首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Roots of young ‘Golden Delicious’ apple on M9 rootstock were inoculated with four strains of Azotobacter chroococcum, which were isolated from various soils. Effects of these strains in combination with different levels of nitrogen (N) fertilizer and compost on plant growth and nutrient uptake were studied over two seasons. Therefore, a factorial arrangement included four strains of A. chroococcum, two levels of N-fertilizer (0 and 35 mg N kg?1soil of ammonium nitrate) and two levels of compost (0 and 12 g kg?1 soil of air-dried vermicompost). Among the four strains, AFA146 was the most beneficial strain, as it increased leaf area, leaf potassium (K), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and boron (B) uptake and root N, phosphorus (P), potassium (K), Mn, and Zn. The combination of AFA146 strain, compost and N fertilizer increased leaf uptake of Ca, Mg, Fe, Mn, Zn, and B, and root uptake of P, K, Ca, Mg, Mn, and copper (Cu), and root dry weight.  相似文献   

2.
Citrus performance is strongly related with rootstock. This study was conducted to investigate leaf nutrient contents of ‘Okitsu’, ‘Clausellina’ and ‘Silverhill’ mandarin cultivars budded onto sour orange, ‘Carrizo’ and ‘Troyer’ citrange rootstocks in Dörtyol, Turkey in 2004 and 2005. The maximum nitrogen (N), potassium (K), and copper (Cu) contents were determined for ‘Clausellina’; phosphorus (P) for ‘Okitsu’; and sodium (Na) for ‘Silverhill’. Calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), and zinc (Zn) uptake were similar for the mandarin cultivars. ‘Carrizo’ citrange at N, K, Mg, Mn, and Cu uptake; ‘Troyer’ citrange at N, P, K, and Fe uptake; and common sour orange at Ca, Zn, and Na uptake was superior on the other rootstocks. It was observed that ‘Carrizo’ and ‘Troyer’ citrange rootstocks had advantages over sour orange in nutrient uptake. Thus, growth performance, yield, and quality parameters considered, ‘Carrizo’ and/or ‘Troyer’ citranges could be suggested as rootstocks for the studied mandarin cultivars under similar ecological conditions.  相似文献   

3.
The nutritional status of 22 apple (Malus domestica Borkh.) dwarfing rootstocks, with varied degrees of dwarfing, was evaluated during stoolbed production in 1983 and 1984. Rootstock effects were observed for all leaf nutrient elements studied except Cu. Except for EMLA 27, leaf N levels were generally highest in dwarfing EMLA and Polish series and lowest on vigorous MAC and EMLA rootstocks. Relatively few significant differences were found in leaf P and K content among rootstocks. Foliar Ca and Mg concentrations were generally highest on Polish and Budagovski rootstocks and lowest on EMLA 111. Leaf B levels on vigorous and semi‐dwarfing EMLA rootstocks and Fe levels in MAC, Polish, and Budagovski series were considerably higher than on other rootstocks. Although significant differences were found in leaf Mn and Zn among rootstocks, no specific effect for rootstock vigor was observed for either element. Positive correlations between leaf Ca and Mg occurred in 17 rootstocks while negative correlations between N and Fe were observed in 21 rootstocks.  相似文献   

