首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
 Two lines of onion yellows phytoplasma with reduced pathogenicity have been isolated from the original wild-type line (OY-W). One is a line with mild symptoms (OY-M) and the other is a non-insect-transmissible line, also with mild symptoms (OY-NIM). We previously reported heterogeneity in extrachromosomal DNA (EC-DNA) species in these lines. In this report, another EC-DNA, EcOYNIM, from OY-NIM was cloned and sequenced, providing a complete set of EC-DNAs from the three OY lines. To monitor each phytoplasma in synergism or cross-protection experiments, a pair of polymerase chain reaction (PCR) primers that universally amplify a portion of the EC-DNAs that are characteristic of each line was designed. Using this primer set, a line-specific fragment was amplified from the total DNA of each plant inoculated with one or more phytoplasma lines. The PCR product sizes differ for each phytoplasma line, so the lines can be distinguished even in plants infected with multiple lines. Because EC-DNAs are more abundant than chromosomal genes in phytoplasma cells, this primer set will be valuable for detecting and discriminating these phytoplasma lines and for analyzing their interaction. Received: October 21, 2002 / Accepted: January 8, 2003 RID="*" ID="*" The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession number AB097150 Acknowledgments This work was supported partly by Grants-in-Aid of Scientific Research from the Japan Society for the Promotion of Science (JSPS) (09460155 and 13306004), a Grant-in-Aid of Scientific Research on Priority Areas (C) “Genome Biology” from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and the Program for the Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN) of the Bio-oriented Technology Research Advancement Institution.  相似文献   

2.
3.
Symptoms reminiscent of phytoplasma infection were observed in four provinces (governorates) of Egypt in fields of eggplants, tomato plants and squash. Diseased plants exhibited stunting, leaf yellows and flower development abnormalities. PCR amplification of 16SrDNA with phytoplasma-specific primer pairs confirmed the phytoplasma presence. Sequencing and phylogenetic analysis indicated that all phytoplasmas had the same partial 16SrDNA sequence, assigning them to the 16SrII-D phytoplasma subgroup. Disease incidence was about 1% among the 20 squash fields surveyed and equally varied from 4% to 15% in the 20 eggplant fields and in the 40 tomato fields inspected. The widespread distribution of this phytoplasma in annual solanaceous and cucurbit crops suggests a wider plant host range including wild plants that could act as reservoir and insist on the need for a insect vector survey. A finer genetic differentiation of Egyptian 16SrII-D phytoplasma strains from different geographical origins and different host plants should help to better trace such epidemics.  相似文献   

4.
Winter oilseed rape grown in several areas in South Bohemia showed symptoms of stunting, leaf reddening and extensive malformation of floral parts. Phytoplasmas were consistently observed by using electron microscopy only in phloem tissue of symptomatic plants. DNA isolated from infected and healthy control plants was used in PCR experiments. Primer pairs R16F2/R2, P1/P7 and rpF2/R2, amplifying, respectively, 16S rDNA, 16S rDNA plus spacer region and the beginning of the 23S and ribosomal protein gene L22 specific for phytoplasmas, were used. According to RFLP and sequence analyses of PCR products, the phytoplasma from rape was classified in the aster yellows phytoplasma group, subgroup 16SrI-B. The PCR products from the Czech phytoplasma-infected rape also had RFLP profiles identical to those of phytoplasma strains from Italian Brassica . This first molecular characterization of phytoplasmas infecting rape compared with strains from Brassica does not, however, clearly indicate differences among isolates of the same 16SrI-B subgroup. Further studies on other chromosomal DNA portions could help the research on host specificity or on geographical distribution of these phytoplasmas.  相似文献   

5.
Since 1989, tomato plants showing symptoms of stolbur disease have been sporadically noticed at the ‘Stuard Experimental Farm for Agriculture’in the Province of Parma, Emilia‐Romagna region (north Italy). In this farm, one of the largest in Italy for tomato plantation, more than 36 commercial tomato lines have been comparatively evaluated for suitability for processing into diced or crushed tomato products. Recently, among these lines, some plants of two hybrids (Perfect Peel, TI 991) showed the typical symptoms of ‘stolbur’infection (yellowing and reduction of leaves, sterility or fruit alterations, stunting of the plants). In order to protect these plants, as Perfect Peel is one of the most important commercial hybrids, transmission electron microscopy was used to identify the pathogens responsible for the disease and to study the alterations caused in cells. Phytoplasmas were observed in the phloem cells of leaf and stem tissues of the two tomato hybrids and also in Catharanthus roseus used as test plant. This is the first report of identification, by electron microscopy, of stolbur phytoplasma affecting economically important tomato crops in Emilia‐Romagna region.  相似文献   

