首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
ABSTRACT Strains of fluorescent Pseudomonas spp. that produce the antibiotic 2,4-diacetylphoroglucinol (2,4-DAPG) are among the most effective rhizobacteria controlling diseases caused by soilborne pathogens. The genotypic diversity that exists among 2,4-DAPG producers can be exploited to improve rhizosphere competence and biocontrol activity. Knowing that D-genotype 2,4-DAPG-producing strains are enriched in some take-all decline soils and that P. fluorescens Q8r1-96, a representative D-genotype strain, as defined by whole-cell repetitive sequence-based polymerase chain reaction (rep-PCR) with the BOXA1R primer, is a superior colonizer of wheat roots, we analyzed whether the exceptional rhizosphere competence of strain Q8r1-96 on wheat is characteristic of other D-genotype isolates. The rhizosphere population densities of four D-genotype strains and a K-genotype strain introduced individually into the soil were significantly greater than the densities of four strains belonging to other genotypes (A, B, and L) and remained above log 6.8 CFU/g of root over a 30-week cycling experiment in which wheat was grown for 10 successive cycles of 3 weeks each. We also explored the competitive interactions between strains of different genotypes inhabiting the same soil or rhizosphere when coinoculated into the soil. Strain Q8r1-96 became dominant in the rhizosphere and in nonrhizosphere soil during a 15-week cycling experiment when mixed in a 1:1 ratio with either strain Pf-5 (A genotype), Q2-87 (B genotype), or 1M1-96 (L genotype). Furthermore, the use of the de Wit replacement series demonstrated a competitive disadvantage for strain Q2-87 or strong antagonism by strain Q8r1-96 against Q2-87 in the wheat rhizosphere. Amplified rDNA restriction analysis and sequence analysis of 16S rDNA showed that species of Arthrobacter, Chryseobacterium, Flavobacterium, Massilia, Microbacterium, and Ralstonia also were enriched in culturable populations from the rhizosphere of wheat at the end of a 30-week cycling experiment in the presence of 2,4-DAPG producers. Identifying the interactions among 2,4-DAPG producers and with other indigenous bacteria in the wheat rhizosphere will help to elucidate the variability in biocontrol efficacy of introduced 2,4-DAPG producers and fluctuations in the robustness of take-all suppressive soils.  相似文献   

2.
ABSTRACT Pseudomonas fluorescens strains producing the antibiotic 2,4-diacetylphloroglucinol (DAPG) have biocontrol activity against a broad spectrum of root and seedling diseases. In this study, we determined the effect of genotype on the ability to isolate and quantify introduced 2,4-DAPG producers from the rhizosphere of wheat using three different methods: traditional dilution plating on selective media, colony hybridization followed by polymerase chain reaction (PCR), and phlD-specific PCR-based dilution endpoint assay. Regression analysis of the population densities of 10 2,4-DAPG-producing P. fluorescens, representing five genotypes, determined by the three different methods demonstrated that the relationship was linear (P < 0.001) and the techniques were very similar (i.e., slopes equal to 1.0). The phlD-specific PCR-based assay had a slightly lower limit of detection than the other two methods (log 3.3 versus log 4.0 CFU/g of fresh root weight). With the colony hybridization procedure, we observed that the phlD probe, derived from strain P. fluorescens Q8r1-96, hybridized more strongly to colonies of BOX-PCR genotypes D (strains W2-6, L5.1-96, Q8r1-96, and Q8r2-96) and K (strain F113) compared with strains of genotypes A (Pf-5 and CHA0), B (Q2-87), and L (1M1-96 and W4-4). Colony hybridization alone overestimated the actual densities of some strains, thus requiring an additional PCR step to obtain accurate estimates. In contrast, population densities estimated for three of the bacterial treatments (strains CHA0, W2-6, and Q8r2-96) with the PCR-based assay were significantly (P < 0.041) smaller by 7.6 to 9.2% and 6.4 to 9.4% than population densities detected by the dilution plating and colony hybridization techniques, respectively. In this paper, we discuss the relative advantages of the different methods for detecting 2,4-DAPG producers.  相似文献   