4.
The dry weight accumulation per leaf as well as the concentration per gram of dry weight and the accumulation of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) were determined in walnut tree leaves (Juglans regia L.) during a complete life cycle. Additionally, the dynamics of plant nutrient concentration in leaf petiole sap and carbohydrate accumulation in leaves were studied in relation to the main life cycle events of the walnut tree. Total N, P, K, Cu, and Zn concentrations decreased, whereas that of Ca, Mg, and Mn increased during the season. Iron concentration fluctuated around a mean value. Total N, P, K, Mg, and Cu concentrations detected in younger mature leaves were at the sufficient level, whereas Ca, Fe, Mn, and Zn concentrations were at higher levels as compared to those previously reported. All the detected nutrient accumulations increased abruptly during leaf ontogeny and leaf maturation until a maximum level was attained in the younger mature leaves. Similarly, sucrose, glucose, and fructose accumulation were observed at the same period. The rates of total N, P, Cu, and Zn accumulation were lower than the rates of the observed dry matter accumulation and nutrient concentration dilution. Potassium and Mn accumulation rates were almost equal, whereas those for Ca and Mg were higher as compared to the dry matter accumulation rate. The fast embryo growing phase resulted in a considerable decrease in dry weight, total N, P, K, Cu, Zn, and carbohydrate accumulation, and to a lesser degree in Ca, Mg, and Mn accumulation. Nutrient accumulation reduction in leaves by the influence of the growing fruits were estimated to be: total N 52%, K 48%, P 29.5%, Mg 16.3%, Ca 15%, Fe 51.2%, Cu 55.2%, Zn 37.3%, and Mn 5.4% of the maximum nutrient value of the younger mature leaves. Old leaves preserved nutrients before leaf fall as follows: total N 25.4%, P 45%, K 31%, Ca 74.8%, Mg 76.5%, Mn 89.2%, Fe and Zn 50%, and Cu 37%. Nutrient remobilization from the senescing old leaves before leaf fall were: total N 22.6%, P 25.5%, K 21%, Ca 10.2%, Mg 7%, Fe 3.2%, Mn 5.4%, Cu 8%, and Zn 13.3% of the maximum value in the younger mature leaves. In early spring, the absorption rates of N, P, and Ca were low while those of Mg, Fe, Mn, Cu, and Zn were high. During the fast growing pollen phase, the N, P, Fe, Mn, Cu, and Zn concentrations were reduced. Calcium concentration is supposed to be more affected by the rate of transpiration rather than during the growing of embryo. Calcium and Mg concentrations in the sap were negatively correlated. The detected K concentration level in the sap was as high as 33 to 50 times that of soluble N, 12 to 21 times to that of P, 5 times to that of Ca, and 10 to 20 times to that of Mg. The first maximum of starch accumulation in mature leaves was observed during the slow growing embryo phase and a second one after fruit ripening. Old senescing leaves showed an extensive carbohydrate depletion before leaf fall.  相似文献   

5.
  【目的】  对比大、中量养分短期缺乏下脐橙新、老叶片中11种必需元素含量及变化,并分析缺素导致的营养元素间的相互影响。  【方法】  以一年生枳砧纽荷尔脐橙幼苗为试材进行了砂培试验。以完全营养液为对照 (CK),设置缺氮 (?N)、缺磷 (?P)、缺钾 (?K)、缺钙 (?Ca)和缺镁 (?Mg)处理,测定不同处理脐橙叶片(老叶和新叶)生长指标及矿质元素含量。  【结果】  所有缺素处理均导致叶片叶绿素含量降低,生物量减少,以缺氮处理最为显著。缺氮降低了叶片N、Ca、Cu、Mo含量;缺磷降低了叶片P、K、Mo含量;缺钾降低了叶片K含量;缺钙降低了叶片N、Cu、Zn、Mo含量但增加了P含量;缺镁降低了叶片Ca、Mg、Zn、Mo含量但增加了K含量。以必需矿质元素为变量分别对各处理老叶和新叶进行主成分分析,老叶中第一主成分 (PC1)明显将缺钾处理与其他处理区分开,与对照相比,缺钾老叶离子组成变化为N (?3%)、P (+1%)、K (?71%)、Ca (+11%)、Mg (+39%)、B (+16%)、Mn (+11%)、Fe (+32%)、Cu (?7%)、Zn (+14%)、Mo (?63%);新叶中PC1明显将缺氮处理与其他处理区分开,缺氮新叶离子组成变化为N (?53%)、P (+8%)、K (+7%)、Ca (?14%)、Mg (+11%)、B (+55%)、Mn (+51%)、Fe (?14%)、Cu (?57%)、Zn (+4%)、Mo (?25%)。老叶和新叶中元素含量呈正相关的元素是N-Cu、N-Ca、Mg-Mn和Cu-Mo,呈负相关的是K-Zn。  【结论】  脐橙幼苗老叶对钾的短期缺乏反应最敏感,缺钾会显著降低老叶中K和Mo含量并增加Mg和Fe含量,而新叶对氮素的短期缺乏最敏感,缺氮显著降低新叶中N、Ca、Cu和Mo含量。短期缺少P、Ca和Mg对脐橙幼苗叶片中的养分含量影响较小。  相似文献   

