首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field experiment with 60 groundnut cultivars, in a calcareous soil having 1.20 mg kg?1 available zinc (Zn), foliar application of 0.2% aqueous solution of zinc sulphate thrice at 40, 55 and 70 days at 500, 500 and 1000 L ha?1, respectively, increased the number of pods, pod yield, shelling and 100 seed mass and seed zinc (Zn) content, significantly. The seeds Zn content in groundnut cultivars ranged 38–70 mg kg?1 with an average of 48 mg kg?1 without Zn and 58 mg kg?1 with Zn. Foliar Zn application increased 22% Zn in seed. This increase was more than 10% in 48 out of 60 cultivars. The cultivars GG 7, GG 20, Tirupati 4, DH 8, JSP 19, TKG 19 A, CSMG 884 and S 206 showed > 50 mg kg?1 Zn, > 10% increase in seed Zn with Zn application and > 250 g m?2 pod yield.  相似文献   

2.
Boron (B) deficiency is a common factor in light-textured soils causing poor pod filling and yield in large seeded peanut. Field trials were conducted in soils having 0.20–0.45 mg kg?1 available B to find out the effectiveness of commercial-grade B sources in large seeded peanuts. B application induced early flowering, increased pods, yield and yield attributes, shelling and 100-seed weight. Soil application of 2.0 kg B ha?1 as commercial-grade Agricol, Solubor and Borosol increased these parameters to a similar degree as obtained by borax, but were superior over their foliar applications. Similarly, the responses of foliar applications of 1.0 kg B ha?1 as Chemiebor, Solubor and Borosol were more effective in humid areas. However, foliar applications led to scorching of peanut leaves during dry weather. Thus, soil application of 2.0 kg B ha?1 is essential to enhance productivity and pod filling in large seeded peanut.  相似文献   

3.
Cadmium (Cd) is a common impurity in phosphate fertilizers and application of phosphate fertilizer may contribute to soil Cd accumulation. Changes in Cd burdens to agricultural soils and the potential for plant Cd accumulation resulting from fertilizer input were investigated in this study. A field experiment was conducted on Haplaquept to investigate the influence of calcium superphosphate on extractable and total soil Cd and on growth and Cd uptake of different Komatsuna (Brassica rapa L. var. perviridis) cultivars. Four cultivars of Komatsuna were grown on the soil and harvested after 60 days. The superphosphate application increased total soil Cd from 2.51 to 2.75?mg?kg?1, 0.1?mol?L?1 hydrochloric acid (HCl) extractable Cd from 1.48 to 1.55?mg?kg?1, 0.01?mol?L?1 HCl extractable Cd from 0.043 to 0.046?mg?kg?1 and water extractable Cd from 0.0057 to 0.0077?mg?kg?1. Cd input reached 5.68?g?ha–1 at a rate of 240?kg?ha–1 superphosphate fertilizer application. Superphosphate affected dry-matter yield of leaves to different degrees in each cultivar. ‘Nakamachi’ produced the highest yield in 2008 and ‘Hamami No. 2’ in 2009. Compared with the control (no phosphate fertilizer), application of superphosphate at a rate of 240?kg?ha–1 increased the Cd concentration in dry leaves by 0.14?mg?kg?1 in ‘Maruha’, 1.03?mg?kg?1 in ‘Nakamachi’, 0.63?mg?kg?1 in ‘SC8-007’ in 2008, and by 0.19?mg?kg?1 in Maruha’, 0.17?mg?kg?1 in ‘Hamami No. 2’, while it decreased by 0.27?mg?kg?1 in ‘Nakamachi’ in 2009. Field experiments in two years demonstrated that applications of different levels of calcium superphosphate did not influence Cd concentration in soil and Komatsuna significantly. However, there was a significant difference in Cd concentration of fresh and dry Komatsuna leaves among four cultivars in 2008 and 2009. The highest Cd concentration was found in the ‘Nakamachi’ cultivar (2.14?mg?kg?1 in 2008 and 1.91?mg?kg?1 in 2009). The lowest Cd concentration was observed in the ‘Maruha’ cultivar (1.51?mg?kg?1?dry weight (DW)) in 2008 and in the ‘Hamami No. 2’ cultivar (1.56?mg?kg?1?DW) in 2009. A decreasing trend in Cd concentration was found in ‘Nakamachi’, followed by ‘SC8-007’, ‘Hamami No. 2’ and ‘Maruha’ successively. It is necessary to consider a low-uptake cultivar for growing in a Cd polluted soil. In these two years’ results, ‘Maruha’ cultivar was the lowest Cd uptake cultivar compared to the others.  相似文献   