3.
Pseudomonas fluorescens strains that produce the polyketide antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) are among the most effective rhizobacteria that suppress root and crown rots, wilts, and damping-off diseases of a variety of crops, and they play a key role in the natural suppressiveness of some soils to certain soilborne pathogens. Root colonization by 2,4-DAPG-producing P. fluorescens strains Pf-5 (genotype A), Q2-87 (genotype B), Q8r1-96 (genotype D), and HT5-1 (genotype N) produced induced systemic resistance (ISR) in Arabidopsis thaliana accession Col-0 against bacterial speck caused by P. syringae pv. tomato. The ISR-eliciting activity of the four bacterial genotypes was similar, and all genotypes were equivalent in activity to the well-characterized strain P. fluorescens WCS417r. The 2,4-DAPG biosynthetic locus consists of the genes phlHGF and phlACBDE. phlD or phlBC mutants of Q2-87 (2,4-DAPG minus) were significantly reduced in ISR activity, and genetic complementation of the mutants restored ISR activity back to wild-type levels. A phlF regulatory mutant (overproducer of 2,4-DAPG) had ISR activity equivalent to the wild-type Q2-87. Introduction of DAPG into soil at concentrations of 10 to 250 μM 4 days before challenge inoculation induced resistance equivalent to or better than the bacteria. Strain Q2-87 induced resistance on transgenic NahG plants but not on npr1-1, jar1, and etr1 Arabidopsis mutants. These results indicate that the antibiotic 2,4-DAPG is a major determinant of ISR in 2,4-DAPG-producing P. fluorescens, that the genotype of the strain does not affect its ISR activity, and that the activity induced by these bacteria operates through the ethylene- and jasmonic acid-dependent signal transduction pathway.  相似文献   

4.
ABSTRACT Natural suppressiveness of soils to take-all disease of wheat, referred to as take-all decline (TAD), occurs worldwide. It has been postulated that different microbial genera and mechanisms are responsible for TAD in soils from different geographical regions. In growth chamber experiments, we demonstrated that fluorescent Pseudomonas spp. that produce the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) play a key role in the natural suppressiveness of two Dutch TAD soils. First, 2,4-DAPG-producing fluorescent Pseudomonas spp. were present on roots of wheat grown in both of the TAD soils at densities at or above the threshold density required to control take-all of wheat; in a complementary take-all conducive soil, population densities of 2,4-DAPG-producing Pseudomonas spp. were below this threshold level. Second, introduction of 2,4-DAPG-producing strain SSB17, a representative of the dominant geno-typic group found in the Dutch TAD soils, into the take-all conducive soil at population densities similar to the densities of indigenous 2,4-DAPG producers found in TAD soils provided control of take-all similar to that observed in the TAD soil. Third, a mutant of strain SSB17 deficient in 2,4-DAPG production was not able to control take-all of wheat, indicating that 2,4-DAPG is a key determinant in take-all suppression. These results show that in addition to the physicochemically different TAD soils from Washington State, 2,4-DAPG-producing fluorescent Pseudomonas spp. are also a key component of the natural suppressiveness found in Dutch TAD soils. Furthermore, it is the first time since the initial studies of Gerlagh (1968) that at least part of the mechanisms and microorganisms that operate in Dutch TAD soils are identified. Although quantitatively similar, the genotypic composition of 2,4-DAPG-producing Pseudomonas spp. varied between the Dutch TAD soils and the TAD soils from Washington State.  相似文献   

5.
ABSTRACT Fluorescent Pseudomonas spp. that produce 2,4-diacetylphloroglucinol (2,4-DAPG) have biocontrol activity against damping-off, root rot, and wilt diseases caused by soilborne fungal pathogens, and play a key role in the natural suppression of Gaeumannomyces graminis var. tritici, known as take-all decline. Diversity within phlD, an essential gene in the biosynthesis of 2,4-DAPG, was studied by restriction fragment length polymorphism (RFLP) analysis of 123 2,4-DAPG-producing isolates from six states in the United States and six other locations worldwide. Clusters defined by RFLP analysis of phlD correlated closely with clusters defined previously by BOX-polymerase chain reaction (PCR) genomic fingerprinting, indicating the usefulness of phlD as a marker of genetic diversity and population structure among 2,4-DAPG producers. Genotypes defined by RFLP analysis of phlD were conserved among isolates from the same site and cropping history. Random amplified polymorphic DNA analyses of genomic DNA revealed a higher degree of polymorphism than RFLP and BOX-PCR analyses. Genotypic diversity in a subset of 30 strains representing all the phlD RFLP groups did not correlate with production in vitro of monoacetylphloroglucinol, 2,4-DAPG, or total phloroglucinol compounds. Twenty-seven of the 30 representative strains lacked pyrrolnitrin and pyoluteorin biosynthetic genes as determined by the use of specific primers and probes.  相似文献   

