首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Pseudomonas fluorescens strains that produce the polyketide antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) are among the most effective rhizobacteria that suppress root and crown rots, wilts, and damping-off diseases of a variety of crops, and they play a key role in the natural suppressiveness of some soils to certain soilborne pathogens. Root colonization by 2,4-DAPG-producing P. fluorescens strains Pf-5 (genotype A), Q2-87 (genotype B), Q8r1-96 (genotype D), and HT5-1 (genotype N) produced induced systemic resistance (ISR) in Arabidopsis thaliana accession Col-0 against bacterial speck caused by P. syringae pv. tomato. The ISR-eliciting activity of the four bacterial genotypes was similar, and all genotypes were equivalent in activity to the well-characterized strain P. fluorescens WCS417r. The 2,4-DAPG biosynthetic locus consists of the genes phlHGF and phlACBDE. phlD or phlBC mutants of Q2-87 (2,4-DAPG minus) were significantly reduced in ISR activity, and genetic complementation of the mutants restored ISR activity back to wild-type levels. A phlF regulatory mutant (overproducer of 2,4-DAPG) had ISR activity equivalent to the wild-type Q2-87. Introduction of DAPG into soil at concentrations of 10 to 250 μM 4 days before challenge inoculation induced resistance equivalent to or better than the bacteria. Strain Q2-87 induced resistance on transgenic NahG plants but not on npr1-1, jar1, and etr1 Arabidopsis mutants. These results indicate that the antibiotic 2,4-DAPG is a major determinant of ISR in 2,4-DAPG-producing P. fluorescens, that the genotype of the strain does not affect its ISR activity, and that the activity induced by these bacteria operates through the ethylene- and jasmonic acid-dependent signal transduction pathway.  相似文献   

2.
The ability of selected strains of fluorescent Pseudomonas spp. to cause induced systemic resistance (ISR) in Eucalyptus urophylla against bacterial wilt caused by Ralstonia solanacearum was investigated. Four of the five strains used can produce salicylic acid (SA) in vitro and, therefore, chemical SA, that is known to induce resistance in many plant species, was used as a reference treatment. Whereas a soil drench with SA did induce systemic resistance in E. urophylla, infiltration of SA into leaves did not. None of the fluorescent Pseudomonas spp. strains caused ISR against bacterial wilt when applied to the soil, but two strains, P. putida WCS358r and P. fluorescens WCS374r triggered ISR when infiltrated into two lower leaves 3–7 days before challenge inoculation. A mutant of strain WCS358r defective in the biosynthesis of the fluorescent siderophore pseudobactin, did not cause ISR, while the purified siderophore of WCS358r did, suggesting that pseudobactin358 is the ISR determinant of WCS358. A siderophore-minus mutant of WCS374r induced the same level of disease resistance as its parental strain, but the purified siderophore induced resistance as well, indicating that both the siderophore and another, unknown, inducing determinant(s) of WCS374r can trigger ISR in Eucalyptus. A possible role of WCS374r-produced SA remains uncertain. Transformation of a siderophore-minus mutant of WCS358 with the SA biosynthetic gene cluster from WCS374 did not enable this transformant to cause ISR in E. urophylla.  相似文献   

3.
Fluorescent pseudomonads and nonpathogenic Fusarium oxysporum have been shown to suppress fusarium wilts. This suppression has been related to both microbial antagonism and induced resistance.The aim of the present study was to assess the relative importance of systemic induced resistance in the suppression of fusarium wilt of tomato in commercial-like conditions by a reference strain of each type of microorganism (P. fluorescens WCS417r and nonpathogenic F. oxysporum Fo47). The spatial separation of the pathogen and the biocontrol strains excluded any possible microbial antagonism and implicated the involvement of the systemic induced resistance; whereas the absence of any separation between these microorganisms allowed the expression of both mechanisms. Since systemic induced resistance has often been associated with the synthesis of PR-proteins, their accumulation in tomato plants inoculated with WCS417r or with Fo47 was determined.The analysis of the results indicates that the suppression of fusarium wilt by P. fluorescens WCS417r was ascribed to systemic induced resistance without any detection of the PR-proteins tested (PR-1 and chitinases). In contrast, the suppression achieved by nonpathogenic F. oxysporum Fo47 appeared to be mainly ascribed to microbial antagonism but also to a lesser extent to systemic induced resistance. This induced resistance could be related to the accumulation of PR-1 and chitinases.The possible relationship between the ability of Fo47 to suppress fusarium wilt more efficiently than WCS417r and its ability to show both mechanisms is discussed.  相似文献   

