组分介质的规律,该文以一台离心式固液两相流泵作为研究对象,使用Fluent中的Eulerian多相流模型描述固液两相流动特征。首先选取了3组直径不等的单分散颗粒群作为固相,发现粒径越大,工作面的颗粒浓度越高,固相离析作用越明显。随后选取了5组直径递增的颗粒群作为固相,每组颗粒群包含两组相同的单分散颗粒群,结果表明同一台泵内两组相同的颗粒群的运动特征相同,同时两组相同的颗粒群的浓度之和、速度之和及外特性与单独输送单分散颗粒群的变化规律相似。最后选取了5组粒径不相等的两组颗粒群组合而成作为固相,大颗粒群粒径不变,小颗粒群粒径递增,结果发现不等直径双颗粒群组合与单颗粒群或者等直径双颗粒群有所区别,大小颗粒在内部流动上表现出了独立性和相互影响的现象,小颗粒群的运动特征与单分散颗粒群类似,由于小颗粒的存在使粒径均为0.7 mm的大颗粒体积分数分布发生了变化,小颗粒使大颗粒在泵内分布更加均匀,随着小颗粒群粒径增加,泵的扬程、效率和总压差先急剧上升随后缓慢下降,粒径为0.7和0.15 mm组合时扬程为80.12 m,达到最高值。该研究可为进一步研究多组分介质对泵性能的影响提供参考。  相似文献   

13.
螺旋离心泵内回流涡空化特性   总被引:1,自引:4,他引:1  
为了研究回流涡空化特性,对一台螺旋离心泵内部的空化流动进行了可视化研究,在一定的工况下该泵内部发生了回流涡空化,捕捉到了不同流量下螺旋离心泵内部回流涡空化形态,发现回流漩涡空化中存在2个旋转的空化云,并且随着流量的减小,回流涡空化云体积逐渐减小;对该泵进行了数值模拟,发现随着流量的减小,泵进口外部形成的回流区域变小,从而导致回流涡空化云体积逐渐减小。该文对螺旋离心泵内回流涡空化体积演变机理的深入研究提供了参考。  相似文献   

14.
半开式叶轮离心泵气液两相条件下内部流动特性分析   总被引:1,自引:1,他引:0  
半开式叶轮离心泵输送气液两相流时,其性能经常随入流含气率(α)的增加而下降,主要由内部的气液两相不稳定流动造成。为解决传统欧拉双流体模型不能考虑气泡直径变化及气泡形变的问题,采用一种群体平衡模型(Musig模型)数值计算了某设计比转速为88.6的半开式叶轮离心泵在不同入流含气率下的内部流场,并进行了试验验证。研究结果表明:模型泵在1 000 r/min可输送液体的最大入流含气率为4.6%;α>3%以后,Musig模型由于能表征气泡形态及破碎与聚合过程等气液两相流演化规律,其外特性计算结果比欧拉-欧拉双流体模型准确,且与可视化试验流型测试结果较为吻合;α=4%时扬程系数和效率与试验结果的最大误差分别为1.6%和5%;随着入流含气率的增加,叶轮和蜗壳流道内逐步出现均匀泡状流、聚合泡状流、气穴流和分离流等流型分布,设计流量下α≤1%时以均匀泡状流为主,α=3%时以聚合泡状流为主,α=4%时以气穴流为主,α≥4.2%时出现分离流并逐渐堵塞流道;叶顶间隙是影响泵内气液两相流型分布的重要原因,叶轮流道中存在大尺度漩涡和出口回流现象,且随着含气率的增大越发明显,进而在高含气率区域引发较大的湍动能分布,加剧了泵内部的不稳定流动,最终导致α≥4.6%后的泵空转。该研究可为综合分析离心泵内部不稳定流动规律提供一定参考。  相似文献   

15.
离心泵气液固多相流动数值模拟与试验   总被引:4,自引:3,他引:1  
为研究离心泵输送含有气固液多相时内部的流动情况,采用Pro/E三维造型软件进行几何造型,基于ANSYSCFX软件应用雷诺时均方程、双方程湍流模型,并结合SIMPLEC算法对其内部三维气固液多相流各相流动规律进行数值计算,将计算结果与试验结果进行对比结果表明:受气相所产生旋涡的影响,固相体积分数在径向量纲位置r/R2为0.4时达到最大值后直线急剧下降,下降至一定值后开始波动变化,而气相体积分数在径向量纲位置r/R2为0.4时较小,从径向量纲位置r/R2为0.4以后急剧增大。气、固两相互相影响对方颗粒的分布。气相主要集中在叶片工作面的中间位置,气相的存在使叶轮流道内产生旋涡,影响叶轮流道内的能量交换与传递;固相在没有旋涡的流道内是紧靠叶片表面运动的,在有旋涡流道内主要是随着旋涡旋转方向进行流动,固相所占比值的增加对流动轨迹的影响并不明显。对气液固多相流的深入研究和应用提供了有价值的参考。  相似文献   

16.
离心泵进水管路通常布置阀门供检修时切断水流,这会导致离心泵入流畸变。该研究旨在分析泵前检修阀所诱发的非定常尾迹特征及其对大流量工况离心泵运行特性的影响机理。试验对比了均匀来流和畸变来流条件下离心泵的外特性,数值模拟研究了阀板尾迹涡的流动特征及其对离心泵非稳态内流场的影响,分析了阀板尾迹涡诱发的叶轮径向力。结果表明:两种来流条件下数值模拟与试验得到的离心泵外特性误差在5%以内;对离心泵性能产生主要影响的尾迹涡主要来自阀门阀板一侧的边界层分离与卷吸,入流畸变导致大流量工况下离心泵效率相较于均匀入流下降9.15%,扬程降低1.2 m;阀板尾迹在离心泵入口产生1.9倍转频的脉动频率;尾迹涡的周期性入流导致两个叶片前缘的最大相对液流角由30°分别增大至43°和39°,这两个叶片的压力面脱流加剧,产生逐渐向下游耗散的失速团,叶片承受2倍转频的非稳态激振力;尾迹涡的周期性吸入导致叶轮上的时均径向力增大至均匀入流的4.5倍左右,最大径向力达到均匀入流的7倍左右,径向力矢量发生偏移,离心泵断轴风险加剧。研究结果可为工业现场中离心泵运行稳定性的改善提供理论依据。  相似文献   

17.
轴流泵叶轮区域空化特性数值模拟   总被引:6,自引:5,他引:1  
为了研究轴流泵内部叶轮区域空化特性,该文基于ANSYSCFX软件,分别应用Standardκ-ε,RNGκ-ε,κ-ω和SSTκ-ω湍流模型、均质多相流模型,对比转数ns=1033轴流泵在不同工况下进行全流道数值计算,将模拟值与试验结果进行对比分析,验证不同湍流模型及多相流模型的适应性并探究叶轮区域的空化特性。结果表明:在设计工况下,基于κ-ω湍流模型较其他3种湍流模型计算准确,临界汽蚀余量NPSHc计算值与试验结果误差为6.32%,可以较好反映轴流泵内部空化特性。随着有效汽蚀余量NPSH值的减小,空化首先在叶片背面进口靠近轮缘处发生,然后沿着主流方向往叶片中部发展直至充满整个流道,在临界汽蚀余量工况下,叶片中部区域空化面积较大,空化较严重时,叶片背面流线在叶片后部较紊乱,在靠近轮毂处形成漩涡微团,并向轮缘处移动,同时引起叶轮出口截面处轴面速度分布不均匀,增加了叶轮区域流场的紊乱性,揭示了叶轮区域内部空化流动特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号