6.
ABSTRACT Pseudomonas species that produce 2,4-diacetylphloroglucinol (2,4-DAPG) play a significant role in the suppression of fungal root pathogens in the rhizosphere of crop plants. To characterize the abundance and diversity of these functionally important bacterial populations, we developed a rapid polymerase chain reaction (PCR)-based assay targeting phlD, an essential gene in the phloroglucinol biosynthetic pathway. The phlDgene is predicted to encode a polyketide synthase that synthesizes mono-acetylphloroglucinol, the immediate precursor to 2,4-DAPG. A major portion of the phlD open reading frame was cloned and sequenced from five genotypically distinct strains, and the sequences were screened for conserved regions that could be used as gene-specific priming sites for PCR amplification. Several new phlD-specific primers were designed and evaluated. Using the primers B2BF and BPR4, we developed a PCR-based assay that was robust enough to amplify the target gene from a diverse set of 2,4-DAPG producers and sensitive enough to detect as few as log 2.4 cells per sample when combined with enrichment from a selective medium. Restriction fragment length polymorphism analysis of the amplified phlD sequence allows for the direct determination of the genotype of the most abundant 2,4-DAPG producers in a sample. The method described was useful for characterizing both inoculant and indigenous phlD(+) pseudomonads inhabiting the rhizosphere of crop plants. The ability to rapidly characterize populations of 2,4-DAPG-producers will greatly enhance our understanding of their role in the suppression of root diseases.  相似文献   

7.
ABSTRACT The role of antibiotics in biological control of soilborne pathogens, and more generally in microbial antagonism in natural disease-suppressive soils, often has been questioned because of the indirect nature of the supporting evidence. In this study, a protocol for high pressure liquid chromatography/mass spectrometry is described that allowed specific identification and quantitation of the antibiotic 2,4-diacetylphloroglucinol (Phl) produced by naturally occurring fluorescent Pseudomonas spp. on roots of wheat grown in a soil suppressive to take-all of wheat. These results provide, for the first time, biochemical support for the conclusion of previous work that Phl-producing fluorescent Pseudomonas spp. are key components of the natural biological control that operates in take-all-suppressive soils in Washington State. This study also demonstrates that the total amount of Phl produced on roots of wheat by P. fluorescens strain Q2-87, at densities ranging from approximately 10(5) to 10(7) CFU/g of root, is proportional to its rhizosphere population density and that Phl production per population unit is a constant (0.62 ng/10(5) CFU). Thus, Phl production in the rhizosphere of wheat is strongly related to the ability of the introduced strain to colonize the roots.  相似文献   

8.
Pseudomonas fluorescens2P24是分离自山东小麦全蚀病自然衰退土的1株生物防治菌株,产生抗生素2,4-二乙酰基间苯三酚(2,4-diacetylphloroglucinol;2,4-DAPG)是其主要防病机制。2,4-DAPG是由phlACBD基因簇合成,受多种调控因子调控。本研究用Tn5转座子插入技术,获得1株phlA基因转录增强的突变体,其突变基因为抗生素合成的负调控基因phlF。与野生菌相比,phlF基因的缺失突变体中phlA的转录增强约100倍,抗生素产量提高492倍。同时,菌株2P24的phlF缺失突变体对病原真菌的拮抗作用明显增强。但2,4-DAPG过量表达菌株对多种作物种子根生长有抑制作用。  相似文献   