6.
云南泡桐丛枝病植原体核糖体蛋白基因片段序列分析   总被引:3,自引:0,他引:3  
 应用植原体核糖体蛋白基因通用引物对rpF1/rpR1,对采自云南省曲靖市的泡桐丛枝病植原体DNA (PaWB-QJ)进行PCR扩增,得到1.3 kb的特异片段,证明此病株中存在植原体。将此片段与pGEM-T Easy载体连接并转化大肠杆菌JM109感受态细胞,进行PCR鉴定、核糖体蛋白基因部分核苷酸序列测定及分析。结果表明,该株系(PaWB-QJ)核糖体蛋白基因片段长1 244 bp,包含rps19rpl22rps3基因。对PaWB-QJ株系的核糖体蛋白基因序列的同源性比较结果显示与16S rI-B亚组的翠菊黄化(Aster yellows,AY)、长春花黄化(Periwinkle yellows,PY)和泡桐丛枝德国株系(Paulownia witches'-broom,PaWB-German)的亲缘关系最近,达到99.0%以上,而与其它组中的株系明显低于97.0%,所以认为该植原体株系属于翠菊黄化组B亚组(16SrI-B)。  相似文献   

7.
Four Rhododendron hybridum plants (from cvs Moravanka and Don Juan), all exhibited symptoms of shortened axillary shoots, reduced leaves with vein clearing and yellowing, undeveloped flowers, and general stunting in a rhododendron nursery garden in southern Bohemia in 2007. Electron microscopy examination of ultra-thin sections revealed the presence of numerous polymorphic phytoplasma-like bodies in the phloem tissue of leaf midribs and petioles. The phytoplasma etiology of this disease was further confirmed by polymerase chain reaction (PCR) using universal phytoplasma primers. Restriction fragment length polymorphism (RFLP) analysis of amplification products obtained with a R16F2/R16R2 primer pair from all symptomatic plants indicated the presence of phytoplasma from the 16SrVI-A subgroup. A detailed comparison of the amplified sequences and phylogenetic analysis confirmed that the phytoplasma belonged to the subgroup 16SrVI-A (clover proliferation phytoplasma group). This is the first report of the natural occurrence of ‘Candidatus Phytoplasma trifolii’ in plants of Rhododendron hybridum.  相似文献   

8.
ABSTRACT Alfalfa (Medicago sativa) plants showing witches'-broom symptoms typical of phytoplasmas were observed from Al-Batinah, Al-Sharqiya, Al-Bureimi, and interior regions of the Sultanate of Oman. Phytoplasmas were detected from all symptomatic samples by the specific amplification of their 16S-23S rRNA gene. Polymerase chain reaction (PCR), utilizing phytoplasma-specific universal primer pairs, consistently amplified a product of expected lengths when DNA extract from symptomatic samples was used as template. Asymptomatic plant samples and the negative control yielded no amplification. Restriction fragment length polymorphism profiles of PCR-amplified 16S-23S rDNA of alfalfa using the P1/P7 primer pair identified phytoplasmas belonging to peanut witches'-broom group (16SrII or faba bean phyllody). Restriction enzyme profiles showed that the phytoplasmas detected in all 300 samples belonged to the same ribosomal group. Extensive comparative analyses on P1/P7 amplimers of 20 phytoplasmas with Tru9I, Tsp509I, HpaII, TaqI, and RsaI clearly indicated that this phytoplasma is different from all the other phytoplasmas employed belonging to subgroup 16SrII, except tomato big bud phytoplasma from Australia, and could be therefore classified in subgroup 16SrII-D. The alfalfa witches'-broom (AlfWB) phytoplasma P1/P7 PCR product was sequenced directly after cloning and yielded a 1,690-bp product. The homology search showed 99% similarity (1,667 of 1,690 base identity) with papaya yellow crinkle (PapayaYC) phytoplasma from New Zealand. A phylogenetic tree based on 16S plus spacer regions sequences of 35 phytoplasmas, mainly from the Southern Hemisphere, showed that AlfWB is a new phytoplasma species, with closest relationships to PapayaYC phytoplasmas from New Zealand and Chinese pigeon pea witches'-broom phytoplasmas from Taiwan but distinguishable from them considering the different associated plant hosts and the extreme geographical isolation.  相似文献   