4.
荧光假单胞杆菌的嗜铁素是控制桉树灰霉病的主要因子   总被引:5,自引:0,他引:5  
 本文对3个假单胞杆菌菌株(Pseudomonas spp.)及其嗜铁素(pseudobactin siderophore)缺失突变体防治桉树灰霉病进行了研究.平板拮抗活性测定表明,荧光假单胞杆菌(P.fluorescens) WCS374r菌株和恶臭假单胞杆菌(P.putida) WCS358r菌株通过对铁离子的竞争抑制灰霉菌的生长.在接种灰霉病菌之前10 h将WCS358r、WCS374r和WCS417r施用于受伤的桉树叶片后,可分别降低发病率48.9%、58.3%和40.3%;当将3种生防菌分别与灰霉病菌混合后接种桉树叶片,WCS358r和WCS374r仍然能够显著地降低发病率;在接种灰霉病菌12 h后再施用生防菌,WCS358r和WCS374r对病菌仍具有一定的抑制作用,而在24 h后施用生防菌,3个菌株均未表现显著的防治效果.WCS358r和WCS417r的嗜铁素缺失突变体无防病作用,而WCS374r的嗜铁素缺失突变体虽然还能有效地防治灰霉病,但与WCS374r相比,防病效果减弱.本试验结果说明假单胞杆菌的嗜铁素是控制桉树灰霉病的重要因子.  相似文献   

5.
Selected strains of rhizosphere bacteria reduce disease by activating a resistance mechanism in the plant named rhizobacteria-mediated induced systemic resistance (ISR). Rhizobacteria-mediated ISR resembles pathogen-induced systemic acquired resistance (SAR) in that both types of induced resistance render uninfected plant parts more resistant towards a broad spectrum of plant pathogens. Some rhizobacteria trigger the salicylic acid (SA)-dependent SAR pathway by producing SA at the root surface. In other cases, rhizobacteria trigger a different signalling pathway that does not require SA. The existence of a SA-independent ISR pathway has been demonstrated in Arabidopsis thaliana. In contrast to pathogen-induced SAR, ISR induced by Pseudomonas fluorescens WCS417r is independent of SA accumulation and pathogenesis-related (PR) gene activation but, instead, requires responsiveness to the plant hormones jasmonic acid (JA) and ethylene. Mutant analyses showed that ISR follows a novel signalling pathway in which components from the JA and ethylene response are successively engaged to trigger a defensive state that, like SAR, is controlled by the regulatory factor NPR1. Interestingly, simultaneous activation of both the JA/ethylene-dependent ISR pathway and the SA-dependent SAR pathway results in an enhanced level of protection. Thus combining both types of induced resistance provides an attractive tool for the improvement of disease control. This review focuses on the current status of our research on triggering, signalling, and expression of rhizobacteria-mediated ISR in Arabidopsis.  相似文献   