4.
This study determined the potential to increase Zn density of lettuce (Lactuca sativa L.) through cultivar selection and nutrient management. Organic fertilizer and Hoagland and Arnon no.1 solution factored with three zinc (Zn) levels provided as zinc sulfate (ZnSO4) were the fertilizer regimes in a greenhouse experiment. Modern cultivars had a 32% higher fresh head weight than heritage cultivars, but each accumulated the same Zn concentration (65 mg kg?1 dry wt). Butterhead phenotypes had a 38% lower yield than loose-leaf and had the highest Zn concentration (78 mg kg?1 dry wt) followed by romaine (66 mg kg?1 dry wt) and loose-leaf (53 mg kg?1 dry wt). Concentration of Zn did not differ between fertility regimes, being about 66 mg kg?1 dry wt with each regime. Differences in Zn concentrations were significant among individual cultivars with ranges from 42 mg g?1 dry wt to 91 mg kg?1 dry wt. ‘Tom Thumb’, ‘Adriana’, ‘Claremont’, and ‘Focea’ were the top in cultivar ranking, with mean Zn concentration of 63 mg kg?1 dry wt. The results signify that selection of cultivars may be utilized to increase Zn accumulation in lettuce but that nutritional regimes had little effect on accumulation.  相似文献   

5.
To establish critical limit in soils and plant, soil samples were collected from twenty; 12, 5 and 3 soil locations of low, medium and high boron (B) status from Madurai district of Tamil Nadu, India for pot culture experiment. Based on the results of pot culture experiment, the critical limit was determined to be 42.7 mg kg?1 for groundnut plants and 0.39 mg kg?1 in Madurai soils. Groundnut plants were highly responded to B application in soils below the critical limit whereas soils with B greater than 0.51 mg kg?1 did not respond. For the confirmation of pot culture results, a field experiment was conducted with different B treatments comprised of soil and foliar applications and results revealed that the pod yield of groundnut increased with increasing levels of B and the soil application of 20 kg ha?1 as borax has showed significantly higher pod yield in the district.  相似文献   

6.
Boron (B) is one of the essential micronutrients having a specific role, particularly during reproductive phase, in rice. In a previous experiment on aerobic rice, panicle sterility was noted as one of the major challenges. This experiment was conducted to evaluate the influence of soil-applied B on tillering, panicle sterility, water relations, and grain enrichment in fine-grain aromatic rice cultivars ‘Super Basmati’ and ‘Shaheen Basmati’. Boron was soil applied at 0.50, 0.75, 1, 1.25, and 1.50 kg ha?1 while the control treatment did not receive B. Rate of leaf emergence and elongation and tiller appearance were significantly improved by B application. Likewise, B application also improved the leaf chlorophyll contents and water relations in both rice cultivars. Substantial improvement in kernel yield and yield contributing traits was also observed by B application owing to decrease in panicle sterility. A linear increase in leaf and kernel B contents was observed with increase in B application rate. However, the range for an optimum B application rate is very narrow and increase of B application beyond 1 kg ha?1 was toxic. In conclusion, soil application of B is an effective way to decrease panicle sterility and increase the kernel yield and grain B enrichment in rice.  相似文献   

7.
Boron (B) application is an important strategy in highly productive systems, since this micronutrient is involved in amide syntheses, which is related to the grain yield. In this way, the aim of this work was to evaluate the B fertilization effect in nutrition and production of common beans. The experiment was carried out under greenhouse condition, in an entirely randomized design, with five B doses (0, 1, 2, 4, and 6 kg ha?1) and four repetitions. The relative chlorophyll index, dry mass production, level and accumulation of B were measured. Boron levels in leaves of common beans are linearly enhanced after application of increasing B doses. When B level in soil is low (<0.5 mg kg?1), boron doses lower than 4.9 kg ha?1 increase dry mass production, with the highest production observed at a dose of 4.8 kg ha?1, promoting a 56% in dry mass production compared with control.  相似文献   

