首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diab HG  Hu S  Benson DM 《Phytopathology》2003,93(9):1115-1123
ABSTRACT Peat moss-based potting mix was amended with either of two composted swine wastes, CSW1 and CSW2, at rates from 4 to 20% (vol/vol) to evaluate suppression of pre-emergence damping-off of impatiens (Impatiens balsamina) caused by Rhizoctonia solani (anastomosis group-4). A cucumber bioassay was used prior to each impatiens experiment to monitor maturity of compost as the compost aged in a curing pile by evaluating disease suppression toward both Pythium ultimum and R. solani. At 16, 24, 32, and 37 weeks after composting, plug trays filled with compost-amended potting mix were seeded with impatiens and infested with R. solani to determine suppression of damping-off. Pre-emergence damping-off was lower for impatiens grown in potting mix amended with 20% CSW1 than in CSW2-amended and nonamended mixes. To identify relationships between disease suppression and microbial parameters, samples of mixes were collected to determine microbial activity, biomass carbon and nitrogen, functional diversity, and population density. Higher rates of microbial activity were observed with increasing rates of CSW1 amendment than with CSW2 amendments. Microbial biomass carbon and nitrogen also were higher in CSW1-amended mixes than in CSW2-amended potting mixes 1 day prior to seeding and 5 weeks after seeding. Principal component analysis of Biolog-GN2 profiles showed different functional diversities between CSW1- and CSW2-amended mixes. Furthermore, mixes amended with CSW1 had higher colony forming units of fungi, endospore-forming bacteria, and oligotrophic bacteria. Our results suggest that enhanced microbial activity, functional and population diversity of stable compost-amended mix were associated with suppressiveness to Rhizoctonia damping-off in impatiens.  相似文献   

2.
Seeds of cress and sugar-beet were coated with oospores of Pythium oligandrum using commercial seed-pelleting or film-coating procedures. Following either procedure approximately 104 oospores were recovered from both seed types, achieving 75.94% of the targeted dose. Oospore germination (9.19%) was unaffected by the coating treatments. Both types of treatment reduced damping-off of cress caused by P. ultimum in artificially infested sand and potting compost and by Rhizoctonia solani in artificially infested sand. In some cases, the level of control was equivalent to fungicide drenches. In general, pelleting of P. oligandrum on cress gave better control than film-coating treatments. P. oligandrum also reduced damping-off of sugar-beet in soil naturally infested with Aphanomyces cochlioides and Pythium spp. Control was equivalent to that achieved with hymexazol fungicide seed-coating treatments and was related to the inoculum potential of A. cochlioides in the soil; neither standard hymexazol coatings nor P. oligandrum treatments gave control at high inoculum potentials. P. oligandrum was not rhizosphere competent on cress or sugar-beet.  相似文献   

3.
Chen MH  Nelson EB 《Phytopathology》2008,98(9):1012-1018
Composts are known for their suppressive properties toward many different seed- and root-infecting pathogens and diseases. Although disease and pathogen suppression induced by composts is believed to be mediated by microbial activities, the nature of the microbial species and processes responsible for suppressiveness remain unknown. We demonstrated previously that seed-colonizing microbial consortia from leaf compost could explain the observed levels of Pythium ultimum-induced damping-off suppression on cotton. The aim of the present work was to determine whether seed-colonizing microbial consortia could explain Pythium damping-off suppression in municipal biosolids compost on three different plant species. Significant levels of disease suppression were observed on cucumber, wheat, and pea at water potentials of -2 kPa. The suppression of damping-off on cucumber and wheat could be eliminated by autoclaving the compost prior to sowing. High levels of suppressiveness were expressed both on cucumber and on wheat seed surfaces within 8 h of sowing. However, the expression of damping-off suppression on the surface of pea seeds was inconsistent and highly variable. Our results demonstrate that compost-induced suppression of P. ultimum damping-off of cucumber and wheat can be explained by the microbial consortia colonizing seeds within 8 h of sowing. These results further suggest that disease suppression in composts is related to microbial species that interact with the pathogen in its infection court and not in the bulk compost.  相似文献   