6.
Pseudomonas fluorescens-mediated induction of systemic resistance in radish against fusarium wilt (Fusarium oxysporum f. sp.raphani) was studied in a newly developed bioassay using a rockwool system. In this bioassay the pathogen and bacterium were confirmed to be confined to spatially separate locations on the plant root, throughout the experiment. Pathogen inoculum obtained by mixing peat with microconidia and subsequent incubation for four days at 22 °C, yielded a better percentage of diseased plants than a microconidial suspension drench, an injection of a microconidial suspension into the hypocotyl, or a talcum inoculum.Pseudomonas fluorescens strain WCS374 applied in talcum or peat, but not as a suspension drench, induced systemic resistance. A minimal initial bacterial inoculum density of 105 CFU WCS374 root–1 was required to significantly reduce the percentage diseased plants. At least one day was necessary between bacterization of strain WCS374 in talcum on the root tips and inoculation of the pathogen in peat on the root base, for an optimal induction of systemic resistance. Strain WCS374 induced systemic resistance in six radish cultivars differing in their susceptibility toF. oxysporum f. sp.raphani. Significant suppression of disease by bacterial treatments was generally observed when disease incidence in the control treatment, depending on pathogen inoculum density, ranged between approximately 40 to 80%. Strains WCS374 and WCS417 ofPseudomonas fluorescens induced systemic resistance against fusarium wilt, whereasP. putida WCS358 did not. This suggests that the induction of systemic resistance byPseudomonas spp. is dependent on strain-specific traits.Abbreviations CFU colony forming units - IFC immunofluorescence colony-staining - ISR induced systemic resistance - PBS phosphate buffered saline - SAR systemic acquired resistance  相似文献   

7.
Selected strains of non-pathogenic rhizobacteria have the ability to trigger an induced systemic resistance (ISR) response in plants. In Arabidopsis, rhizobacteria-mediated ISR has been extensively studied, using Pseudomonas fluorescens WCS417r as the inducing agent and P. syringae pv. tomato DC3000 (Pst) as the challenging pathogen. To investigate how far expression of ISR depends on the level of basal resistance, 10 different Arabidopsis ecotypes were screened for their potential to express WCS417r-mediated ISR and basal resistance against Pst. Two Arabidopsis ecotypes, RLD and Wassilewskija (Ws), were found to be blocked in their ability to express ISR. This ISR-noninducible phenotype correlated with a relatively low level of basal resistance against Pst. Genetic analysis of crosses between the ISR-inducible ecotypes Columbia (Col) and Landsberg erecta (Ler), on the one hand, and the non-inducible ecotypes RLD and Ws, on the other hand, revealed that ISR inducibility and basal resistance against Pst were inherited as monogenic dominant traits that are genetically linked. Neither ISR inducibility, nor basal resistance against Pst was complemented in the F1 progeny of a cross between RLD and Ws, indicating that both ecotypes are affected in the same locus. This locus, designated ISR1, was mapped between markers Ein3 and GL1 on chromosome III. Interestingly, ecotypes RLD and Ws also failed to express ISR against the oomycetous pathogen Peronospora parasitica, but they were not affected in their level of basal resistance against this pathogen. Thus, the ISR1 locus controls the expression of ISR against different pathogens but basal resistance only against Pst and not against P. parasitica. Like ecotypes RLD and Ws, ethylene-insensitive mutants showed the isr1 phenotype in that they were unable to express WCS417r-mediated ISR and show enhanced susceptibility to Pst infection. Analysis of ethylene responsiveness of RLD and Ws revealed that both ecotypes exhibit reduced sensitivity to ethylene. Therefore, it is proposed that the Arabidopsis ISR1 locus encodes a component of the ethylene-response pathway that plays an important role in ethylene-dependent resistance mechanisms.  相似文献   

8.
In an attempt to overcome the enhanced disease susceptibility phenotype that is typical for transgenic ethylene-insensitive tobacco (Tetr), Tetr plants were treated with chemical agents that induce resistance or with antagonistic rhizobacteria. Treatments with β-aminobutyric acid (BABA), benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), methyl jasmonate (MeJA), or salicylic acid (SA) induced PR-genes generally to a lesser extent than in non-transformed plants and did not reduce wilting symptoms upon infection with Pythium sp., except for a marginal effect of SA. In Tetr lines overexpressing PR-1g, PR-5c, or both, no significant reduction in disease development was apparent. Also treatment of Tetr plants with the antagonistic rhizobacteria Bacillus cereus UW85, Pseudomonas aeruginosa 7NSK2, Pseudomonas fluorescens WCS417r or Q8r-196, Pseudomonas putida WCS358r, or antibiotic-producing derivatives of WCS358r, did not reduce symptoms caused by Pythium.  相似文献   

