首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Nitrogen (N) storage capacity of cherry (Prunus avium L.) trees grown in sand culture was preconditioned by applying contrasting N supplies for one year. During the spring of the following year, a constant amount of 15N was supplied and the dynamics of N remobilization and root uptake were characterized as a function of internal N status of the trees. To calculate the flux of N through xylem, both xylem sap N concentration and whole-tree transpiration rates were measured. By comparing the cumulative flux of N through the xylem with the amount of N recovered in the new above ground growth, we indirectly evaluated the recycling of N in the xylem, i.e., the amount of N derived from shoot-root translocation that was subsequently reloaded into the xylem. The contrasting N storage capacities imposed during the first year affected both N remobilization and uptake from roots in the following year. Recycling of N in the xylem apparently did not occur during the remobilization of internal reserves (i.e., during the first 6-8 weeks after bud burst). However, when remobilization declined, measurement of the cumulative flux of N through the xylem overestimated the amount of N recovered in the new biomass, allowing the extent of N recycling to be evaluated. The amount of N recycling in the xylem was greater in high-N trees, which also took up less N through their roots than trees preconditioned to have a lower internal N status. This suggests that recycling of N in the xylem is a mechanism by which plants regulate N uptake by roots.  相似文献   

2.
In a field study, the composition and concentrations of amino compounds in the xylem sap of the mistletoe, Viscum album L., and in the xylem sap of two host species, an evergreen conifer (Abies alba Mill.) and a deciduous broad-leaved tree (Populus x euramericana), were analyzed. The xylem sap of both hosts and mistletoe contained large, but similar amounts of total organic nitrogen in low molecular weight amino compounds (TONLW). Nevertheless, individual amino compounds accumulated in the xylem sap of mistletoe relative to the host xylem sap, indicating selective uptake. In the xylem sap of Populus, major amino compounds (asparagine (Asn) and glutamine (Gln)) and the bulk parameters, TONLW and proteinogenic amino acids, showed significant seasonal variation. In Abies and in mistletoe on either host, variation of amino compounds in xylem sap was largely explained by inter-annual differences, not by seasonal variation. In both hosts, TONLW in the xylem sap was dominated by Gln. There was a steady decrease in relative abundance of Gln from the host xylem sap to the mistletoe xylem sap and to the stems and leaves of mistletoe. Simultaneously, the abundance of arginine (Arg) increased. Arginine was the predominant amino compound in the stems and leaves of mistletoe, occurring at concentrations previously observed only in leaves of trees exposed to excess nitrogen. We conclude that Gln (2 mol N mol(-1)) delivered by the host xylem sap is converted, in mistletoe, to Arg (4 mol N mol(-1)) and that the organic carbon liberated from Gln contributes significantly to the parasite's heterotrophic carbon gain. Statistical analyses of the data support this conclusion. Accumulation of Arg in mistletoe is an indication of excess N supply as a result of the uptake of amino compounds from the host xylem sap and a lack of phloem uploading.  相似文献   

3.
We used long-term in situ (15)N labeling of the soil to investigate the contribution of the two main nitrogen (N) sources (N uptake versus N reserves) to sun shoot growth from bud burst to full leaf expansion in 50-year-old sessile oaks. Recovery of (15)N by growing compartments (leaves, twigs and buds) and presence of (15)N in phloem sap were checked weekly. During the first 2 weeks following bud burst, remobilized N contributed ~90% of total N in growing leaves and twigs. Nitrogen uptake from the soil started concomitantly with N remobilization but contributed only slightly to bud burst. However, the fraction of total N due to N uptake increased markedly once bud burst had occurred, reaching 27% in fully expanded leaves and 18% in developed twigs. In phloem sap, the (15)N label appeared a few days after the beginning of labeling and increased until the end of bud burst, and then decreased at full leaf expansion in June. Of all the shoot compartments, leaves attracted most of the absorbed N, which accounted for 68% of new N in shoots, whereas twigs and new buds accounted for only 28 and 3%, respectively. New N allocated to leaves increased from unfolding to full expansion as total N concentration in the leaves decreased. Our results underline the crucial role played by stored N in rapid leaf growth and in the sustained growth of oak trees. Any factors that reduce N storage in autumn may therefore impair spring shoot growth.  相似文献   