8.
Abstract

Effective soil diagnostic criteria for exchangeable potassium (Ex-K) combined with inorganic potassium (K) application rates were developed to lower K input in forage corn (Zea mays L.) production using experimental fields with different application rates and histories of cattle manure compost. Two corn varieties, ‘Cecilia’ as a low K uptake variety and ‘Yumechikara’ as a high K uptake variety, were selected from among 20 varieties and tested to make diagnostic criteria for K fertilization applicable to varieties with different K uptakes. The K uptakes increased from 96 to 303 kg K ha?1 for ‘Cecilia’ and from 123 to 411 kg K ha?1 for ‘Yumechikara’ with increasing Ex-K content on a dry soil basis from 0.11 to 0.92 g kg?1 with no inorganic K fertilizer application. The K uptake by corn for achieving the target dry matter yield of 18 Mg ha?1 was estimated to be approximately 200 kg K ha?1 in common between the two varieties. Yields of both varieties achieved the target yield at an Ex-K content of approximately 0.30 g kg?1 with no K fertilization, although ‘Yumechikara’ reached the target yield at a lower Ex-K content. At the low Ex-K content of 0.1 g kg?1, inorganic K fertilizer application at 83 kg K ha?1 was needed to gain the target yield, and apparent K recovery rate for K fertilizer was calculated to be 70% for both varieties. The K uptakes for gaining the target yield by the K fertilization were lower than that by soil K supply. Based on these results, diagnostic criteria of Ex-K and inorganic K application rates were set up as follows: at an Ex-K content of < 0.15 g kg?1, inorganic K fertilizer is applied at 83 kg K ha?1 (100 kg ha?1 as potassium oxide (K2O) equivalent); at an Ex-K content of 0.15–0.30 g kg?1, the application rate is reduced to 33 kg K ha?1 (40 kg K2O ha?1); at an Ex-K content of ≥ 0.30 g kg?1, inorganic K fertilizer is not applied because of sufficient K in the soil. Additionally, we propose that cattle manure compost be used to supplement soil K fertility.  相似文献   

9.
Abstract

Good and balanced citrus nutrition is important for high fruit yields and improved tree performance. A study was conducted for 2?years to investigate the effect of soil application of boron (B) on leaf nutrient content, canopy size, and root length density (RLD). The study was conducted on 10-year-old Candidatus Liberibacter asiaticus (CLas)-infected Vernia sweet orange on Rough Lemon rootstock in a commercial grove east of St. Cloud, FL planted at 375 trees ha?1 on a traditional soluble dry nutrition and spray programs. Treatments were supplied with various ground-applied controlled-release fertilizer treatments containing B. Boron was applied at 0×, 2×, and 4× current University of Florida recommendation where 1×?=?1.12?kg ha?1. Data collected included leaf B nutrient content, soil B concentration, trunk diameters, canopy volumes, soil electrical conductivity, and soil pH. The 0×, 2×, and 4× application rates corresponded with leaf nutrient contents ranging from 56?mg kg?1 and 88?mg kg?1 in March 2017, 162?mg kg?1 and 288?mg kg?1 in September 2017, and 122?mg kg?1 and 320?mg kg?1 in May 2018. Temporary, RLD decreased with time from March to September 2017 by 13, 30, and 37% at the 0, 2.24, and 4.48?kg B ha?1 and increased by 309, 258, and 306% at the 0, 2.24, and 4.48?kg B ha?1, respectively, from September 2017 to May 2018. No consistent pattern was established between soil B application with canopy size.  相似文献   

10.
Our study analyzed the effect of foliar tissues and seed tissue for determining the micronutrient status of a crop. Zinc (Zn) requirements of onion (Allium cepa L.) leaves and seeds were estimated from yield response curves based on field experiment conducted on a Zn-deficient calcareous soil. Three onion cultivars, i.e., ‘Swat-1’, ‘Phulkara’, and ‘Sariab Red’ were grown by applying 0, 2, 4, 8, and 16 kg Zn ha?1. Zinc application significantly increased seed yield of all the three cultivars of onion. The order of seed yield response to Zn fertilization was: ‘Swat-1’ < ‘Phulkara’ < ‘Sariab Red’. Fertilizer Zn requirement for near-maximum seed yield was 2 kg Zn ha?1. Zinc concentration in mature onion seed also appeared to be a good indicator of soil Zn availability status. Critical Zn concentration in seed was 18 mg Zn kg?1, and in matured leaves was 21 mg kg?1.  相似文献   