9.
In an earlier study, treatment of radish seed with the bacteriumPseudomonas fluorescens WCS374 suppressed fusarium wilt of radish (Fusarium oxysporum f. sp.raphani) in a commercial greenhouse [Leemanet al., 1991b, 1995a]. In this greenhouse, the areas with fusarium wilt were localized or expanded very slowly, possibly due to disease suppressiveness of the soil. To study this phenomenon, fungi were isolated from radish roots collected from the greenhouse soil. Roots grown from seed treated with WCS374 were more abundantly colonized by fungi than were roots from nonbacterized plants. Among these were several species known for their antagonistic potential. Three of these fungi,Acremonium rutilum, Fusarium oxysporum andVerticillium lecanii, were evaluated further and found to suppress fusarium wilt of radish in a pot bioassay. In an induced resistance bioassay on rockwool,F. oxysporum andV. lecanii suppressed the disease by the apparent induction of systemic disease resistance. In pot bioassays with thePseudomonas spp. strains, the pseudobactin-minus mutant 358PSB did not suppress fusarium wilt, whereas its wild type strain (WCS358) suppressed disease presumably by siderophore-mediated competition for iron. The wild type strains of WCS374 and WCS417, as well as their pseudobactin-minus mutants 374PSB and 417PSB suppressed fusarium wilt. The latter is best explained by the fact that these strains are able to induce systemic resistance in radish, which operates as an additional mode of action. Co-inoculation in pot bioassays, ofA. rutilum, F. oxysporum orV. lecanii with thePseudomonas spp. WCS358, WCS374 or WCS417, or their pseudobactin-minus mutants, significantly suppressed disease (except forA. rutilum/417PSB and all combinations with 358PSB), compared with the control treatment, if the microorganisms were applied in inoculum densities which were ineffective in suppressing disease as separate inocula. If one or both of the microorganism(s) of each combination were applied as separate inocula in a density which suppressed disease, no additional suppression of disease was observed by the combination. The advantage of the co-inoculation is that combined populations significantly suppressed disease even when their individual population density was too low to do so. This may provide more consistent biological control. The co-inoculation effect obtained in the pot bioassays suggests that co-operation ofP. fluorescens WCS374 and indigenous antagonists could have been involved in the suppression of fusarium wilt of radish in the commercial greenhouse trials.Abbreviations CFU colony forming units - KB King's B - PGPR plant growth-promoting rhizobacteria - CQ colonization quotient  相似文献   