9.
ABSTRACT The antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) plays an important role in the suppression of plant pathogens by several strains of Pseudomonas spp. Based on the results of this study, there is variation within and among Pythium spp. to 2,4-DAPG. Also, various propagules of Pythium ultimum var. sporangiiferum, that are part of the asexual stage of the life cycle, differ considerably in their sensitivity to 2,4-DAPG. Mycelium was the most resistant structure, followed by zoosporangia, zoospore cysts, and zoospores. Additionally, we report for the first time that pH has a significant effect on the activity of 2,4-DAPG, with a higher activity at low pH. Furthermore, the level of acetylation of phloroglucinols is also a major determinant of their activity. Transmission electron microscopy studies revealed that 2,4-DAPG causes different stages of disorganization in hyphal tips of Pythium ultimum var. sporangiiferum, including alteration (proliferation, retraction, and disruption) of the plasma membrane, vacuolization, and cell content disintegration. The implications of these results for the efficacy and consistency of biological control of plant-pathogenic Pythium spp. by 2,4-DAPG-producing Pseudomonas spp. are discussed.  相似文献   

10.
调控基因gacA在荧光假单胞菌2P24防治土传病害中的作用   总被引:5,自引:0,他引:5  
 Pseudomonas fluorescens 2P24分离自山东小麦全蚀病自然衰退土壤,该菌株能产生抗生素2,4-二乙酰基藤黄酚(2,4-diacetylphloroglucinol,2,4-DAPG)、氢氰酸,嗜铁素和蛋白酶,且抑菌谱广,可防治多种作物土传病害。本研究应用Tn5转座突变技术,获得1株产嗜铁素过量,同时不产生2,4-DAPG、HCN、蛋白酶、不能形成生物膜(biofilm)的突变菌株PM3390,其表现型与调控基因gacA的突变体表型相似。通过PCR介导的文库筛选方法,从2P24基因组文库中获得2个含有gacA基因的阳性克隆,进一步亚克隆,得到只含有完整gacA开放阅读框的1.2 kb片段,互补实验表明其能恢复突变菌株的多种缺失表型。生测结果表明,gacA-突变菌株与野生型2P24相比,对不同土传病害的生防效果均显著降低。以上结果证实gacA在2P24中具有整体水平的调控功能,并在2P24防治土传病害中起到重要的作用。  相似文献   

11.
Pseudomonas fluorescens F113 and Stenotrophomonas maltophilia W81 protect sugar beet from Pythium -mediated damping-off through production of the antifungal secondary metabolite 2,4-diacetylphloroglucinol and extracellular proteolytic activity, respectively. In this study, the two biocontrol strains were combined in a consortium, with the objective of improving upon the level of protection achieved when using each strain singly. Growth and in vitro production of 2,4-diacetylphloroglucinol by F113 and extracellular lytic enzymes by W81 were not affected when inoculated in combination. The abilities of W81 and F113 to colonize the rhizosphere of sugar beet were essentially similar when the two strains were applied singly or coinoculated onto seeds in a 1 : 1 ratio, both in natural soil microcosms and under field conditions. Concomitantly, single inoculation with W81 or F113 effectively prevented colonization of sugar beet seeds by Pythium spp. in soil microcosms, without the necessity for combining both strains. However, this parity was not reflected in seed emergence where the combination of W81 and F113 significantly enhanced final sugar beet stands (to the level achieved with chemical pesticides) under microcosm conditions at 28 days after sowing. In a field experiment, the only inoculation treatment capable of conferring effective protection of sugar beet was that in which W81 and F113 were coinoculated, and this treatment proved equivalent to the use of chemical fungicides. In conclusion, when compared with single inoculations of either biocontrol strain, the combined use of a phloroglucinol-producing P. fluorescens and a proteolytic S. maltophilia improved protection of sugar beet against Pythium -mediated damping-off.  相似文献   