9.
ABSTRACT Due to the lack of a means to inoculate plants mechanically, the histological dynamics and in planta spread of phytoplasmas have been studied very little. We analyzed the dynamics of plant infection by phytoplasmas, using a technique to infect a limited area of a leaf, nested polymerase chain reaction (PCR), real-time PCR, and immunohistochemical visualization. Following localized inoculation of a leaf of garland chrysanthemum (Chrysanthemum coronarium) by the vector leafhopper Macrosteles striifrons, the onion yellows (OY) phytoplasma spread within the plant from the inoculated leaf to the main stem (1 day postinoculation [dpi]), to the roots and the top leaf (2 dpi), and to other leaves from top to bottom (from 7 to 21 dpi). The populations of the OY phytoplasmas in inoculated leaves and roots increased approximately sixfold each week from 14 to 28 dpi. At 14 dpi, the OY phytoplasmas colonized limited regions of the phloem tissue in both the root and stem and then spread throughout the phloem by 21 dpi. This information should form the basis for elucidating the mechanisms of phytoplasma multiplication and migration within a plant host.  相似文献   

10.
A survey for phytoplasma diseases in tomato and pepper fields in Lebanon was conducted during 2003 and 2004. Tomato plants with stunting, yellowing or purplish leaves, proliferation of laterals buds, hypertrophic calyxes and virescent flowers were found in 25% of the tomato fields surveyed, where they represented 2–8% of the plants. Pepper plants displaying stunting and yellowing of leaves, were found in 27% of the fields and 1–4% of the plants were affected. Phytoplasmas infecting tomato and pepper had identical 16S-rDNA RFLP profiles and sequences. A phytoplasma isolate named PTL was transmitted by dodder from a diseased tomato plant to a periwinkle (Catharanthus roseus) plant in which it induced leaf yellowing, virescence and phyllody. 16S-rDNA phylogenetic analysis classified PTL as a strain of ‘Candidatus Phytoplasma trifolii’.  相似文献   

11.
In March 2011, witches’ brooms comprising many small shoots were observed on desert rose plants, Adenium obesum, in PyinOoLwin, Myanmar. The causal agent of the symptomatic leaves was diagnosed as a phytoplasma by polymerase chain reaction (PCR) analysis. Sequence analysis of the PCR product (1.8 kbp) showed the closest phylogenic relationships with members of the peanut witches’ broom phytoplasma group. Additionally, phylogenetic analyses revealed the phytoplasma is a member of ‘Candidatus Phytoplasma aurantifolia’. This is the first report of desert rose plant as a new host for ‘Ca. P. aurantifolia’.  相似文献   

12.
臭矢菜丛枝病植原体的分子鉴定研究   总被引:1,自引:0,他引:1  
 本实验采用DAPI荧光显微镜、PCR、克隆和测序等技术,对海南臭矢菜丛枝病样进行了检测和鉴定。以染病臭矢菜总DNA为模板应用3对植原体特异性引物进行PCR扩增,获得PCR产物为16S rDNA(1 430 bp)、16S-23S rDNA(358bp)、rp DNA(1 294 bp)。应用DNA回收试剂盒获得了3个PCR扩增片断的纯化产物,并克隆到DH5α大肠杆菌中测序。应用DNAMAN和MEGA软件对获得的序列与NCBI数据库中植原体序列进行同源性分析和构建系统发育树。结果显示臭矢菜丛枝病植原体与花生丛枝病植原体序列同源性最高,16S rDNA的序列同源性为99.9%,16S-23S rDNA高达100%,rp为99.7%,因而将臭矢菜丛枝病植原体归为花生丛枝组(16SrⅡ),根据16S rDNA的RFLP分析,将其归为16SrⅡ-A亚组。  相似文献   