6.
Nutrient concentrations in leaves of self‐rooted apple trees propagated by tissue culture (TC) were compared to the same cultivars budded on seedling, MM 106, and M.26 rootstock planted at two sites, Beltsville, MD and Kearneysville, WV. Leaf samples were monitored annually for 3 years after planting for N, P, K, Ca, Mg, Mn, Fe, Cu, B, Zn and Al from ‘Ozark Gold’ and ‘Stayman’ apples at both sites and ‘Northern Spy’ at Beltsville only. Leaf K and Mn concentrations tended to be higher in trees on M.26 and MM 106, while Ca was higher in TC or seedling trees. Foliar Mg was lower in trees budded on MM 106. Variation in P concentrations was greatest over years, while leaf N and Fe displayed only slight variation among rootstocks. Leaf B and Zn did not exhibit any consistent trends and Cu and Al were not affected by year, rootstock, cultivar or site.  相似文献   

7.
Abstract

Elemental concentrations of N, P, K, Ca, Mg, Fe, Al, Zn, Mn, and Cu in peach tree short life (PTSL) trees were compared to concentrations in apparently healthy trees in the same orchard. Leaf and stem concentration of K were significantly less and concentrations of Fe and Al were significantly greater in PTSL trees than healthy trees. Leaf concentrations of Ca and Mg and stem concentrations of N, P, and Cu were also significantly less in PTSL trees than healthy trees. Increased levels of Fe and Al and a K:Fe ratio of less than 150:1 in the leaves and stems was associated with PTSL.

There were no detected differences in prunasin, amino acid, or sugar content of PTSL and healthy trees in leaf and stem samples, but significant differences in elemental content suggest some type of stress on the root system of PTSL trees.  相似文献   

8.
不同氮素形态对干旱胁迫杉木幼苗养分吸收及分配的影响   总被引:2,自引:1,他引:1  
【目的】干旱胁迫是限制植物生长的重要非生物因素之一,而适宜的氮素营养可以提高植物的抗旱性。本文探讨了供应不同形态氮源对干旱条件下杉木[Cunninghamia lanceolata (Lamb.) Hook]幼苗养分吸收及分配的影响。【方法】采用水培试验,供试杉木材料为2个无性系幼苗(7–14号和8–8号),在营养液中添加10%(w/v)PEG-6000进行干旱胁迫。营养液中的氮源处理包括硝态氮、铵态氮、硝铵混合氮,氮素浓度均为4.571mmol/L,每个品种均设6个处理。培养20天后,测定了杉木幼苗根、茎、叶的养分含量及生物量。【结果】与正常水分供应相比较,干旱胁迫条件下供应铵态氮可促进叶片N、K以及茎叶P、K的吸收,供应混合氮可促进根部K的吸收;供应铵态氮可促进根、茎对Ca的吸收,对叶片Ca无明显作用。干旱胁迫对根部Fe、Mn、Cu、Zn吸收量影响显著,氮素供应不同程度地降低了干旱胁迫下各器官Mg、Fe、Mn和Cu吸收量,表现为抑制吸收,但添加铵态氮比硝态氮的降低幅度小。3个氮源处理均降低了干旱条件下根部Zn吸收量,但没有降低甚至增加了茎、叶中Zn的吸收量,说明氮营养可调节Zn在各器官间的分配,缓解干旱导致的缺锌现象。不同器官之间各养分吸收量差异显著,3个氮源处理中,N和P吸收量表现为叶>根>茎,K和Ca为叶>茎>根,Fe、Cu为根>叶>茎,Mg、Mn和Zn在各器官之间的分配规律不一。铵态氮吸收量均表现为叶>根>茎,且各器官铵态氮吸收量显著高于硝态氮,说明杉木具有明显的喜铵特性。【结论】在干旱胁迫下,氮素供应形态显著影响杉木幼苗对养分的吸收及在各器官中的分配,作用效果因家系品种和元素种类而异。总体来讲,铵态氮提高干旱胁迫下杉木幼苗养分吸收的效果好于硝态氮,杉木可以认为是喜铵植物。  相似文献   