12.
Sorghum is used as bioenergy feedstock, animal feed, and food. Economical methods for disease prevention and control are valuable for producers. Fluorescent Pseudomonas spp. were isolated from sorghum roots and surrounding soil with the goal of finding isolates that significantly inhibited sorghum fungal pathogens. Fluorescent pseudomonads were collected from seedlings of sorghum cultivars RTx433 and Redlan and wheat cultivar Lewjain, grown in two soils. Lewjain is known to support growth of producers of the antibiotic, 2,4-diacetylphloroglucinol (2,4-DAPG). Isolates from all three plants were assessed for hydrogen cyanide (HCN) and extracellular protease production, and for a 2,4-DAPG gene, phlD. Both soil type and plant type affected HCN- and protease-production, but phlD was not affected. Subsets of phlD + isolates were chosen to determine phlD genotypes and to conduct in vitro inhibition assays against sorghum pathogens. Most isolates from sorghum and wheat were genotype D, previously associated with superior root colonization. phlD + sorghum isolates were co-cultured with five sorghum pathogens. One isolate from each sorghum line exhibited inhibition to all five pathogens but more Redlan isolates were inhibitory to the virulent pathogen, Fusarium thapsinum, than RTx433 isolates. Nearly all inhibitory isolates from either sorghum cultivar were from one soil type. This is consistent with what had been previously observed in field studies: that soil type played a significant role in determining characteristics of fluorescent Pseudomonas spp. isolated from roots or soil, but sorghum genotype also had a considerable effect.  相似文献   

13.
Pseudomonas fluorescens FPT9601, a plant growth-promoting rhizobacterium (PGPR) isolated from tomato rhizosphere, can protect tomato (Lycopersicon esculentum Mill) from bacterial wilt disease caused by Ralstonia solanacearum. This strain produces antibiotics 2,4-diacetylphloroglucinol (2,4-DAPG) and hydrogen cyanide (HCN). It also produces proteases and uncharacterized siderophores (Sid). A mutant strain SM2214, obtained by Tn5 insertion, did not produce 2,4-DAPG, HCN or proteases, but overproduced Sid. Marker-exchange mutagenesis confirmed that a single transposon insertion caused the multiple phenotypic changes of this mutant. Complementation of the mutant with a 1.3-kb DNA fragment that was amplified from genomic DNA of the wild-type P. fluorescens strain by PCR could restore the lost functions of the mutant strain. Nucleotide sequencing revealed that the fragment contained a 642-bp open reading frame (ORF) highly homologous to the regulator responser gene gacA. The in vitro anti-bacterium test and plant protection experiment under greenhouse conditions indicated that the gacA gene played an important role in the suppression of tomato bacterial wilt disease. Received 20 November 2000/ Accepted in revised form 19 January 2001  相似文献   

14.
Take-all disease of wheat caused by the soilborne fungus Gaeumannomyces graminis var. tritici is one of the most important root diseases of wheat worldwide. Bacteria were isolated from winter wheat from irrigated and rainfed fields in Hebei and Jiangsu provinces in China, respectively. Samples from rhizosphere soil, roots, stems, and leaves were plated onto King's medium B agar and 553 isolates were selected. On the basis of in vitro tests, 105 isolates (19% of the total) inhibited G. graminis var. tritici and all were identified as Pseudomonas spp. by amplified ribosomal DNA restriction analysis. Based on biocontrol assays, 13 strains were selected for further analysis. All of them aggressively colonized the rhizosphere of wheat and suppressed take-all. Of the 13 strains, 3 (HC9-07, HC13-07, and JC14-07, all stem endophytes) had genes for the biosynthesis of phenazine-1-carboxylic acid (PCA) but none had genes for the production of 2,4-diacetylphloroglucinol, pyoluteorin, or pyrrolnitrin. High-pressure liquid chromatography (HPLC) analysis of 2-day-old cultures confirmed that HC9-07, HC13-07, and JC14-07 produced PCA but no other phenazines were detected. HPLC quantitative time-of-flight 2 mass-spectrometry analysis of extracts from roots of spring wheat colonized by HC9-07, HC13-07, or Pseudomonas fluorescens 2-79 demonstrated that all three strains produced PCA in the rhizosphere. Loss of PCA production by strain HC9-07 resulted in a loss of biocontrol activity. Analysis of DNA sequences within the key phenazine biosynthesis gene phzF and of 16S rDNA indicated that strains HC9-07, HC13-07, and JC14-07 were similar to the well-described PCA producer P. fluorescens 2-79. This is the first report of 2-79-like bacteria being isolated from Asia.  相似文献   

