首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascospores of both A-group and B-group Leptosphaeria maculans germinated at temperatures from 5 to 20°C on leaves of oilseed rape. Germination of ascospores of both groups started 2 h after inoculation and percentage germination reached its maximum about 14 h after inoculation at all temperatures. Both the percentage of A-/B-group ascospores that had germinated after 24 h incubation and germ tube length increased with increasing temperature from 5 to 20°C. Germ tubes from B-group ascospores were longer than those from A-group ascospores at all temperatures, with the greatest difference at 20°C. Hyphae from ascospores of both groups penetrated the leaves predominantly through stomata, at temperatures from 5 to 20°C. A-group ascospores produced highly branched hyphae that grew tortuously, whereas B-group ascospores produced long, straight hyphae. The percentage of germinated ascospores that penetrated stomata increased with increasing temperature from 5 to 20°C and was greater for A-group than for B-group L. maculans after 40 h incubation.  相似文献   

2.
No infection occurred at less than 95% relative humidity (r.h.) when chickpea plants were dried after inoculation with conidia of Didymella rabiei. Infection was significant when the dry leaves were exposed to 98% r.h. for 48 h. When inoculated plants were subjected to different leaf wetness periods, some infection occurred with 4 h wetness, and disease severity increased with wetness duration according to an exponential asymptote, with a maximum value after about 18 h. Germination of conidia and germ tube penetration increased linearly with increasing wetness periods when recorded 42 h after inoculation. With a 24-h wetness period, germination of conidia was first observed 12 h after inoculation and increased linearly with time up to 52 h (end of the experiment). Dry periods immediately after inoculation, followed by 24-h leaf wetness, reduced disease severity; as the dry period increased the severity decreased. Disease severity increased with increasing periods of darkness after inoculation. The number of pycnidia and the production of conidia on infected leaves increased only slightly with high r.h. (either in the light or in the dark), but large increases occurred over an 8-day period when the leaves were kept wet.  相似文献   

3.
Despite differences in climate and in timing of light leaf spot epidemics between Poland and the UK, experiments provided no evidence that there are epidemiological differences between populations of Pyrenopeziza brassicae in the two countries. Ascospores of Polish or UK P. brassicae isolates germinated on water agar at temperatures from 8 to 24°C. After 12 h of incubation, percentages of ascospores that germinated were greatest at 16°C: 85% (Polish isolates) and 86% (UK isolates). The percentage germination reached 100% after 80 h of incubation at all temperatures tested. The rate of increase in germ tube length increased with increasing temperature from 8 to 20°C but decreased from 20 to 24°C, for both Polish and UK isolates. Percentage germination and germ tube lengths of UK P. brassicae ascospores were less affected by temperature than those of conidia. P. brassicae produced conidia on oilseed rape leaves inoculated with ascospores or conidia of Polish or UK isolates at 16°C with leaf wetness durations from 6 to 72 h, with most sporulation after 48 or 72 h wetness. Detection of both mating types of P. brassicae and production of mature apothecia on leaves inoculated with mixed Polish populations suggest that sexual reproduction does occur in Poland, as in the UK.  相似文献   

4.
Conidia of Alternaria linicola germinated on both water agar and linseed leaves (detached or attached) over a wide range of temperatures (5–25°C) by producing one to several germ tubes. At temperatures between 10°C and 25°C and under continuous wetness in darkness, germination started within 2 h after inoculation and reached a maximum (100%) by 8 to 24 h, depending on temperature. At 5°C, the onset of germination was later and the rate of germ tube elongation was slower than that at 10–25°C. During germination, conidia of A. linicola were sensitive to dry interruptions of wet periods and to light. Short (2 h) or long (12 h) dry interruptions occurring at any time between 2 and 6 h after inoculation stopped conidial germination and germ tube elongation. With continuous wetness, light periods 2 to 12 h long immediately after inoculation inhibited conidial germination, which was resumed only when a dark period followed subsequently. However, germination and germ tube elongation of A. linicola conidia stopped and the viability of the conidia was lost during exposure to dry light periods immediately after inoculation with spore suspensions. Penetration of leaves by A. linicola was evident after 12 h and occurred mainly through epidermal cells (direct) with or without the formation of appressoria.  相似文献   