9.
The objective of this study was to determine relations between Al effects and mineral concentrations in citrus seedlings. Six‐month‐old seedlings of five citrus rootstocks were grown for 60 days in supernatant nutrient solutions of Al, P, and other nutrients. The solutions contained seven levels of Al ranging from 4 to 1655 μM. Al and similar P concentrations of 28 μM P. Aluminum concentrations in roots and shoots increased with increasing Al concentration in the nutrient solution. Aluminum concentrations in roots of Al‐tolerant rootstocks were higher than those of Al‐sensitive rootstocks. When Al concentrations in nutrient solution increased from 4 to 178 μM, the K, Mg, and P concentrations in roots and the K and P levels in shoots increased. Conversely, Ca, Zn, Cu, Mn, and Fe in the roots and Ca, Mg, Cu, and Fe in the shoots decreased. The more tolerant rootstocks contained higher Fe concentrations in their roots than did the less tolerant ones when Al concentrations in solution were lower than 308 μM. Concentrations of other elements (Ca, K, P, Mg, Zn, and Mn) in roots or shoots exhibited no apparent relationship to the Al tolerance for root or shoot growth of the rootstocks. Calcium, K, Zn, Mn, and Fe concentrations in roots and Mg and K concentrations in shoots of all five rootstocks seedlings had significant negative correlations with Al concentrations in corresponding roots or shoots.  相似文献   

10.
In vitro propagated plums of St. Julien GF 655–2 [Prunus insititia (L.)] (655–2), Damas GF 1869 [Prunus domestica (L.)] (D1869), and Clark Hill Redleaf [Prunus salicina (Until.) X Prunus cerasifera (Ehrh.)] (CHR), were grown in the greenhouse in nutrient solutions of 2, 6, 22, 66, 202, and 404 μM Ca for 96 days. 655–2 plants became severely chlorotic in Ca treatments of 66, 202, and 404 μM concentration after 86 days of growth. D1869 plants in 202 and 404 μM Ca exhibited slight interveinal chlorosis of new growth, while CHR exhibited no chlorosis at any Ca concentration. The best tissue nutrient indicator of chlorosis among rootstocks was foliar P/Fe and P/Zn ratios. 655–2 plants absorbed more P at higher Ca concentrations than did the other rootstock, resulting in the highest stem and leaf P/Fe, and P/Zn ratios. CHR plum may provide an easily propagated, chlorosis‐resistant rootstock for use on calcareous soils.  相似文献   