4.
ABSTRACT Compost tea is being used increasingly in agricultural production to control plant diseases. However, there has been limited investigation relating disease control efficacy to various compost tea production methods, particularly compost tea produced with active aeration and additives to increase microbial population densities in compost tea. Aerated compost tea (ACT) and nonaerated compost tea (NCT), produced with or without additives, was investigated for the suppression of damping-off of cucumber caused by Pythium ultimum. Compost tea was used to drench soilless container medium inoculated with P. ultimum; effect on damping-off ranged from not suppressive to consistently suppressive depending on the method used to produce the tea. The most consistent formulation for damping-off suppression was ACT produced with kelp and humic acid additives. Producing ACT with a molasses-based additive inconsistently suppressed damping-off; evidence suggests that residual nutrients can interfere with disease suppression. Heating or diluting compost tea negated suppression. Across all compost tea samples, there was no significant relationship of bacterial populations, measured as active cells, total cells, or CFU, to disease suppression. However, for all ACT produced without the molasses-based additive, there was a threshold of bacterial population density (6 log(10) active cells per ml, 7.48 log(10) total cells per ml, or 7 log(10) CFU per ml) above which compost teas were suppressive.  相似文献   

5.
ABSTRACT Compost made from organic household and garden waste was used to substitute part of the peat in potting mixtures used for growing woody ornamental nursery stock. The effects of amendment with compost on the colonization of potting mixture by Rhizoctonia solani (AG1) were studied in greenhouse experiments. A bioassay was developed using cucumber as a sensitive herbaceous test plant as a substitute for woody ornamental cuttings. Pathogen growth in the potting mixture was estimated by measuring the distance over which damping-off of seedlings occurred. Compost from two commercial composting facilities suppressed growth of R. solani in potting mixtures with 20% of the product when the compost was fresh (directly after delivery) or long matured (after 5 to 7 months of additional curing). In contrast, short-matured compost (1 month of additional curing) from the same batches stimulated pathogen growth. In vitro mycelial growth of R. solani on mixtures with mature compost was inhibited by microbial antagonism. Compost-amended potting mixtures responded differentially to the addition of cellulose powder; the effect on suppressiveness depended on curing time and origin of the compost. In long-matured compost, suppressiveness to R. solani was associated with high population densities of cellulolytic and oligotrophic actinomycetes. The ratio of the population density of actinomycetes to that of other bacteria was around 200-fold higher in mature suppressive compost than in conducive compost.  相似文献   

6.
杀菌剂SYP-4288对几种常见土传病害的防治效果   总被引:1,自引:0,他引:1  
采用室内盆栽试验测定了杀菌剂SYP-4288对立枯丝核菌引起的棉花立枯病、大豆疫霉根腐病及瓜果腐霉菌引起的黄瓜猝倒病的防效。结果表明,SYP-4288推荐剂量下对3种病害具有较好防效。最高推荐剂量下对棉花立枯病、黄瓜猝倒病和大豆根腐病防效分别为72.67%±10.59%、100%和82.62%±12.48%。SYP-4288对西瓜枯萎病田间药效试验表明,SYP-4288最高推荐剂量下对西瓜枯萎病防效为56.82%~66.51%,好于或相当于对照药剂。基于室内与田间药效试验结果,SYP-4288可以推荐用于防治瓜果蔬菜常见土传病害。  相似文献   