13.
Flax plants (Linum usitatissimum) of the white (album) flower variety exhibiting typical phytoplasma-like symptoms were found for the first time in Pakistan during 2011. The symptoms included floral virescence, phyllody, little leaf, stunting and stem fasciation. Light microscopy of hand-cut stem sections treated with Dienes’ stain showed blue areas in the phloem region of symptomatic plants. To confirm phytoplasma infection, total DNA was extracted separately from five plants showing virescence/phyllody and from five others showing fasciation, and was amplified by nested PCR using universal 16S rDNA phytoplasma primers P1/P7 followed by R16F2n/R16R2. All samples from plants with virescence/phyllody and fasciation yielded a 1,250 bp PCR product, and identical RFLP profiles using the enzymes AluI and HpaII. Direct sequencing of the 16S rDNA of one representative PCR amplicon (GenBank Accession No. JX567504 for phyllody and Accession No. JX567505 for fasciation) showed highest sequence identity (99%) with 16SrII ‘Candidatus Phytoplasma aurantifolia’ phytoplasmas, and phylogenetic analysis placed the phytoplasma in subgroup 16SrII-D. Disease was successfully transmitted by grafting and by the leafhopper Orosius albicinctus. To our knowledge, flax is a new natural host for 16SrII-D phytoplasmas in Pakistan.  相似文献   

14.
紫花苜蓿丛枝病植原体的分子检测及鉴定   总被引:1,自引:0,他引:1  
 利用植原体16S rRNA基因通用引物对云南昆明发生的苜蓿丛枝病感病植株总DNA进行巢式PCR扩增,得到1.2kb的特异片段,从分子水平证实了苜蓿丛枝病的病原是植原体。从PCR产物的RFLP酶切图谱可看出,该植原体株系的酶切图谱与马里兰翠菊黄化植原体(AY1)相同。对扩增片段进行克隆及序列测定后,利用最小进化法做Bootstrap验证的系统进化树,表明苜蓿丛枝病植原体为Candidatus Phytoplasma asteris成员之一,与植原体16SrI-B亚组成员关系密切。  相似文献   

15.
Foliar and root symptoms are described for Australian lucerne yellows (ALuY), a disease common in Australian lucerne seed crops. A phytoplasma was detected in plants exhibiting symptoms, but not in symptomless lucerne plants. Oligonucleotide primers specific to the phytoplasma 16S-23S rRNA intergenic spacer region (SR) were used in polymerase chain reaction (PCR) assays on DNA extracted from lucerne plants with and without symptoms. Identical restriction fragment length polymorphism (RFLP) enzyme profiles were obtained for PCR products amplified from 10 yellows-affected lucerne samples. RFLP profiles obtained for four restriction enzymes were different from those of the tomato big bud (TBB) phytoplasma. ALuY phytoplasma PCR products were sequenced to determine phylogeny and were found to fall within the faba bean phyllody phytoplasma group, or phytoplasma group 16srII. Transmission electron microscopy revealed phytoplasmas in the phloem of yellows-affected plant samples, but not in symptomless plant samples. Fungal, bacterial and viral agents in the aetiology of Australian lucerne yellows were ruled out.  相似文献   

16.
Shoot tips with 3–4 leaf primordia were excised from in vitro -grown sweetpotato plants ( Ipomoea batatas ) infected with little leaf phytoplasma ( Candidatus Phytoplasma aurantifolia) and subjected to cryotherapy. All plants regenerated from the cryo-treated shoot tips were free of phytoplasma, whereas shoot tip culture or dehydration of shoot tips without subsequent cryotherapy resulted in phytoplasma-free plants at a frequency of only 7–10%. Histological and ultrastructural studies with light and transmission electron microscopy, respectively, indicated that cryotherapy was lethal to all cells except those in the apical dome of the meristem and the two youngest leaf primordia. These surviving parts of the shoot tip contained vascular tissue and sieve elements, but electron microscopy showed no phytoplasma in them. In contrast, an abundance of phytoplasma was found in sieve elements located at the lower, non-surviving parts of the shoot tip 1·0 or 1·5 mm from the apical dome. In the greenhouse, the plants in which phytoplasmas were not detected were healthy-looking, grew vigorously and were readily distinguished from the infected plants that exhibited little leaf and chlorosis symptoms, proliferation of axillary shoots and roots, stunting, and heavily reduced number and size of storage roots. In this study efficient elimination of phytoplasma and production of pathogen-tested plant stocks were achieved with the novel cryotherapy-based approach. The proposed advantage of the technique is that it can be simultaneously used for long-term storage of plant germplasm and for production of pathogen-free plants.  相似文献   