5.
Liu Q  Xiao CL 《Phytopathology》2005,95(5):572-580
ABSTRACT Potebniamyces pyri is the causal agent of Phacidiopycnis rot, a postharvest disease of pears. Infection of fruit occurs in the orchard, and symptoms develop during storage. Conidial germination of P. pyri in response to nutrient, temperature, wetness duration, relative humidity (RH), and pH was determined in vitro. Conidia germinated by either budding or developing germ tubes in various concentrations of pear juice solutions. The mode of conidial germination was nutrient-dependent. Low nutrient levels favored budding, whereas high nutrient levels favored germ tube development. Conidia germinated at 0 to 30 degrees C but not at 35 degrees C, with optimum temperature between 20 and 25 degrees C. Wetness durations of 4 to 5 h and 6 to 8 h at optimum temperature were required for budding and developing germ tubes, respectively, and 20 to 24 h of wetness was required to reach germination peaks. Regardless of temperature, conidia germinated primarily by budding in 10% pear juice. Secondary conidia, produced by budding of conidia, initially increased their dimensions and later germinated at 0 to 25 degrees C in the same manner as mother conidia. No germination of secondary conidia occurred at 30 degrees C. Germ tubes from conidia elongated at 0 to 25 degrees C but not at 30 degrees C. No germination occurred at 相似文献   

6.
Sphaeropsis pyriputrescens is the cause of Sphaeropsis rot in apples and pears. In this study, effects of temperature, wetness duration, relative humidity (RH), dryness, and interrupted wetness duration on conidial germination of the fungus were evaluated. Conidial germination and germ tube elongation occurred at temperatures from 0°C to 30°C. The optimum temperature for germination and germ tube elongation appeared to be 20°C, at which a minimum wetness period of 5 h was required. Conidia germinated at RH as low as 92% after 36 h at 20°C, but not at 88.5% RH. The effect of dry periods on germination depended on RH. Conidial germination at 85% RH was higher than that at 25% RH within a 4-h dry period, after which time no difference was observed. Less than 10% conidia germinated after a 10-day dry period at both 20°C and 28°C. Conidial germination decreased as the wetness duration prior to dryness increased. Conidia wetted for 6 h prior to dryness died within a 1-h dry period. After a 12-h dry period, no or few conidia germinated at 25% RH, whereas 3% to 10% of the conidia germinated at 85% RH and no further decrease was observed as the dry period increased. The results contribute to our understanding of conditions required for conidial germination of S. pyriputrescens and infection of fruit leading to Sphaeropsis rot.  相似文献   

7.
Fusarium head blight (FHB) is one of the most important cereal diseases in the world and has caused major losses to the grain industry. The principal pathogen causing FHB in North America is Gibberella zeae (anamorph Fusarium graminearum). Information on survival and the conditions under which ascospores remain viable once released from perithecia may assist in refining disease forecasting models. This study measured germination of ascospores after exposure to different temperatures, 15, 20, and 30 degrees C, and levels of relative humidity (RH), 30, 60, and 90% for 4, 24, or 48 h periods. Viability was tested by germination on water agar. Germination rates fell with increasing temperatures at all observation times and at all humidity levels. At 15 and 20 degrees C after 48 h, germination ranged from 74 to 85%, and 52 to 72%, respectively. At 30 degrees C, germination ranged from 36 to 59% after 24 h and from 13 to 47% after 48 h. Germination was highest at 90% RH, except at 30 degrees C after 48 h, and lowest at 60% RH. Successful germination, even under extreme conditions, suggests that ascospores are sufficiently robust to constitute a source of inoculum under most environmental conditions encountered during the growing season.  相似文献   