7.
Chen MH  Nelson EB 《Phytopathology》2012,102(6):588-596
The aim of this study was to understand whether competition for fatty acids in plant seed exudates by compost-derived seed-colonizing microbial communities could explain the suppression of plant infections initiated by sporangia of Pythium ultimum. The germination behavior of P. ultimum sporangia in response to cucumber seeds was measured to determine the impact of seed-colonizing microbes on pathogen suppression. Seed-colonizing microbial communities from municipal biosolids compost utilized cucumber seed exudates and linoleic acid in vitro, reducing the respective stimulatory activity of these elicitors to P. ultimum sporangial germination. However, when sporangia were observed directly in the spermosphere of seeds sown in the compost medium, levels of germination and sporangial emptying did not differ from the responses in sand. The percentage of aborted germ tubes was greater after incubating sporangia in compost medium for 12-h than the level of germ tube abortion when sporangia were incubated in sand. Abortion did not occur if previously germinated sporangia were supplemented with cucumber seed exudate. Furthermore, removal of cucumber seed exudate after various stages of germ tube emergence resulted in an increase in aborted germ tubes over time. Adding increasing levels of glucose directly to the compost medium alleviated germ tube abortion in the spermosphere and also eliminated disease suppression. These data fail to support a role for linoleic acid competition in Pythium seedling disease suppression but provide evidence for general carbon competition mediated by seed-colonizing microbial communities as a mechanism for the suppression of Pythium seed infections in municipal biosolids compost.  相似文献   

8.
ABSTRACT Traditional methods of quantifying Pythium spp. rely on the use of selective media and dilution plating. However, high variability is inherent in this type of enumeration and counts may not be representative of the pathogenic population of Pythium spp. Variable regions of the internal transcribed spacer of the rDNA were used to design species-specific primers for detection and quantification of nine Pythium spp. from soils in eastern Washington. Primer pairs were designed for Pythium abappressorium, P. attrantheridium, P. heterothallicum, P. irregulare group I, P. irregulare group IV, P. paroecandrum, P. rostratifingens, P. sylvaticum, and P. ultimum and used with real-time polymerase chain reaction. Standard curves were generated for each of the species using SYBR Green I fluorescent dye for detection of amplification. Seventy-seven isolates of Pythium were screened to confirm specificity of each primer set. DNA was extracted from soil and standard curves were generated for P. irregulare group I, P. irregulare group IV, and P. ultimum to correlate populations of each species in the soil with quantities of DNA amplified from the same soil. Examination of raw field soils revealed results similar to those observed in previous studies. This new technique for the quantification of Pythium spp. is rapid and accurate, and will be a useful tool in the future study of these pathogenic Pythium spp.  相似文献   

9.
Fluoreszierende Pseudomonaden, die sich als Antagonistenin vitro gegenüberRhizoctonia solani undPythium aphanidermatum erwiesen haben, wurden an Gurken und Bohnen auf Antagonismusin vivo untersucht. Die Effizienz der Antagonisten in Auflaufversuchen gegenüberR. solani war niedriger als beiP. aphanidermatum. Die besten Isolate konnten in mitR. solani verseuchter Erde Auflaufraten von 30–40% erzielen, gegenüberP. aphanidermatum dagegen 40–60%. Die Wirkung der Antagonisten zur Verhütung von Spätinfektionen der Pflanzen war deutlich besser. So konnten 16 Isolate eine Schädigung durchR. solani an Bohnen zwischen 90 und 100% reduzieren. An Gurken konnten 12 Isolate eine Schädigung durchP. aphanidermatum auf 70–80% reduzieren.Fluorescent pseudomonads, which showed antagonism in vitro against Rhizoctonia solani and Pythium aphanidermatum, were investigated for antagonism in vivo using bean and cucumber. The efficiency of the antagonists in germination tests against Rhizoctonia solani was lower than against Pythium aphanidermatum. In soil infected with Rhizoctonia solani the germination rates of the seeds remained between 30 and 40%, whereas against Phytium aphanidermatum some Pseudomonas-strains caused germination rates of 40–60%. The preventive effect of the antagonists against fungal infection after the germination was better. 16 isolates reduced the damage caused by Rhizoctonia solani to bean between 90 and 100%. Damage caused by Pythium aphanidermatum to cucumber was reduced by 12 antagonists between 70 and 80%.
Mit 4 Abbildungen  相似文献   