4.
The compensation heat pulse (CHP) method is widely used to estimate sap flow and transpiration in conducting organs of woody plants. Previous studies have reported a natural azimuthal variability in sap flow, which could have practical implications in locating the CHP probes and integrating their output. Sap flow of several olive trees (Olea europaea L. cv. 'Arbequina') previously grown under different irrigation treatments were monitored by the CHP method, and their xylem anatomical characteristics were analyzed from wood samples taken at the same location in which the probes were installed. A significant azimuthal variability in the sap flow was found in a well-irrigated olive tree monitored by eight CHP probes. The azimuthal variability was well related to crown architecture, but poorly to azimuthal differences in the xylem anatomical characteristics. Well-irrigated and deficit-irrigated olive trees showed similar xylem anatomical characteristics, but they differed in xylem growth and in the ratio of nocturnal-to-diurnal sap flow (N/D index). The results of this work indicate that transpiration cannot be accurately estimated by the CHP method in olive trees if a small number of sensors are employed and that the N/D index could be used as a sensitive water status indicator.  相似文献   

5.
Variations in radial patterns of xylem water content and sap flow rate were measured in five laurel forest tree species (Laurus azorica (Seub.) Franco, Persea indica (L.) Spreng., Myrica faya Ait., Erica arborea L. and Ilex perado Ait. ssp. platyphylla (Webb & Berth.) Tutin) growing in an experimental plot at Agua García, Tenerife, Canary Islands. Measurements were performed around midday during warm and sunny days by the heat field deformation method. In all species, water content was almost constant (around 35% by volume) over the whole xylem cross-sectional area. There were no differences in wood color over the whole cross-sectional area of the stem in most species with the exception of E. arborea, whose wood became darker in the inner layers. Radial patterns of sap flow were highly variable and did not show clear relationships with tree diameter or species. Sap flow occurred over the whole xylem cross-sectional area in some species, whereas it was limited to the outer xylem layers in others. Sap flow rate was either similar along the xylem radius or exhibited a peak in the outer part of the xylem area. Low sap flow rates with little variation in radial pattern were typical for shaded suppressed trees, whereas dominant trees exhibited high sap flow rates with a peak in the radial pattern. Stem damage resulted in a significant decrease in sap flow rate in the outer xylem layers. The outer xylem is more important for whole tree water supply than the inner xylem because of its larger size. We conclude that measurement of radial flow pattern provides a reliable method of integrating sap flow from individual measuring points to the whole tree.  相似文献   

6.
7.
We studied the absorption, assimilation, translocation and distribution of nitrogen (N) from urea applied in autumn to leaves of 1-year-old potted Fuji/M26 apple (Malus domestica Borkh) trees. In early October, all leaves of each tree were painted with either 3% urea (enriched to 10 atom % with 15N) or water (control trees). Four trees were harvested before the treatment and N and amino acid contents were determined. Four trees from each treatment were harvested at 2, 4, 7, 10, 15 and 20 days after urea or water application. Total N, amino acids and 15N in leaves, bark, xylem, shank and roots were analyzed to determine uptake and mobilization of N from urea. Most uptake of 15N by leaves occurred during the first 2 days following application of urea. The mean rate of absorption during these 2 days was 0.29 g m-2 day-1. Amino acids in leaves, bark and roots increased significantly after urea application compared with control values. The highest concentrations of amino acids in leaves and bark occurred 4 days after application, whereas the highest concentrations of amino acids in roots occurred 10 days after application. Total 15N content in leaves peaked 2 days after urea application and then decreased, whereas 15N content in roots and bark increased throughout the experiment. Total 15N content in xylem and shank was low. Leaves absorbed 35% of the 15N applied as urea, and 63.6% of absorbed 15N was translocated out of leaves within 20 days after urea application. We conclude that N from urea was converted to amino acids in leaves after foliar application in autumn, and roots and bark were the main sinks of N from urea applied to leaves.  相似文献   