8.
ABSTRACT Powdery mildew disease on poinsettias (Euphorbia pulcherrima) growing in commercial greenhouses was first observed in the United States in 1990 and has become an economically significant problem for poinsettia growers in the Midwest and northern United States since 1992. The temporal development of infection structures produced by conidial germ tubes of the pathogen (Oidium sp.) and the effect of high temperature on their development were investigated using poinsettia leaf disks placed in humidity chambers. Observations were made using light microscopy and scanning electron microscopy. At 20 degrees C (85% relative humidity), conidia germinated and formed an appressorium within 6 h of inoculation. Germination over time followed a monomolecular curve (r(2) = 0.77, P 相似文献   

9.
ABSTRACT The germination and sporulation of Colletotrichum acutatum were characterized over time on strawberry leaves (cv. Tristar) and plastic coverslips incubated at 26 degrees C under continuous wetness. Conidia germinated within 3 h after inoculation and formed melanized appressoria with pores by 9 h after inoculation. Host penetration was not observed up to 7 days after inoculation. Production of secondary conidia on conidial and hyphal phialides began within 6 h after inoculation. Secondary conidiation was responsible for up to a threefold increase in the total number of conidia within 7 days after inoculation. Primary conidia and hyphae began to collapse 48 h after inoculation, whereas melanized appressoria remained intact. These findings suggest that appressoria and secondary conidia of C. acutatum produced on symptomless strawberry foliage may be significant sources of inoculum for fruit infections.  相似文献   

10.
Experiments were conducted under controlled environmental conditions to study the effects of temperature, duration of wetness, relative humidity (RH) and light on the discharge and germination of ascospores of Venturia nashicola , the causal agent of pear scab in China. Discharge of ascospores from pseudothecia required free water or 100% RH. A period of soaking in water as short as 10 s was sufficient to initiate the discharge of ascospores. Temperatures from 10 to 30°C did not significantly affect the temporal trend of ascospore discharge. A greater proportion of ascospores was discharged under light than in the dark. However, a period of light as short as 10 min, either during the initial wetting of pseudothecia or interrupting the darkness, was sufficient to reduce the inhibitory effect of darkness on ascospore discharge. Ascospores were discharged within 10 min after pseudothecia were wetted and most ascospores ( c. 80%) were discharged within the first hour. The temporal pattern of ascospore discharge could be well described by a logistic model, which estimated that 50% of ascospores were discharged within half an hour of wetting. Ascospores germinated over a wide range of temperatures from 5 to 30°C, with an optimum at c . 20°C. Temporal dynamics of ascospore germination at six temperatures (5, 10, 15, 20, 25 and 30°C) were satisfactorily described by logistic models.  相似文献   

11.
The effects of age of ascospores (0–18 days after discharge), photon flux density (0–494 mol m–2 s–1 PAR), temperature (4–30 °C), frost (–15 °C for 30 min), relative humidity (RH; 0–100%), pH (2.5–6.5) and dryness (0 and 53% RH for up to 40 min) on the germination of the ascospores of the mycotoxin-producing fungus Gibberella zeae (anamorph Fusarium graminearum) were studied. Freshly discharged ascospores germinated within 4 h at 20 °C and 100% RH. The rate of germination and the percentage of viable ascospores decreased over time after the spores were discharged from perithecia. The time course of ascospore germination was not significantly affected by photon flux density. The period of time required to obtain 50% germinated ascospores at 100% RH was 26.90 h at 4 °C, 10.40 h at 14 °C, 3.44 h at 20 °C and 3.31 h at 30 °C. There was no significant effect of frost on the percentage of viable ascospores. A small percentage (6.6 ± 3.8%) of the ascospores germinated at 53% RH. At RH 84% and 20 °C almost 100% of the freshly discharged ascospores germinated. The time course of ascospore germination was affected by pH. The maximum rate of ascospore germination was estimated to be at pH 3.76. Ascospores lost their ability to germinate following exposure to 0% RH almost instantaneously. No germinating spores were detected after an incubation period of 1 min at 0% RH. Incubating the ascospores at 53% RH decreased the percentage of viable spores from 93 to 6% within 10 min. The data demonstrate that age of spores, relative humidity, temperature and pH, but not photon flux density, are key factors in germination of G. zeae ascospores.  相似文献   