10.
Pythium heterothallicum, P. irregulare, P. torulosum and P. ultimum var. sporangiiferum were compared for pathogenicity to seedlings of winter wheat, spring barley, lentils and peas in growth chambers at 5, 10, 15, 20 and 25 C. These four fungi are among the most commonly isolated Pythium species from wheat roots and wheat-field soils in eastern Washington and northern Idaho, USA, where wheat, spring barley, lentils and peas are grown in various rotations. Pathogenicity was determined in artificially infested soils (500 propagules per g) based on ability to cause pre-emergence death and post-emergence stunting of seedlings. P. ultimum var. sporangiiferum caused significant pre-emergence death of the wheat at 15–25 C, lentils at 10–25 C. and peas at 5 25 C. P. irregulare caused pre-emergence death only of peas and only at 5 C. With the possible exception of lentils at 25 C, P. heterothallcum and P. torulosum caused no pre-emergence death of any of the four plant species. None of the species caused pre-emergence death of spring barley. P. ultimum var. sporangiiferum caused the most post-emergence stunting of wheat, peas and lentils at 10 C and above. Pythium irregulare caused as much or more stunting than P. ultimum var. sporangiiferum on wheat, lentils and peas at 5 C, and was the most pathogenic species on barley at 10, 20 and 25 C. P. irregulare caused significantly more post-emergence stunting of wheat at 5 C with than without chaff (added as a food base for the pathogen); this was not offset by adding ammonium sulphate with the chaff.  相似文献   

11.
ABSTRACT Previously, the zoosporicidal activity and control of Pythium root rot of flower bulbs by Pseudomonas fluorescens SS101 was attributed, in part, to the production of the cyclic lipopeptide surfactant massetolide A. The capacity of strain SS101 and its surfactant-deficient massA mutant 10.24 to suppress populations and root infection by complex Pythium spp. communities resident in orchard soils was assessed on apple and wheat seedlings and on apple rootstocks. Both strains initially became established in soil and persisted in the rhizosphere at similar population densities; however, massA mutant 10.24 typically was detected at higher populations in the wheat rhizosphere and soil at the end of each experiment. Both strains effectively suppressed resident Pythium populations to an equivalent level in the presence or absence of plant roots, and ultimately suppressed Pythium root infection to the same degree on all host plants. When split-root plant assays were employed, neither strain suppressed Pythium spp. infection of the component of the root system physically separated from the bacterium, suggesting that induced systemic resistance did not play a role in Pythium control. Strain SS101 only marginally suppressed in vitro growth of Pythium spp. and growth was not inhibited in the presence of mutant 10.24. When incorporated into the growth medium, the cyclic lipopeptide massetolide A significantly slowed the rate of hyphal expansion for all Pythium spp. examined. Differences in sensitivity were observed among species, with Pythium heterothallicum, P. rostratum, and P. ultimum var. ultimum exhibiting significantly greater tolerance. Pythium spp. populations indigenous to the two soils employed were composed primarily of P. irregulare, P. sylvaticum, and P. ultimum var. ultimum. These Pythium spp. either do not or rarely produce zoospores, which could account for the observation that both SS101 and mutant 10.24 were equally effective in disease control. Collectively, the results showed that (i) Pseudomonas fluorescens SS101 is very effective in controlling diverse Pythium populations on different crops grown in different soils and (ii) production of the cyclic lipopeptide massetolide A does not play a significant role in disease suppression. Other, as yet undefined mechanisms appear to play a significant role in the interaction between P. fluorescens SS101 and soilborne Pythium spp. communities.  相似文献   

12.
ABSTRACT Good quality seeds of cotton cultivars often escaped pre-emergence damping-off incited by Pythium spp. and Rhizopus oryzae, and they were resistant to postemergence damping-off incited by Rhizoctonia solani. Poor quality seeds, however, were highly susceptible to both phases of seedling disease and required seed treatment in order to survive. Pre-emergence damping-off incited by Pythium spp. and Rhizopus oryzae could be controlled by seed treatment with biocontrol preparations of a number of Trichoderma spp., but these treatments were much less effective in controlling postemergence disease incited by Rhizoctonia solani. Postemergence seedling disease can be controlled by fungicides, but they were much less effective in controlling the pre-emergence phase of the disease. Combination seed treatments of poor quality cotton seeds with fungicides and Trichoderma spp. preparations, followed by planting in pathogen-infested soil, indicated that this technique will control both phases of seedling disease. Seed treatment with either the fungicides or the biocontrol agents alone did not achieve this goal. The optimum combination treatment for disease control was that of chloroneb plus Trichoderma spp., followed by chloroneb plus metalaxyl (Deltacoat AD) plus T. virens strain G-6.  相似文献   