17.
ABSTRACT Epidemics of aster yellows in lettuce in Ohio are caused by at least seven distinct phytoplasma strains in the aster yellows (AY) group. Five of the strains are newly reported: AY-BW, AY-WB, AY-BD3, AY-SS, and AY-SG. All seven strains were characterized based on symptoms in aster and lettuce, and by polymerase chain reaction (PCR). Strain AY-BD2 (formerly 'Bolt') causes yellowing and leaf distortion in lettuce and bolting in aster, whereas strain AY-S (formerly 'Severe') causes stunting, leaf clustering, and phyllody. Strain AY-WB causes yellowing and wilting in lettuce and witches'-broom in aster. Strain AY-SG induces horizontal growth in lettuce and aster plants. Strain AY-BW causes chlorosis of emerging leaves and abnormally upright growth of leaf petioles. AY-SS causes symptoms similar to those caused by AY-S but has a different PCR-restriction fragment length polymorphism (RFLP) banding pattern. Strains AY-BD2 and AY-BD-3 cause mild leaf and stem distortion in lettuce but are differentiated by PCR-RFLP. All phytoplasma strains collected from lettuce in Ohio belong to the 16SrI group. AY-WB belongs to the 16SrI-A subgroup and the other six belong to the 16SrI-B subgroup. Five of the seven strains were distinguished from each other by primer typing. The results of phylogenetic analyses of sequences of the 16S rRNA genes were basically consistent with the classification based on PCR-RFLP, in which AY-WB clustered with phytoplasmas of the 16rIA subgroup and the other Ohio lettuce strains clustered with phytoplasmas in the 16SrI-B subgroup.  相似文献   

18.
海南省木豆丛枝病植原体的分子检测及鉴定   总被引:1,自引:0,他引:1  
 利用植原体通用引物R16mF2/R16mR1和rp (Ⅱ) F1/rp (Ⅱ) R1对海南木豆丛枝病植原体16S rDNA和部分核糖体蛋白(ribosomal protein,rp)基因序列进行PCR扩增、克隆和测序。获得海南木豆丛枝病植原体16S rDNA基因片段为1430bp,rp基因片段为1170bp。核苷酸同源性比较和系统进化树构建表明,引起海南木豆丛枝病的植原体应属于16SrⅡ组中的亚组ⅲ。本研究首次从分子水平确定了引起我国海南木豆丛枝病的病原物为植原体,明确了其分类地位,为该病害流行学研究和防治提供了理论依据。  相似文献   

19.
植原体病害研究概况   总被引:1,自引:0,他引:1  
植原体原名类菌原体,是一类重要的植物病原物,归属于细菌,无细胞壁,专性寄生于植物韧皮部。在菌体大小、结构以及遗传进化上与菌原体、螺原体十分相似。世界范围内植原体已引起千余种植物病害,主要表现为丛枝、黄化、节间缩短等。植原体病原主要依靠吸食植物韧皮部的昆虫介体传播,如叶蝉、木虱等。本文主要对植原体的病原学、遗传进化与基因组、致病机理以及防控进行综述。  相似文献   

20.
A new disease of tomato plants with typical phytoplasma disease symptoms such as stunting, yellows, auxiliary shoot proliferation and phyllody was observed in Yunnan Province, southwest China in 2011. By a nested-PCR, phytoplasma were detected using the phytoplasma universal primers specific for 16S rDNA. The results of the 16S rDNA sequencing, computer-simulated RFLP patterns and phylogenetic analysis indicated that the phytoplasma associated with the diseased tomato plants belongs to subgroup A of the peanut witches’-broom group. This is the first report of a 16SrII-A phytoplasma associated with a new tomato disease in China. This new disease was named tomato yellows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号