12.
The environmental factors that influence infection of lettuce by ascospores of Sclerotinia sclerotiorum , and subsequent disease development, were investigated in controlled environment and field conditions. When lettuce plants were inoculated with a suspension of ascospores in water or with dry ascospores and exposed to a range of wetness durations or relative humidities at different temperatures, all plants developed disease but there was no relationship between leaf wetness duration or humidity and percentage of diseased plants. Ascospores started to germinate on lettuce leaves after 2–4 h of continuous leaf wetness at optimum temperatures of 15–25°C. The rate of development of sclerotinia disease and the final percentage of plants affected after 50 days were greatest at 16–27°C, with disease symptoms first observed 7–9 days after inoculation, and maximum final disease levels of 96%. At lower temperatures, 8–11°C, disease was first observed 20–26 days after inoculation, with maximum final disease levels of 10%. Disease symptoms were always observed first at the stem base. In field-grown lettuce in Norfolk, 2000 and 2001, inoculated with ascospore suspensions, disease occurred only in lettuce planted in May and June, with a range of 20–49% of plants with disease by 8 weeks after inoculation. In naturally infected field-grown lettuce in Cheshire, 2000, disease occurred mainly in lettuce planted throughout May, with a maximum of 31% lettuce diseased within one planting, but subsequent plantings had little (≤ 4%) or no disease. Lack of disease in the later plantings in both Norfolk and Cheshire could not be attributed to differences in weather factors.  相似文献   

13.
Ascospores and conidia released into the air were recorded around plots on which garlic debris infected by Stemphylium vesicarium were fixed onto the soil surface. Symptoms in garlic trap plots located in the vicinity of infected debris, started in March and developed during April–May to reach disease incidence close to 100%, final disease severity values being lower in 1993 and 1995 than in 1994 and 1996. Whereas daily concentrations of ascospores were rather erratic, with 30% of captures between 0 and 6 h, conidia showed a daily periodicity with highest concentrations between 12 and 18 h, with a pronounced peak between 14 and 16 h, and lowest values at night. Ascospore release occurred mainly in February and March. It coincided with rainfall periods, 14 h with vapour pressure deficit 5 mb and solar radiation <145 W m–2 on the current day of the capture. In contrast, greatest captures of conidia started in late April and were prevalent in May, and were associated with rainfall in days previous to the capture in which rather high temperature occurred and solar radiation was 109–345 W m–2. Among the weather variables considered, rainfall appeared directly related to the aerial concentration of ascospores and conidia. The role of relative humidity seemed essential when rainfall did not occur. There was a relationship between conidia concentration in the air and number of hours with temperature in the range 12–21 °C. Ascospore production was not essential for infections to take place, since primary infection from conidia may occur and disease can develop from them readily.  相似文献   