13.
Pseudomonas putida 40RNF applied to seed pellets reduced the occurrence of Pythium damping-off of sugar beet. A density of 6 × 107 40RNF per pellet reduced Pythium damping-off from 70 to 26% when seeds were sown in artificially infested soil (250 propagules Pythium ultimum per g dry soil). The efficacy of 40RNF was dependent on its density in the seed pellet (in the range 2 × 104–6 × 108 per pellet) and on the number of propagules of Pythium in soil. 40RNF declined to or stabilized at approximately 1 × 106 per pellet 3 days after planting, and this was independent of the inoculum density. This indicated that the crucial steps resulting in damping-off of sugar beet caused by Pythium ultimum must occur within 3–4 days of sowing. 40RNF reduced pericarp colonization by P. ultimum by 43% 48 h after planting and caused a 68% decrease in the number of sporangia of P. ultimum in the surrounding soil (0.0–5.0 mm). P. putida 40RNF also reduced pre and post-emergence damping-off (from 69.5 to 37.5%) caused by indigenous populations of Pythium species in an infested soil and this was as effective as the fungicide hymexazol (69.5 to 40%).  相似文献   

14.
Kasuya M  Olivier AR  Ota Y  Tojo M  Honjo H  Fukui R 《Phytopathology》2006,96(12):1372-1379
ABSTRACT Suppressive effects of soil amendment with residues of 12 cultivars of Brassica rapa on damping-off of sugar beet were evaluated in soils infested with Rhizoctonia solani. Residues of clover and peanut were tested as noncruciferous controls. The incidence of damping-off was significantly and consistently suppressed in the soils amended with residues of clover, peanut, and B. rapa subsp. rapifera 'Saori', but only the volatile substance produced from water-imbibed residue of cv. Saori exhibited a distinct inhibitory effect on mycelial growth of R. solani. Nonetheless, disease suppression in such residue-amended soils was diminished or nullified when antibacterial antibiotics were applied to the soils, suggesting that proliferation of antagonistic bacteria resident to the soils were responsible for disease suppression. When the seed (pericarps) colonized by R. solani in the infested soil without residues were replanted into the soils amended with such residues, damping-off was suppressed in all cases. In contrast, when seed that had been colonized by microorganisms in the soils containing the residues were replanted into the infested soil, damping-off was not suppressed. The evidence indicates that the laimosphere, but not the spermosphere, is the site for the antagonistic microbial interaction, which is the chief principle of soil suppressiveness against Rhizoctonia damping-off.  相似文献   

15.
16.
Pythium spp. that cause damping-off of seedlings also can cause root rot of older plants and lead to yield reductions. This can be especially severe in soilless cultures where the fungus can spread easily with the nutrient solution. 39Pythium isolates obtained from discolored roots were assayed for their ability to cause damping-off on cucumber seedlings in sand-peat and for their pathogenicity in soilless culture of cucumber in rockwool or hydroponic solution. Isolates ofPythium aphanidermatum, P. irregulare, P. sylvaticum andP. ultimum were highly pathogenic in sand-peat, but onlyP. aphanidermatum strains were pathogenic in soilless conditions and led to root decay, plant death in rockwool culture and growth reduction in hydroponic culture. One strain ofP. aphanidermatum significantly reduced the yield of cucumber grown in rockwool under conditions similar to those of commercial cultures.  相似文献   