8.
An investigation was carried out to compare the water balance of Scots pine in Flanders growing on soils with contrasted water availability. Based on sap flow measurements transpiration of Scots pine was determined for two small plots on cover sands resting on a clayey substratum of varying depths (shallow and deep). Soil water content (SWC) was relatively low (0.12–0.21 m3 m−3) in the upper topsoil (0–0.75 m) in both plots. However, it was always higher in the shallow plot (by 3–27%) than in the deep plot. The difference between SWC in both plots was more pronounced in the deeper soil layers (0.75–1.5 m). Sap flow was measured in seven sample pine trees on each plot from May to October 2000 using the heat field deformation (HFD) method. Transpiration of the individual trees in the deep plot was 22% lower than in trees in the shallow plot. The difference decreased to 15% after scaling up to the stand level due to a higher density of trees growing in the deep plot. It was hypothesized that higher water uptake in the shallow plot was possibly caused by structural differences between the root systems of trees growing in plots with variable soil texture. The sapwood in shallow-plot trees was 1 cm less deep than in trees growing in the deep plot (as measured by biometric and sap flow pattern methods). Sap flow radial patterns suggested a higher involvement of sinker roots for water uptake in the deep clayey substratum plot. This was in agreement with higher activity of the inner xylem in trees on the deep plot under higher evaporative demands. However, the fraction of the inner xylem to the whole-tree water supply was nearly three-fold lower than the outer xylem, which appeared to provide water presumably from the superficial roots. The fraction of these roots, estimated according to sap flow radial patterns, was around 10% higher in trees on the shallow plot. This caused 30% higher sap flow in the stem outer xylem there. Transpiration of the pine stands was limited under high evaporative demands in both plots by the low availability of soil water. The limitation was greater in the deep plot and persisted throughout the whole growing season.  相似文献   

9.
We studied sap flow in dominant coniferous (Pinus sylvestris L.) and broadleaf (Populus canescens L.) species and in understory species (Prunus serotina Ehrh. and Rhododendron ponticum L.) by the heat field deformation (HFD) method. We attempted to identify possible errors arising during flow integration and scaling from single-point measurements to whole trees. Large systematic errors of -90 to 300% were found when it was assumed that sap flow was uniform over the sapwood depth. Therefore, we recommend that the radial sap flow pattern should be determined first using sensors with multiple measuring points along a stem radius followed by single-point measurements with sensors placed at a predetermined depth. Other significant errors occurred in the scaling procedure even when the sap flow radial pattern was known. These included errors associated with uncertainties in the positioning of sensors beneath the cambium (up to 15% per 1 mm error in estimated xylem depth), and differences in environmental conditions when the radial profile applied for integration was determined over the short term (up to 47% error). High temporal variation in the point-to-area correction factor along the xylem radius used for flow integration is also problematic. Compared with midday measurements, measurements of radial variation of sap flow in the morning and evening of sunny days minimized the influence of temporal variations on the point-to-area correction factor, which was especially pronounced in trees with a highly asymmetric sap flow radial pattern because of differences in functioning of the sapwood xylem layers. Positioning a single-point sensor at a depth with maximum sap flow is advantageous because of the high sensitivity of maximum sap flow to water stress conditions and changes in micro-climate, and because of the lower random errors associated with the positioning of a single-point sensor along the xylem radius.  相似文献   

10.
Sap flow rates were measured simultaneously by the heat pulse and deuterium tracing techniques in nine Eucalyptus grandis W. Hill ex Maiden. trees at two sites (1) to compare results from the two techniques and (2) to assess the impact of the assumptions underlying the deuterium tracing method on the calculation of sap flow for a range of tree sizes. The trees ranged in height from 4 to 14 m with leaf areas of 5 to 35 m(2). In all trees, sap flow estimated by the deuterium tracing technique was higher than sap flow estimated by the heat pulse method, with differences of 11 to 43% in eight of the trees and 113% in one tree. The largest difference was attributed to errors in the heat pulse method, as indicated by aberrant relationships between sap flow measured by the heat pulse method and tree size characteristics (i.e., diameter, sap wood area, leaf area) for that tree compared with the other experimental trees. Drilling holes in the trees to allow injection of deuterium had no significant effect on sap flow, even when 32 holes were drilled. Sap flow measured by the heat pulse method was only lower after drilling than before drilling in three trees, and the difference only persisted for about 1 h. Deuterium concentrations of water collected from the tree canopies had not returned to background values 17 days after injection. Twenty-one days after injection, sapwood and heartwood samples taken from trunks near the injection sites contained considerable concentrations of deuterium, indicating that some of the deuterium injected into the trees was still present. An experiment performed on two trees showed that deuterium was stored in the heartwood and sapwood throughout the trees, and its distribution within the trees four days after injection was similar whether it was injected into only the sapwood (where it should mix with sap and be transported from the tree most readily) or into both the sapwood and heartwood, indicating that there was considerable movement of deuterium between the heartwood and sapwood. Deuterium storage was accounted for by an approximate means in the sap flow calculations, and may have resulted in an error of about 10% in sap flow estimated by this method. We conclude that the heat pulse and deuterium tracing techniques can be used simultaneously to increase the number of sap flow measurements obtained from a forest, thereby increasing the precision of forest water use estimates. Their combination would be most effective in stands with a wide range of tree sizes and sap flow rates, where the relative differences in sap flux estimates between the methods is small compared with differences in sap flow between trees.  相似文献   