14.
ABSTRACT Mills' infection period table describes the number of hours of continuous leaf wetness required at temperatures from 6 to 25 degrees C for infection of apple leaves by ascospores of Venturia inaequalis and reports that conidia require approximately two-thirds the duration of leaf wetness required by ascospores at any given temperature. Mills' table also provides a general guideline that more than 2 days of wetting is required for leaf infection by ascospores below 6 degrees C. Although the table is widely used, infection times shorter than those in the table have been reported in lab and field studies. In 1989 a published revision of the table eliminated a potential source of error, the delay of ascospore release until dawn when rain begins at night, and shortened the times reported by Mills for ascospore infection by 3 h at all temperatures. Data to support the infection times below 6 degrees C were lacking, however. Our objective was to quantify the effects of low temperatures on ascospore discharge, ascospore infection, and infection by conidia. In two of three experiments at 1 degrees C, the initial release of ascospores occurred after 131 and 153 min. In the third experiment at 1 degrees C, no ascospores were detected during the first 6 h. The mean time required to exceed a cumulative catch of 1% was 143 min at 2 degrees C, 67 min at 4 degrees C, 56 min at 6 degrees C, and 40 min at 8 degrees C. At 4, 6, and 8 degrees C, the mean times required to exceed a cumulative catch of 5% were 103, 84, and 53 min, respectively. Infection of potted apple trees by ascospores at 2, 4, 6, and 8 degrees C required 35, 28, 18, and 13 h, respectively; substantially shorter times than previously were reported. In parallel inoculations of potted apple trees, conidia required approximately the same periods of leaf wetness as ascospores at temperatures from 2 to 8 degrees C, rather than the shorter times reported by Mills or the longer times reported in the revision of the Mills table. We propose the following revisions to infection period tables: (i) shorter minimum infection times for ascospores and conidia at or below 8 degrees C, and (ii) because both ascospores and conidia are often present simultaneously during the season of ascospore production and the required minimum infection times appear to be similar for both spore types, the adoption of a uniform set of criteria for ascosporic and conidial infection based on times required for infection by ascospores to be applied during the period prior to the exhaustion of the ascospore supply. Further revisions of infection times for ascospores may be warranted in view of the delay of ascospore discharge and the reduction of airborne ascospore doses at temperatures at or below 2 degrees C.  相似文献   

15.
ABSTRACT Strawberry leaves (cv. Tristar) inoculated with Colletotrichum acuta-tum conidia were incubated at 10, 15, 20, 25, 30, and 35 degrees C under continuous wetness, and at 25 degrees C under six intermittent wetness regimes. The number of conidia and appressoria was quantified on excised leaf disks. In order to assess pathogen survival, inoculated leaves were frozen and incubated to induce acervular development. Germination, secondary3 conidiation, and appressorial development were significantly (P /= 0.95) related to appressorial populations prior to this treatment and was greatest following periods of continuous wetness. Production of secondary conidia and appressoria of C. acutatum on symptomless strawberry leaves under a range of environmental conditions suggests that these processes also occur under field conditions and contribute to inoculum availability during the growing season.  相似文献   

16.
ABSTRACT Sweet pepper-Leveillula taurica microclimate relations were studied under controlled conditions and in commercial greenhouses. Conidial germination occurred at 10 to 37 degrees C and was optimal at 20 degrees C. Conidial viability declined as temperatures increased to 40 degrees C for 6 h. Leaf colonization was optimal at 15 to 25 degrees C. Severe leaf infections occurred at 15 to 20 degrees C and conidiation was suppressed at 20 to 25 degrees C. Highest germination rates were observed at 75 to 85% relative humidity (RH). Severity of leaf coverage by symptoms was high for plants which were subjected to longer periods of temperatures between 10 to 15 degrees C and daytime RH between 85 to 95%, and positively correlated with nighttime RH. Disease severity was negatively correlated with lengthy periods of temperatures >25 degrees C, day and night average temperatures, and average daytime RH. Conversely, leaf shedding was relatively high under conditions characterized by long periods of temperatures >20 degrees C and <13 degrees C, and positively correlated with average daytime temperatures and periods of RH <75%. Increasing nighttime temperatures by heating and daytime temperatures by closing the greenhouse side walls reduced disease in two commercial greenhouse experiments. A midseason shift from a cooler greenhouse climate to warm daytime climate halted epidemic development. Flower number and yield were reduced in infected crops.  相似文献   