17.
ABSTRACT The effect of seed meals derived from Brassica juncea, B. napus, or Sinapis alba on suppression of soilborne pathogens inciting replant disease of apple was evaluated in greenhouse trials. Regardless of plant source, seed meal amendment significantly improved apple growth in all orchard soils; however, relative differences in pathogen suppression were observed. All seed meals suppressed root infection by native Rhizoctonia spp. and an introduced isolate of Rhizoctonia solani AG-5, though B. juncea seed meal often generated a lower level of disease control relative to other seed meal types. When introduction of the pathogen was delayed until 4 to 8 weeks post seed meal amendment, disease suppression was associated with proliferation of resident Streptomyces spp. and not qualitative or quantitative attributes of seed meal glucosinolate content. Using the same experimental system, when soils were pasteurized prior to pathogen infestation, control of R. solani was eliminated regardless of seed meal type. In the case of B. juncea seed meal amendment, the mechanism of R. solani suppression varied in a temporal manner, which initially was associated with the generation of allylisothiocyanate and was not affected by soil pasteurization. Among those tested, only B. juncea seed meal did not stimulate orchard soil populations of Pythium spp. and infection of apple roots by these oomycetes. Although application of B. napus seed meal alone consistently induced an increase in Pythium spp. populations, no significant increase in Pythium spp. populations was observed in response to a composite B. juncea and B. napus seed meal amendment. Suppression of soil populations and root infestation by Pratylenchus spp. was dependent upon seed meal type, with only B. juncea providing sustained nematode control. Collectively, these studies suggest that use of a composite B. juncea and B. napus seed meal mixture can provide superior control of the pathogen complex inciting apple replant disease relative to either seed meal used alone.  相似文献   

18.
从水稻旱育秧病苗上分离到67个菌株 ,经鉴定分属于镰刀菌58个、腐霉菌7个、丝核菌2个。经回接测定其致病性 ,结果表明致病的镰刀菌主要是串珠镰刀菌 (Fusarium moniliforme) ;腐霉菌中主要是盐腐霉 (Pythium salinum)、间生腐霉 (P .interedium)和顶生腐霉 (P .acrogenum) ;丝核菌为立枯丝核菌 (Rhizoctonia solani)。接种试验表明串珠镰刀菌在6~8d龄幼苗的根中部侵染发病率最高 ,腐霉菌和丝核菌在一叶一心期茎基部侵染发病率最高。药剂试验表明以浸种灵(二硫氰基甲烷)、土菌消(hymexazol)、甲霜灵(metalaxyl)等种子处理加土壤处理 ,防效优于单独种子处理或土壤处理。  相似文献   

19.
Pythium oligandrum oospores, incorporated in clay carrier, survived a commercial seed-pelleting process to give protection against damping-off in sugar beet and cress induced by Pythium ultimum , together with damping-off in carrot caused by Mycocentrospora acerina.
It is suggested that field scale evaluation of P. oligandrum as a biocontrol of fungally incited seedling diseases is now both feasible and desirable.  相似文献   

20.
We have been using mutagenesis to determine how biocontrol bacteria such as Enterobacter cloacae 501R3 deal with complex nutritional environments found in association with plants. E. cloacae C10, a mutant of 501R3 with a transposon insertion in degS, was diminished in growth on synthetic cucumber root exudate (SRE), colonization of cucumber seed and roots, and control of damping-off of cucumber caused by Pythium ultimum. DegS, a periplasmic serine protease in the closely related bacterium Escherichia coli K12, is required for the RpoE-mediated stress response. C10 containing wild-type degS from 501R3 or from E. coli K12 on pBeloBAC11 was significantly increased in growth on SRE, colonization of cucumber roots, and control of P. ultimum relative to C10 containing pBeloBAC11 alone. C10 and 501R3 were similar in sensitivity to acidic conditions, plant-derived phenolic compounds, oxidative stress caused by hydrogen peroxide, dessication, and high osmoticum; stress conditions potentially associated with plants. This study demonstrates a role for degS in the spermosphere and rhizosphere during colonization and disease control by Enterobacter cloacae. This study implicates, for the first time, the involvement of DegS and, by extension, the RpoE-mediated stress response, in reducing stress on E. cloacae resulting from the complex nutritional environments in the spermosphere and rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号