10.
11.
12.
BACKGROUND: Trichoderma asperellum SKT-1 is a microbial pesticide of seedborne diseases of rice. To investigate the mechanisms of disease suppression in SKT-1, the ability to induce systemic resistance by SKT-1, or its cell-free culture filtrate (CF), was tested using Arabidopsis thaliana Col-0 plants. RESULTS: Both SKT-1 and its CF elicit an induced systemic resistance against the bacterial leaf speck pathogen Pseudomonas syringae pv. tomato DC3000 in Col-0 plants. Involvement of plant hormones in the induced resistance by SKT-1 and CF was assessed using Arabidopsis genotypes such as the jasmonic acid (JA)-resistant mutant jar1, the ethylene (ET)-resistant mutant etr1, the plant impaired in salicylic acid (SA) signalling transgenic NahG and the mutant npr1 impaired in NPR1 activity. In soil experiments using SKT-1, no significant disease suppression effect was observed in NahG transgenic plants or npr1 mutant plants. Expression levels of SA-inducible genes such as PR-1, PR-2 and PR-5 increased substantially in the leaves of Col-0 plants. Expression levels of JA/ET-induced genes such as PDF1.2a, PR-3, PR-4 and AtVsp1 were also induced, but the levels were not as high as for SA-inducible genes. In a hydroponic experiment using CF from SKT-1, all Arabidopsis genotypes showed an induced systemic resistance by CF and increased expression levels of JA/ET- and SA-inducible genes in leaves of CF-treated plants. CONCLUSION: The SA signalling pathway is important in inducing systemic resistance to colonisation by SKT-1, and both SA and JA/ET signalling pathways combine in the signalling of induced resistance by CF. These results indicate that the response of A. thaliana is different from that found in root treatments with barley grain inoculum and CF from SKT-1. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
Root colonization by rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to systemic acquired resistance induced by a localized pathogen infection. We used the tobacco–tobacco mosaic virus model to investigate whether the systemic resistance induced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 is mediated by the systemic acquired resistance signal transduction pathway. Experiments with nahG-transformed tobacco revealed that Pseudomonas aeruginosa 7NSK2-induced resistance depended on in planta salicylic acid accumulation for its expression but not for its induction and is, in this respect, similar to systemic acquired resistance. However, Pseudomonas aeruginosa 7NSK2-induced resistance was, unlike systemic acquired resistance, not associated with PR1a expression at the time of challenge with tobacco mosaic virus. This suggests that Pseudomonas aeruginosa 7NSK2 treatment would only potentiate defense gene expression in systemic tissue, which would also explain why its level of resistance is lower than in case of systemic acquired resistance. Because we demonstrated that induced resistance by Pseudomonas aeruginosa 7NSK2 exclusively depends on the production of salicylic acid by this strain our conclusions might also account for other salicylic acid-producing and resistance-inducing rhizobacteria.  相似文献   

14.
ABSTRACT A biocontrol agent-fortified compost mix, suppressive to several diseases caused by soilborne plant pathogens, induced systemic acquired resistance (SAR) in cucumber against anthracnose caused by Colletotrichum orbiculare and in Arabidopsis against bacterial speck caused by Pseudomonas syringae pv. maculicola KD4326. A peat mix conducive to soilborne diseases did not induce SAR. The population size of P. syringae pv. maculicola KD4326 was significantly lower in leaves of Arabidopsis plants grown in the compost mix compared to those grown in the peat mix. Autoclaving destroyed the SAR-inducing effect of the compost mix, and inoculation of the autoclaved mix with nonautoclaved compost mix or Pantoea agglomerans 278A restored the effect, suggesting the SAR-inducing activity of the compost mix was biological in nature. Topical sprays with water extract prepared from the compost mix reduced symptoms of bacterial speck and the population size of pathogenic KD4326 in Arabidopsis grown in the peat mix but not in the compost mix. The peat mix water extract applied as a spray did not control bacterial speck on plants grown in either mix. Topical sprays with salicylic acid (SA) reduced the severity of bacterial speck on plants in the peat mix but did not further reduce the severity of symptoms on plants in the compost mix. The activity of the compost water extract was heat-stable and passed through a 0.2-mum membrane filter. beta-1,3-Glucanase activity was low in cucumber plants grown in either mix, but when infected with C. orbiculare, this activity was induced to significantly higher levels in plants grown in the compost mix than in plants grown in the peat mix. Similar results were obtained for beta-D-glucuronidase (GUS) activity driven by a PR2 (beta-1,3-glucanase) gene promoter in transgenic Arabidopsis plants grown in the compost or peat mix. GUS activity was induced with topical sprays of the compost water extract or SA in plants not inoculated with the pathogen, suggesting that compost-induced disease suppression more than likely involved the potentiation of resistance responses rather than their activation and that compost-induced SAR differed from SAR induced by pathogens, SA, or compost water extract.  相似文献   