17.
In recent years, spotting of ray florets of gerbera flowers has become an important problem. This type of small necrotic lesions may occur before, but especially shortly after harvesting the flowers.Botrytis cinerea was easily isolated from such lesions. Inoculation withB. cinerea only gave typical necrotic lesions, when dry conidia were dusted on the flowers with a short period of high rh after inoculation. At 18–25 °C a high rh for at least 5 hours was necessary. Rotting of ray florets and receptacles byB. cinerea occurred when inoculated flowers were kept wet for a few days. Spots consist of one to several necrotic, usually epidermal cells. A single conidium could give rise to a necrotic lesion after germination. Germination of conidia and lesion formation occurred between 4 and 25 °C; at 30 °C, germination and lesion formation did not occur. Between 18 and 25 °C, many lesions became visible within 1 day after inoculation; at 4 °C it took 2 to 3 days before lesions could be seen. If kept dry, conidia ofB. cinerea remained ungerminated on ray florets of gerbera flowers and could be removed from the ray florets. Within 1 day at high rh, germination occurred and lesions were produced. Conidia ofB. cinerea, stored dry, were able to survive much longer than the lifetime of a gerbera flower. Even after storage at room temperature for up to 14 months, some conidia were able to germinate in vitro and on ray florets and induce the formation of lesions. Addition of gerbera pollen diffusate stimulated germination and lesion formation.  相似文献   

18.
Experiments were conducted to determine the effects of temperature, relative humidity (RH) and duration of wetness period on in vitro germination of conidia and infection of detached pear leaves by Venturia nashicola , the causal agent of pear scab. Conidia germinated only in near-saturation humidity (RH > 97%). The final percentage germination (24 h after inoculation) at 100% RH without free water was less than half that in free water. Conidia germinated over the range of temperatures tested (5–30°C); the optimum temperature for germination was ≈21°C. Changes in percentage germination of conidia over time were fitted by logistic models at each individual temperature. Polynomial models satisfactorily described the relationships between two (rate and time to 50% of maximum germination) of the three logistic model parameters and temperature. The minimum length of the wetness period for successful infection of detached pear leaves by conidia was observed at several temperatures. The shortest length of wetness period required for infection was 7 h at 22°C. Two polynomial models fitted well the relationship between the minimum wetness duration required for infection, and temperature.  相似文献   

19.
Y. Elad  H. Yunis 《Phytoparasitica》1993,21(3):257-268
Infection of young parthenocarpic cucumber fruits byBotrytis cinerea begins in the petals. Removing petals or washing nutrients from the flower significantly reduced infection. Germination of conidia occurred at relative humidity (r.h.) above 92%, but when water deposition on artificial surfaces was prevented, germination did not occur even at 98% r.h. Germination of conidia on petals is promoted by deposition of an aqueous film not visible on the petal surface by the bare eye (but demonstrable by CoCl2). Provided there is a film of water on the surface of the host, germination and the infection process occur at a wide range of temperatures up to 25 °C. Pre-exposure of cucumber plants at temperatures as high as 30 °C or as low as 8 °C, prior to their infection and incubation under conditions conducive to gray mold, resulted in greater severity of the disease on young fruits or leaves as compared with plants previously incubated at 10-25 °C. The relevance of these results to cultural control of gray mold is discussed.  相似文献   

20.
The rate of conidiogenic germination of Botrytis squamosa was highest at 16°C and the greatest numbers of conidia per sclerotium (up to 5 × 104) were produced at temperatures of 5–10°C. At temperatures above 20°C, the percentage of sclerotia producing conidia declined rapidly. Decreasing water potential reduced the rate at which conidia were produced and also resulted in fewer conidia produced per sclerotium. However, conidia were produced at water potentials as low as −2 MPa, at which sclerotial germination was at least 60%. A simulation model that included effects of both temperature and water potential was developed from laboratory and field data obtained for conidial production in sclerotia exposed for periods of 1, 2, 3 or 4 weeks during an entire year. There was good agreement between conidiogenic germination predicted by the model and conidial production observed in onion plots artificially inoculated with sclerotia. Temperature and water potential were therefore considered to be the principal microclimatic factors affecting conidial production by B. squamosa. The role of sclerotia in the context of UK onion production is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号