11.
It is predicted that dryland salinity will affect up to 17 Mha of the Australian landscape by 2050, and therefore, monitoring the health of tree plantings and remnant native vegetation in saline areas is increasingly important. Casuarina glauca Sieber ex Spreng. has considerable salinity tolerance and is commonly planted in areas with a shallow, saline water table. To evaluate the potential of using the nitrogenous composition of xylem sap to assess salinity stress in C. glauca, the responses of trees grown with various soil salinities in a greenhouse were compared with those of trees growing in field plots with different water table depths and groundwater salinities. In the greenhouse, increasing soil salinity led to increased allocation of nitrogen (N) to proline and arginine in both stem and root xylem sap, with coincident decreases in citrulline and asparagine. Although the field plots were ranked as increasingly saline-based on ground water salinity and depth-only the allocation of N to citrulline differed significantly between the field plots. Within each plot, temporal variation in the composition of the xylem sap was related to rainfall, rainfall infiltration and soil salinity. Periods of low rainfall and infiltration and higher soil salinity corresponded with increased allocation of N to proline and arginine in the xylem sap. The allocation of N to citrulline and asparagine increased following rainfall events where rain was calculated to have infiltrated sufficiently to decrease soil salinity. The relationship between nitrogenous composition of the xylem sap of C. glauca and soil salinity indicates that the analysis of xylem sap is an effective method for assessing changes in salinity stress in trees at a particular site over time. However, the composition of the xylem sap proved less useful as a comparative index of salinity stress in trees growing at different sites.  相似文献   

12.
We assessed seasonal changes of total soluble nonprotein nitrogen compounds (TSNN) in adult European beech trees (Fagus sylvatica, L.) growing under different local climate during the growing season immediately following a thinning treatment and 3 years later. In both years, samples of leaves, xylem sap and phloem exudates from beech trees growing in thinned and unthinned (control) stands on a dry, warm SW exposed and a cooler, moist NE exposed site were collected in May, July and September. In May of both years, asparagine (Asn) and glutamine (Gln) were most abundant in leaves and xylem, respectively, whereas arginine (Arg) dominated in the phloem. In July, TSNN concentrations decreased in all tissues and sites, but differences in water availability between aspects were reflected in TSNN concentrations. In September, differences in the increase of Arg concentration in the phloem were related to differences in the onset of senescence between treatments. Thinning treatment increased amino compound concentrations of beech tissues in July on both aspects, particularly at the NE thinned site. It is supposed that, the N balance of adult beech is favoured by both, the thinning treatments as well as the cool-moist climate prevailing at the NE aspect.  相似文献   

13.
Knowledge of sap flow variability in tree trunks is important for up-scaling transpiration from the measuring point to the whole-tree and stand levels. Natural variability in sap flow, both radial and circumferential, was studied in the trunks and branches of mature olive trees (Olea europea L., cv Coratina) by the heat field deformation method using multi-point sensors. Sapwood depth ranged from 22 to 55 mm with greater variability in trunks than in branches. Two asymmetric types of sap flow radial patterns were observed: Type 1, rising to a maximum near the mid-point of the sapwood; and Type 2, falling continuously from a maximum just below cambium to zero at the inner boundary of the sapwood. The Type 1 pattern was recorded more often in branches and smaller trees. Both types of sap flow radial patterns were observed in trunks of the sample trees. Sap flow radial patterns were rather stable during the day, but varied with soil water changes. A decrease in sap flow in the outermost xylem was related to water depletion in the topsoil. We hypothesized that the variations in sap flow radial pattern in a tree trunk reflects a vertical distribution of water uptake that varies with water availability in different soil layers.  相似文献   