15.
Plants have developed mechanisms to resist secondary infection upon inoculation with a necrotizing pathogen, chemical treatment as well as treatment with some non-pathogenic microorganisms such as rhizosphere bacteria. This phenomenon has been variously described as induced systemic resistance (ISR) or systemic acquired resistance. In the present study, the chemical benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester (BTH, acibenzolar-S-methyl), and the rhizobacteriaPseudomonas aeruginosa KMPCH andP. fluorescens WCS417 were tested for their ability to induce resistance toColletotrichum lindemuthianum in susceptible and moderately resistant bean plants (Phaseolus vulgaris L.). BTH induced local and systemic resistance when bean leaves were immersed in 10−3 to 10−7 M BTH 3 days before the challenge inoculation. At a high concentration (10−3 M), BTH induced resistance of the same order as resistance induced by the pathogenC. lindemuthianum, although at this high concentration BTH appeared to be phytotoxic. Soil and seed treatment with 1 mg kg−1 BTH protected beans against anthracnose. BTH-mediated induced resistance was effective in susceptible and moderately resistant plants.P. aeruginosa KMPCH induced resistance in bean againstC. lindemuthianum only in a moderately resistant interaction. KMPCH-567, a salicylic acid mutant of KMPCH, failed to induce resistance, indicating that salicylic acid is important for KMPCH to induce resistance in the bean—C. lindemuthianum system.P.fluorescens WCS417 could induce resistance toC. lindemuthianum in a susceptible and in moderately resistant interactions. http://www.phytoparasitica.org posting Jan. 16, 2002.  相似文献   

16.
ABSTRACT Two strains of plant growth-promoting rhizobacteria (PGPR), Bacillus pumilus SE34 and Pseudomonas fluorescens 89B61, elicited systemic protection against late blight on tomato and reduced disease severity by a level equivalent to systemic acquired resistance induced by Phytophthora infestans or induced local resistance by chemical inducer beta-amino butyric acid (BABA) in greenhouse assays. Germination of sporangia and zoospores of P. infestans on leaf surfaces of tomato plants treated with the two PGPR strains, pathogen, and chemical BABA was significantly reduced compared with the noninduced control. Induced protection elicited by PGPR, pathogen, and BABA were examined to determine the signal transduction pathways in three tomato lines: salicylic acid (SA)-hydroxylase transgenic tomato (nahG), ethylene insensitive mutants (Nr/Nr), and jasmonic acid insensitive mutants (def1). Results suggest that induced protection elicited by both bacilli and pseudomonad PGPR strains was SA-independent but ethylene- and jasmonic acid-dependent, whereas systemic acquired resistance elicited by the pathogen and induced local resistance by BABA were SA-dependent. The lack of colonization of tomato leaves by strain 89B61 suggests that the observed induced systemic resistance (ISR) was due to systemic protection by strain 89B61 and not attributable to a direct interaction between pathogen and biological control agent. Although strain SE34 was detected on tomato leaves, ISR mainly accounted for the systemic protection with this strain.  相似文献   

17.
ABSTRACT Application of salicylic acid induces systemic acquired resistance in tobacco. pchA and pchB, which encode for the biosynthesis of salicylic acid in Pseudomonas aeruginosa, were cloned into two expression vectors, and these constructs were introduced into two root-colonizing strains of P. fluorescens. Introduction of pchBA into strain P3, which does not produce salicylic acid, rendered this strain capable of salicylic acid production in vitro and significantly improved its ability to induce systemic resistance in tobacco against tobacco necrosis virus. Strain CHA0 is a well-described biocontrol agent that naturally produces salicylic acid under conditions of iron limitation. Introduction of pchBA into CHA0 increased the production of salicylic acid in vitro and in the rhizosphere of tobacco, but did not improve the ability of CHA0 to induce systemic resistance in tobacco. In addition, these genes did not improve significantly the capacity of strains P3 and CHA0 to suppress black root rot of tobacco in a gnotobiotic system.  相似文献   