11.
The experiment was conducted to evaluate the nutrient utilization ability of sweet orange (Citrus sinensis L. Osbeck) budded on five rootstocks (viz., Sathgudi, Rangpur lime, Cleopatra mandarin, Troyer citrange, and Trifoliate orange) in Alfisols at the experimental farm of the Citrus Improvement Project, S. V. Agricultural College Farm, Tirupati, Andhra Pradesh, India. Results of the study revealed that all the five rootstocks showed differential behaviors in terms of nutrient absorption from the soil. Rootstocks exhibited significant variation in the leaf content of potassium (K), copper (Cu), manganese (Mn), and boron (B) at all the three stages of sampling. Concentrations of the following key nutrient elements significantly varied: phosphorus (P), calcium (Ca), magnesium (Mg), zinc (Zn), and Cu at stage 1; K, Ca, Mg, Zn, iron (Fe), and Mn at stage 2; and nitrogen (N), P, Zn, Fe, and B at stage 3. The performances of rootstocks in terms of relative nutrient accumulation indices (RNAIs) were in the order of Sathgudi (1.00) > Rangpur lime (0.98) > Cleopatra mandarin (0.96) > Trifoliate orange (0.76) > Troyer citrange (0.69). The present study clearly demonstrated that citrus rootstocks employed had differential nutritional behavior and different abilities to utilize plant nutrient elements. Thus, the findings of the present study and the methodology adopted can help the horticultural breeders and nutritionists choose the best rootstock/scion combination having the desirable traits of nutrient utilization ability and also to plan effective fertilizer schedule programs for achieving greater yields.  相似文献   

12.
巨桉人工林叶片养分交互效应   总被引:1,自引:0,他引:1  
在四川巨桉栽培区设立了60个标准地,采用相关分析和矢量诊断法进行分析,以了解巨桉人工林养分的相互作用关系。结果表明,巨桉人工林叶片的养分交互作用较为复杂。N可促进P、K、Ca、Mn等的吸收,但易受到Fe、Zn、高Ca、高Mg的拮抗,而且高N抑制了Mn的吸收;P可促进K、Mg、Mn等的吸收,但易受Zn、Fe、高Mn、高K、高Ca、高Mg的拮抗,而高浓度的P将抑制K、Zn、Fe等的吸收;K对其他养分元素均没有明显的促进作用,但高浓度K限制P的吸收;Ca、Mg之间可相互促进吸收。同时,低浓度的Ca和Mg有利于Fe、Zn的吸收,高浓度的Ca和Mg将对N、P、Fe、Mn、S、B等养分产生拮抗,限制吸收;S可促进Zn的吸收,但易受高Ca、高Mg拮抗;Cu、Zn、Fe、Mn之间主要以拮抗为主。B相互作用较少,对其他养分几乎没有明显的促进作用。  相似文献   

13.
Soil acidity is often associated with toxic aluminum (Al), and mineral uptake usually decreases in plants grown with excess Al. This study was conducted to evaluate the effects of Al (0, 35, 70, and 105 μM) on Al, phsophorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn,) and copper (Cu) uptake in shoots and roots of sorghum [Sorghum bicolor (L.) Moench, cv. SC283] colonized with the vesicular‐arbuscular mycorrhizal (VAM) fungi isolates Glomus intraradices UT143–2 (UT143) and Glomus etunicatum UT316A‐2 (UT316) and grown in sand (pH 4.8). Mycorrhizal (+VAM) plants had higher shoot and root dry matter (DM) than nonmycorrhizal (‐VAM) plants. The VAM treatment had significant effects on shoot concentrations of P, K, Ca, Fe, Mn, and Zn; shoot contents of P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu; root concentrations of P, S, K, Ca, Mn, Zn, and Cu; and root contents of Al, P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu. The VAM effects on nutrient concentrations and contents and DM generally followed the sequence of UT316 > UT143 > ‐VAM. The VAM isolate UT143 particularly enhanced Zn uptake, and both VAM isolates enhanced uptake of P and Cu in shoots and roots, and various other nutrients in shoots or roots.  相似文献   

14.
The relationship between root age and root physiology is poorly understood, despite its importance for nutrient absorption. In peaches, roots are white when they first appear and then become brown with age, which corresponds to a number of physiological changes. We related root browning to nitrogen (N) absorption and respiration in order to provide a better understanding of how color changes as typically observed using minirhizotrons relate to changes in root physiology. The experiment was conducted on peach seedlings (Prunus persica cv. ‘Guardian’) grown in 30-L pots in a greenhouse. Brown roots showed lower respiration rates than white roots. White roots showed a higher 15N uptake than brown roots and higher concentration of N, potassium (K), magnesium (Mg), manganese (Mn), iron (Fe) and copper (Cu), no significant differences were observed regarding calcium (Ca), and zinc (Zn) concentration.  相似文献   