14.
Xylem sap from woody species in the wet/dry tropics of northern Australia was analyzed for N compounds. At the peak of the dry season, arginine was the main N compound in sap of most species of woodlands and deciduous monsoon forest. In the wet season, a marked change occurred with amides becoming the main sap N constituents of most species. Species from an evergreen monsoon forest, with a permanent water source, transported amides in the dry season. In the dry season, nitrate accounted for 7 and 12% of total xylem sap N in species of deciduous and evergreen monsoon forests, respectively. In the wet season, the proportion of N present as nitrate increased to 22% in deciduous monsoon forest species. These results suggest that N is taken up and assimilated mainly in the wet season and that this newly assimilated N is mostly transported as amide-N (woodland species, monsoon forest species) and nitrate (monsoon forest species). Arginine is the form in which stored N is remobilized and transported by woodland and deciduous monsoon forest species in the dry season. Several proteins, which may represent bark storage proteins, were detected in inner bark tissue from a range of trees in the dry season, indicating that, although N uptake appears to be limited in the dry season, the many tree and shrub species that produce flowers, fruit or leaves in the dry season use stored N to support growth. Nitrogen characteristics of the studied species are discussed in relation to the tropical environment.  相似文献   

15.
We used a Scholander pressure chamber to assess the effects of various extraction methods under different environmental conditions on element concentrations in xylem sap of 3-year-old Picea abies (L.) Karst. seedlings. Sap from excised shoots contained higher element concentrations when extracted at low than at high over-pressures. When comparing plants differing in water status, we found that a high extraction over-pressure introduced a systematic error into the data. For example, in well-watered non-transpiring plants relative to unwatered transpiring plants, potassium concentrations were 70% higher in sap extracted at 0.1 MPa over-pressure, but only 10% higher in sap extracted at 1.0 MPa over-pressure. Moreover, treatment effects depended on the time of day when the sap was extracted. Increased water flux in transpiring plants relative to non-transpiring plants resulted in reduced xylem sap element concentrations when samples were collected after 9 h of transpiration, but not after 4 to 6 h of transpiration. Drought had little effect on xylem sap element concentrations, indicating that rates of element release into xylem conduits, element depletion by growing tissues, and water flow maintained a balance that may prevent nutrient stress during short-term drought.  相似文献   

16.
Vegetative buds of peach (Prunus persica L. Batsch.) trees act as strong sinks and their bud break capacity can be profoundly affected by carbohydrate availability during the rest period (November-February). Analysis of xylem sap revealed seasonal changes in concentrations of sorbitol and hexoses (glucose and fructose). Sorbitol concentrations decreased and hexose concentrations increased with increasing bud break capacity. Sucrose concentration in xylem sap increased significantly but remained low. To clarify their respective roles in the early events of bud break, carbohydrate concentrations and uptake rates, and activities of NAD-dependent sorbitol dehydrogenase (SDH), sorbitol oxidase (SOX) and cell wall invertase (CWI) were determined in meristematic tissues, cushion tissues and stem segments. Only CWI activity increased in meristematic tissues shortly before bud break. In buds displaying high bud break capacity (during January and February), concentrations of sorbitol and sucrose in meristematic tissues were almost unchanged, paralleling their low rates of uptake and utilization by meristematic tissues, and indicating that sorbitol and sucrose play a negligible role in the bud break process. Hexose concentrations in meristematic tissues and glucose imported by meristematic tissues correlated positively with bud break capacity, suggesting that hexoses are involved in the early events of bud break. These findings were confirmed by data for buds that were unable to break because they had been collected from trees deprived of cold. We therefore conclude that hexoses are of greater importance than sorbitol or sucrose in the early events of bud break in peach trees.  相似文献   

17.
木本植物通过N内循环机制来适应有限的N供给,从而保持较高的生产力。文中从N内循环的过程、研究方法、受控因素等方面进行了综述:其过程包括休眠期N回流及翌年春季N再利用2个阶段,贮藏蛋白、精氨酸是休眠期N贮存的主要物质,谷氨酰胺是再利用阶段的主要运输载体;其研究方法主要有3种,即净余法局限于盆栽试验,N流量法通过测定不同时期树液中的N含量以及含N物质的组分来估测大树的N循环情况,同位素标记法是最常见的研究方法;树种、年龄、土壤肥力、土壤水分及大气CO2浓度等是影响N内循环的重要因素。针对目前研究中存在的问题及有待深入研究的内容进行了评述和展望,以期为植物N内循环理论与应用研究提供借鉴。  相似文献   