18.
The mechanisms of suppression of fusarium wilt of carnation by two fluorescentPseudomonas strains were studied.Treatments of carnation roots withPseudomonas sp. WCS417r significantly reduced fusarium wilt caused byFusarium oxysporum f. sp.dianthi (Fod). Mutants of WCS417r defective in siderophore biosynthesis (sid) were less effective in disease suppression compared with their wild-type. Treatments of carnation roots withPseudomonas putida WCS358r tended to reduce fusarium wilt, whereas a sid mutant of WCS358 did not.Inhibition of conidial germination of Fod in vitro by purified siderophores (pseudobactins) of bothPseudomonas strains was based on competition for iron. The ferrated pseudobactins inhibited germination significantly less than the unferrated pseudobactins. Inhibition of mycelial growth of Fod by bothPseudomonas strains on agar plates was also based on competition for iron: with increasing iron content of the medium, inhibition of Fod by thePseudomonas strains decreased. The sid mutant of WCS358 did not inhibit Fod on agar plates, whereas the sid mutants of WCS417r still did. This suggests that inhibition of Fod by WCS358r in vitro was only based on siderophore-mediated competition for iron, whereas also a non-siderophore antifungal factor was involved in the inhibition of Fod by strain WCS417r.The ability of thePseudomonas strains to induce resistance against Fod in carnation grown in soil was studied by spatially separating the bacteria (on the roots) and the pathogen (in the stem). Both WCS417r and its sid mutant reduced disease incidence significantly in the moderately resistant carnation cultivar Pallas, WCS358r did not.It is concluded that the effective and consistent suppression of fusarium wilt of carnation by strain WCS417r involves multiple mechanisms: induced resistance, siderophore-mediated competition for iron and possibly antibiosis. The less effective suppression of fusarium wilt by WCS358r only depends on siderophore-mediated competition for iron.  相似文献   

19.
ABSTRACT Bacterial speck of tomato, caused by Pseudomonas syringae pv. tomato, continues to be a problem for tomato growers worldwide. A collection of nonpathogenic bacteria from tomato leaves plus P. syringae strains TLP2 and Cit7, P. fluorescens strain A506, and P. syringae pv. tomato DC3000 hrp mutants were examined in a greenhouse bioassay for the ability to reduce foliar bacterial speck disease severity. While several of these strains significantly reduced disease severity, P. syringae Cit7 was the most effective, providing a mean level of disease reduction of 78% under greenhouse conditions. The P. syringae pv. tomato DC3000 hrpA, hrpH, and hrpS mutants also significantly reduced speck severity under greenhouse conditions. The strains with the greatest efficacy under greenhouse conditions were tested for the ability to reduce bacterial speck under field conditions at locations in Alabama, Florida, and Ontario, Canada. P. syringae Cit7 was the most effective strain, providing a mean level of disease reduction of 28% over 10 different field experiments. P. fluorescens A506, which is commercially available as Blight-Ban A506, provided a mean level of disease reduction of 18% over nine different field experiments. While neither P. syringae Cit7 nor P. fluorescens A506 can be integrated with copper bactericides due to their copper sensitivity, there exist some potential for integrating these biological control agents with "plant activators", including Actigard. Of the P. syringae pv. tomato DC3000 hrp mutants tested, only the hrpS mutant reduced speck severity significantly under field conditions.  相似文献   

20.
徐同 Peer  R 《植物病理学报》1989,19(3):179-184
 本文报道萤光假单胞菌(fluorescent Pseudomas spp.) WCSX 13.WCS 417andWCS 358在水培系统中香石竹根部的定殖及其对香石竹镰刀菌枯萎病的抑制作用。细菌处理两周后,WCS 417在感病品种Lena和中抗品种Pallas根部的定殖分别为8.8×102cfu/cm和9.8×102cfu/cm,而WCS 358分别为0.9×102cfu/cm和0.13×102cfu/cm。在通气的三角瓶中水培的Pallas品种,人工接种病原菌香竹石尖镰孢Fusarium oxyspotum f.sp.dianthi (Prill.&Del.) Snyd.&Hans.(Fod)6周后,用WCSX·13和WCS 417根部处理的病指分别为0.19和0.31,未细菌处理的对照为0.58,细菌处理植株的根部及茎内组织的病原菌种群密度低于对照。营养膜技术(NFT)栽培的Lena品种,WCS 417细菌处理的发病率比对照减少13%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号