15.
ABSTRACT Production of the polyketide antimicrobial metabolite 2,4-diacetyl-phloroglucinol (DAPG) is a key factor in the biocontrol activity of Pseudomonas fluorescens CHA0. Strain CHA0 carrying a translational phlA'-'lacZ fusion was used to monitor expression of the phl biosynthetic genes in vitro and in the rhizosphere. Expression of the reporter gene accurately reflected actual production of DAPG in vitro and in planta as determined by direct extraction of the antimicrobial compound. In a gnotobiotic system containing a clay and sand-based artificial soil, reporter gene expression was significantly greater in the rhizospheres of two monocots (maize and wheat) compared with gene expression in the rhizospheres of two dicots (bean and cucumber). We observed this host genotype effect on bacterial gene expression also at the level of cultivars. Significant differences were found among six additional maize cultivars tested under gnotobiotic conditions. There was no difference between transgenic maize expressing the Bacillus thuringiensis insecticidal gene cry1Ab and the near-isogenic parent line. Plant age had a significant impact on gene expression. Using maize as a model, expression of the phlA'-'lacZ reporter gene peaked at 24 h after planting of pregerminated seedlings, and dropped to a fourth of that value within 48 h, remaining at that level throughout 22 days of plant growth. Root infection by Pythium ultimum stimulated bacterial gene expression on both cucumber and maize, and this was independent of differences in rhizosphere colonization on these host plants. To our knowledge, this is the first comprehensive evaluation of how biotic factors that commonly confront bacterial inoculants in agricultural systems (host genotype, host age, and pathogen infection) modulate the expression of key biocontrol genes for disease suppression.  相似文献   

16.
从山东、内蒙古、北京等地土壤中分离筛选出荧光菌 50 0 0余株 ,其中 1 2 0 0余株为抑制性荧光菌。经PCR检测 ,获得 73株 2 ,4 二乙酰基藤黄酚 (2 ,4 DAPG)产生菌。平板筛选结果表明 ,2 ,4 DAPG产生菌CPF 1 0和 2P8对沙打旺根腐病菌Sad1和Sad2均有较好的抑制效果 ,其中CPF 1 0的抑菌带宽分别为 5.0和 1 2 .0mm ;2P8抑菌带宽分别为 3 .5和 7.0mm。温室试验两次调查表明 ,CPF 1 0对沙打旺根腐病防治效果最好 ,达 63 .5%和 67.8% ;2P8防效也在 40 %左右 ,且均达到极显著水平。 2 ,4 DAPG产生菌可以显著促进沙打旺植株根系发育 ,CPF 1 0处理后地上部株高差异不显著 ,但鲜重和干重与对照相比有极显著的增加 ,说明两菌株菌剂处理可以促进植株生长。根部定殖结果表明 ,两菌株在沙打旺根部都有一定的定殖能力 ,在根表种群数量比较稳定 ,根内细菌数量在调查时间内呈逐渐上升的趋势  相似文献   

17.
生防菌株2P24与CPF-10的鉴定及其生防相关性状的初步分析   总被引:35,自引:3,他引:32  
 从山东省小麦根围土壤中分离到具有生防活性的细菌菌株2P24、CPF-10。通过对其16S rDNA序列同源性分析及生理生化测定鉴定为荧光假单胞菌(Pseudomonas fluorescens),其中菌株2P24为生物型I,CPF-10为生物型V。对这2株细菌的生防相关性状分析表明,二者均可产生多种抗菌物质,如2,4-二乙酰基间苯三酚(2,4-DAPG)、氢氰酸(HCN)、嗜铁素、蛋白酶等。平板对峙测定表明2株细菌对番茄青枯菌(Rastonia solanacearum)、棉花立枯丝核菌(Rhizoctonia solani)、棉花枯萎菌(Fusarium oxysporum)具有明显的拮抗作用。温室生测表明2P24对番茄青枯病的防效达63.0%。CPF-10达62.4%,且持续稳定。  相似文献   