15.
Rootstock selection has a critical importance for mineral nutrition of budded cultivars. This study was conducted at the experimental farm of Mustafa Kemal University, Dörtyol, Turkey. The aim of this study was to investigate the effect of sour orange, Troyer and Carrizo citrange rootstocks on the leaf nutrient contents of ‘Nova’, ‘Robinson’, and ‘Fremont’ mandarin cultivars in the 2004 and 2005 growing seasons. Carrizo citrange was examined for nitrogen (N), potassium (K), magnesium (Mg), sodium (Na), and manganese (Mn); Troyer citrange for iron (Fe); and sour orange for calcium (Ca) and zinc (Zn) were superior on the others. Nitrogen, phosphorus (P) and Mg levels of mandarin leaf budded on sour orange were under or just above the deficiency threshold. Potassium, Mn, and Zn content of ‘Robinson’; P, Ca and Fe content of ‘Fremont’; and Cu content of ‘Nova’ were statistically higher. Therefore, it can be concluded that Carrizo rootstock may be suggested for the region and regions with similar ecological conditions.  相似文献   

16.
A trial was conducted during two years (2000/01 and 2001/02) on two sites using ‘Shambar’ grapefruit trees grafted to five rootstocks. The sites were located on the Greek island of Kos to evaluate the effect of rootstock and location on fruit production and leaf mineral composition of ‘Shambar’ grapefruit. Results indicated that yields were higher in 2001/02 than in 2000/01 and these differences were greater at site 2. Leaf nitrogen (N), potassium (K), zinc (Zn), and to some degree phosphorus (P) content was slightly deficient to deficient for the majority of the samples taken. Calcium (Ca) and magnesium (Mg) levels ranged from normal to high. The copper (Cu) and iron (Fe) leaf contents and the manganese (Mn) content of most samples were in the optimum range. The interactions between rootstock, site, and year upon yield and nutrient content were statistically significant. There were also significant correlation coefficients between yield and nutrient content as well as among the nutrients.  相似文献   

17.
An experiment was conducted to study the effects of polyethylene glycol (PEG) on citrus growth and mineral composition. Seedlings of 7 citrus rootstock cultivars were treated with three osmotic potential levels (‐0.10, ‐0.20, and ‐0.35 MPa) of PEG for five months under greenhouse conditions. Increasing the concentration of PEG in the nutrient solution proportionally reduced root and shoot growth in all rootstocks. Although roots were in direct contact with PEG, their growth was less affected by PEG treatments than that of shoots. Seedling growth was reduced the most in Carrizo citrange and Milam lemon. Significant differences in root and leaf mineral concentrations among cultivars were found under PEG stressed and non stressed conditions. Furthermore, no consistent relationship in mineral absorption, translocation and accumulation seemed to exist between citrus roots and leaves. Root and leaf mineral concentrations were also significantly altered by PEG in all rootstock cultivars. Nitrogen (N), potassium (K), and magnesium (Mg) were reduced in the leaves and calcium (Ca) was reduced in the roots but zinc (Zn) and manganese (Mn) were noticeably increased in the roots. The results of this study demonstrated that some of the deleterious effects of PEG could be attributed to nutritional imbalances, N and Mg deficiency in the leaves and Zn and Mn toxicity in the roots of citrus cultivars.  相似文献   

18.
Abstract

Leaf analysis is a tool for effective fertilizer recommendations in fruit trees. To achieve this goal, a suitable leaf sampling method is a very important step. This study aimed to investigate suitable leaf position and leaf age to establish standardized leaf sampling method, which can collect representative leaf sample for leaf nutrient analysis in rose apple cultivar Tubtimjan. The experiment consisted of 3 leaf positions (1st, 2nd, and 3rd leaf position) from the growing tip and 1-8?months leaf age. The results indicated that the suitable leaf position to be the index leaves were 2nd and 3rd leaf position with 6–7?months old leaf age due to minimum variation of the leaf nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) concentrations. Moreover, the concentrations of N, P, and K tended to decrease, whereas, Ca, Mg, Fe, Cu, Mn, and Zn concentrations tended to increase as leaf age increased.  相似文献   