18.
Rinne P  Saarelainen A 《Tree physiology》1994,14(10):1149-1161
Six-year-old cloned Betula pubescens Ehrh. trees, grown outdoors at 65 degrees 01' N, were cut on six dates during the growing season to study coppice shoot development in relation to root-produced cytokinin-like compounds. Bleeding sap was collected over timed intervals for two days after cutting, and endogenous cytokinin-like compounds were measured by ELISA assay in HPLC-purified fractions of xylem sap. Initiation and development of coppice shoots on the clonally propagated plants were comparable to those in seedlings. Coppice shoot initiation was affected by the time of cutting, diminishing significantly after June. Of the cytokinin-like compounds detected in the xylem sap, zeatin riboside-like (ZR) compounds were present in the highest concentrations, and the concentrations of dihydrozeatin riboside-like (DHZR) and isopentenyladenoside-like (IPA) compounds were approximately one third and one eighth of the ZR concentrations, respectively. The concentration of cytokinin-like compounds was positively correlated with xylem sap flow rate. The export of cytokinin-like compounds, especially DHZR- and ZR-types, was positively correlated with the initiation and elongation rate of coppice shoots, the number of lateral branches, and the radial growth of the more slowly growing coppice shoots. The export of cytokinin-like compounds collected immediately after cutting may represent the basal value for each tree. This value is probably affected by the size and activity of the root system and may be a relevant estimate for predicting the success of coppicing.  相似文献   

19.
Weekly morphological measurements of trees in permanent growth plots and periodic destructive sampling were used to monitor growth and development of two Populus clones with contrasting morphology and phenology during the establishment year in a short-rotation, intensive-culture system. Tristis (P. tristis Fisch. x P. balsamifera L.) grew rapidly for 48 days before setting bud in July. By contrast, Eugenei (P. x euramericana (Dode) Guinier) grew at a slower rate than Tristis, but maintained this rate for 75 days before setting bud in September. By early October, the total leaf area and dry weight of Eugenei exceeded that of Tristis by 39 and 11%, respectively. In addition, Eugenei had a greater harvest index than Tristis throughout most of the growing season because a larger proportion of photosynthate produced was directed to shoot growth; however, a high shoot/root ratio in Eugenei predisposed it to water stress. Differences in aboveground biomass between clones were largely attributable to clonal differences in seasonal leaf area development.  相似文献   

20.
Bud flushing is very important for the survival and growth of trees, a phenomenon matched each year with the annual course of temperature and the timing of bud flushing in the spring. Essentially it represents a serious ecological and evolutionary tradeoff between survival and growth. The most suitable timing of bud burst permits trees to begin growth sufficiently early to take advantage of favorable spring conditions, but late enough to decrease the risks of tissue damage from late frost. In the present study bud burst spring phenology of poplar (Populus tremula and P. tremuloides) from eight different provenances, originating from Europe and the USA, was observed during March and April, 2009. The experimental plot was located at Solling, Germany (51°44′0″ N, 9°36′0″ E). A six stage subjective scoring system of bud burst phenology was used to identify the phenological stages of the seedlings, where each plant was observed twice a week. The aim of the study was to predict phenotypic variation in poplar, originating from regions between 42° and 60° N latitude, growing in similar environments. Timing of bud flushing of poplar was recorded. It was found that seedlings of provenance 3, which originated from 42.35° N latitude, started and completed flushing significantly earlier than those of other provenances, while seedlings of provenance 5, originating from 54.29° N latitude, started flushing very late and only a few plants reached top scoring at the end of the experimental period. Analysis of variance showed statistically highly significant differences (p < 0.05) in bud flushing among the provenances. The correlation between scoring and flushing periods was very strong within provenances although the flushing pattern differed among provenances (origin of the planted seedlings). Bud flushing showed a negative correlation with the origin of the planted seedlings. Given the field experience gained with this experiment, it is recommended that seedlings from provenances 5 and 8 could be used for future plantations where late frost may be a problem for the young shoots of seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号