18.
ABSTRACT Mycosphaerella graminicola causes Septoria tritici blotch of hexaploid and tetraploid wheat. The inheritance of high-level resistance to Septoria tritici blotch was studied in controlled environment experiments. Intraspecific reciprocal crosses were made between hexaploid wheat lines Salamouni, ST6, Katepwa, and Erik, and the tetraploid wheat lines Coulter and 4B1149. Parental, F(1), F(2), F(3), BC(1)F(1), and BC(1)F(2) populations were evaluated for reaction to isolates MG2 and MG96-36 of M. graminicola. Resistance was controlled by incompletely dominant nuclear genes in all cases. Salamouni had three independent resistance genes to isolate MG2, two of which also controlled resistance to isolate MG96-36. ST6 had a single resistance gene to isolate MG2 and none to isolate MG96-36. The resistance genes in Salamouni and ST6 were not allelic. Two independent genes control resistance to isolate MG2 in Coulter, one of which also controlled resistance to isolate MG96-36. These data are consistent with a gene-for-gene interaction in the wheat-M. graminicola pathosystem.  相似文献   

19.
ABSTRACT Previously, the zoosporicidal activity and control of Pythium root rot of flower bulbs by Pseudomonas fluorescens SS101 was attributed, in part, to the production of the cyclic lipopeptide surfactant massetolide A. The capacity of strain SS101 and its surfactant-deficient massA mutant 10.24 to suppress populations and root infection by complex Pythium spp. communities resident in orchard soils was assessed on apple and wheat seedlings and on apple rootstocks. Both strains initially became established in soil and persisted in the rhizosphere at similar population densities; however, massA mutant 10.24 typically was detected at higher populations in the wheat rhizosphere and soil at the end of each experiment. Both strains effectively suppressed resident Pythium populations to an equivalent level in the presence or absence of plant roots, and ultimately suppressed Pythium root infection to the same degree on all host plants. When split-root plant assays were employed, neither strain suppressed Pythium spp. infection of the component of the root system physically separated from the bacterium, suggesting that induced systemic resistance did not play a role in Pythium control. Strain SS101 only marginally suppressed in vitro growth of Pythium spp. and growth was not inhibited in the presence of mutant 10.24. When incorporated into the growth medium, the cyclic lipopeptide massetolide A significantly slowed the rate of hyphal expansion for all Pythium spp. examined. Differences in sensitivity were observed among species, with Pythium heterothallicum, P. rostratum, and P. ultimum var. ultimum exhibiting significantly greater tolerance. Pythium spp. populations indigenous to the two soils employed were composed primarily of P. irregulare, P. sylvaticum, and P. ultimum var. ultimum. These Pythium spp. either do not or rarely produce zoospores, which could account for the observation that both SS101 and mutant 10.24 were equally effective in disease control. Collectively, the results showed that (i) Pseudomonas fluorescens SS101 is very effective in controlling diverse Pythium populations on different crops grown in different soils and (ii) production of the cyclic lipopeptide massetolide A does not play a significant role in disease suppression. Other, as yet undefined mechanisms appear to play a significant role in the interaction between P. fluorescens SS101 and soilborne Pythium spp. communities.  相似文献   

20.
荧光假单胞菌PEF-5#18防控番茄枯萎病的定殖机理   总被引:1,自引:0,他引:1  
通过电转法成功将EGFP表达质粒p EGFP20转入对番茄枯萎病具有优良防病效果的荧光假单胞菌PEF-5#18体内,并研究了该生防菌在番茄根际土壤与植株根、茎内部组织的定殖情况。结果表明,处理25 d后,标记型与野生型生防菌处理均能有效控制番茄枯萎病害并增加植株鲜、干重量。与病原菌阳性对照相比,野生型菌株的防治效果为76.92%,鲜重增加194.10%,干重增加564.71%;接种后的PEF-5#18能良好定殖于番茄根际土壤并扩展进入植物根茎内部生长,其分布数量呈现出根际土壤(1.05×106 CFU/g)根(6.75×104 CFU/g)茎(1.25×102 CFU/g);与病原菌阳性对照相比,接种PEF-5#18对番茄根际土壤的可培养细菌总数影响差异不显著,但可显著提高根(增幅为8.42%)、茎(增幅为14.78%)内的可培养细菌总数以及根际土壤pH(增幅为1.61%);接种PEF-5#18能显著降低根际土壤与根、茎内病原菌侵染数量;激光共聚焦镜检发现,接种25 d后,PEF-5#18能大量分布于番茄根系表面、根内木质部、根内皮层细胞、根内细胞间隙、茎内维管及其周围细胞。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号