19.
【目的】旨在明确不同树龄骏枣树形成单位产量所需的各器官营养元素年吸收量的异同点,以期为骏枣生产中的科学均衡施肥提供理论依据。【方法】以新疆阿克苏地区4、 7和10年生骏枣树作为试材,从枣树地上部分各器官分别采样,测定N、 P、 K、 Ca、 Mg、 Mn、 Fe、 Zn和Cu含量。【结果】骏枣树形成地上部各器官单位生物量所需要的养分含量,不同树龄间相比差异均不显著,但其生物量在总生物量中所占的百分率有差异,4、 7、 10年生骏枣树果实占地上部年总生物量的百分率依次为72.9%、 73.7%、 75.7%,叶片依次为5.4%、 5.2%、 5.1%,花依次为1.3%、 1.5%、 1.4%,茎枝依次为20.4%、 19.5%、 17.6%,三个树龄骏枣树各器官生物量的大少顺序均为果实>茎枝>叶片>花。每形成1000 kg果实的总生物量随着树龄的增大而逐渐减少,茎枝保留和剪掉部分生物量均降低。采前落果率随树龄增加上升,叶片生物量减少,受精花生物量上升,而其掉落部分生物量表现先上升后下降。三个树龄骏枣地上部分生物量年增加量所需要的各营养元素量顺序均为K>N>Ca>Mg>P>Fe>Zn>Mn>Cu,每形成1000 kg果实所需要吸收的养分量非常接近,4年生骏枣树为N 22.8 kg、 P 1.7 kg、 K 34.0 kg、 Ca 7.4 kg、 Mg 5.0 kg、 Mn 54.5 g、 Fe 916.9 g、 Zn 202.8 g、 Cu 42.5 g; 7年生骏枣树为N 22.7 kg、 P 1.7 kg、 K 33.9 kg、 Ca 7.3 kg、 Mg 4.9 kg、 Mn 53.9 g、 Fe 907.2 g、 Zn 204.5 g、 Cu 42.0 g; 10年生骏枣树N 22.1 kg、 P 1.7 kg、 K 33.4 kg、 Ca 6.8 kg、 Mg 4.7 kg、 Mn 51.8 g、 Fe 871.3 g、 Zn 204.8 g、 Cu 40.4 g。【结论】3种树龄骏枣树地上部年总生物量中果实生物量与其余生物量的比例约为3∶1,且形成1000 kg果实所需的养分量也基本一致。由于总生物量和果实产量随树龄的增加而增加,因此,对养分的总需求量增加。但是由于果实生物量所占比例有所增加,测算单位产量所需要的各营养元素年吸收量时,也应考虑果实以外器官的年生物量所需要的养分吸收量,才能得到较准确的肥料施入量和各营养元素的比例。  相似文献   

20.
The mineral concentration of flowers and the seasonal fluctuation of macro- [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg)] and micronutrients [iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu)] in leaves of male, female, and hermaphroditic carob trees (Ceratonia siliqua L.) were studied. The nutrient dynamics were linked not only to phenological events, but also to the gender of the trees. The females were able to allocate more nutrients to leaves than male trees, even though male flowers were richer in particular elements such as N and Zn. The hermaphrodites supported the development of both inflorescences and fruits with a lower seasonal variation and a lower leaf nutrient concentration, as compared to the other genders, which may indicate a more efficient use of resources. Flowers had, in general, a higher concentration of N, P, and K, and a lower Mn concentration than in leaves. Flowers of the females had a lower nutrient concentration compared to males or hermaphrodites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号