11.
This study investigates the effect of conjoint use of bio-organics (biofertilizers + crop residues + FYM) and chemical fertilizers on yield, physical–chemical and microbial properties of soil in a ‘French bean–cauliflower’-based cropping system of mid hills of the north-western Himalayan Region (NWHR) of India. Conjoint bio-organics at varied levels of NPK chemical fertilizers increased yield of ‘cauliflower’ over corresponding single application. Incorporation of crop residues with 75% of the recommended NPK application resulted in the highest yield (19 t ha?1). Conjoint use of bio-organics produced a yield (15.65 t ha?1), which was statistically on a par with 75% of the recommended NPK application alone. This indicated a saving of 75% NPK chemical fertilizers. In the case of ‘French bean’, the effect was non-significant. The results also showed significant higher soil available N (351.3 kg ha?1) under 75% NPK + biofertilizers, whereas the highest soil available K (268.3 kg ha?1) was recorded under 75% NPK + crop residues. Lowest bulk density (1.03 Mg m?3), highest water holding capacity (36.5%), soil organic matter (10.6 g kg?1), bacterial (4.13 × 107 cfu g?1) and fungal (6.3 × 107 cfu g?1) counts were recorded under sole application of bio-organics. According to our study, we concluded that the combination of NPK fertilizers and bio-organics increased yield except French bean, soil available N, K and saved chemical fertilizers under ‘French bean–cauliflower’-based cropping system.  相似文献   

12.
Pot experiments were conducted in the greenhouse on a calcareous soil to study effect of nitrogen (N) on the alleviation of boron (B) toxicity in rice. The treatments consisted of factorial combination of six levels of B (0, 2.5, 5, 10, 20, and 40 mg kg?1 as boric acid), and four levels of N (0, 75, 150, and 300 mg kg?1 as urea) in a completely randomized design with three replicates. Boron addition (higher than 2.5 mg kg?1) significantly reduced the seeds yield. Nitrogen addition alleviated the growth suppression effects caused by B supplements. Yield was increased by application of 2.5 mg B kg?1 at all N levels, but at higher levels, B significantly decreased the yield of rice. Boron concentration declined with increasing N levels. Boron application increased the concentrations of B, potassium, phosphorous (P), and zinc. Nitrogen application decreased the concentration of Zn and increased the concentration of N and P.  相似文献   

13.
A greenhouse experiment with soybean grown on sulfur (S) and boron (B) deficient calcareous soil was conducted for two years in northwest India to study the influence of increasing sulfur and boron levels on yield and its attributing characters at different growth stages (55 days, maturity). The treatments included four levels each of soil applied sulfur viz. 0, 6.5, 13.4, 20.1 mg S kg?1 and boron viz. 0, 0.22, 0.44, 0.88 mg B kg?1 at the time of sowing. The highest dry matter yield at 55 days after sowing, DAS (19.3 g pot?1) and maturity (straw yield ?25.2 g pot?1 and grain yield ?7.3 g pot?1) was recorded with B0.44 S13.4 treatment combination. The combined applications of sulfur and boron yielded highest oil content with B0.44S13.4 (21.7%) treatment level. Chlorophyll ‘a’ and ‘b’ increased significantly with successive levels of sulfur and boron addition at 55 DAS. The mean sulfur and boron uptake in straw and grains increased significantly with increasing levels of sulfur and boron up to 13.4 mg kg?1 and 0.44 mg kg?1 and decreased non-significantly thereafter. At both the growth stages, a synergistic interactive effect of combined application of sulfur and boron was observed with B0.44 S13.4 treatment level for sulfur and boron uptake in straw and grains.  相似文献   

14.
Yield‐response correlations with old and improved soil extraction methods for boron (B) are needed. Russet Burbank potato (Solanum tuberosum L.) was grown with two, four, and six B treatments applied in 2004, 2005, and 2006, respectively. Zero and 1.1, 2.2, or 3.4 kg B ha?1 soil and 0.22 or 0.28 kg B ha?1 foliar treatments were applied. Boron fertilization did not significantly increase tuber yield or quality despite initially low hot‐water‐extractable B (0.34–0.50 mg kg?1), although postseason B for unfertilized treatments increased (0.51–0.57 mg kg?1). Soil‐applied B generally reflected B application relative to the untreated control and the low foliar rates in all three years for the four soil extractions utilized [hot water, pressurized hot water, diethylenetriaminepentaacetic acid (DTPA)–sorbitol, and Mehlich III]. Boron content of potato petiole did reflect application of B in 2 years, but tuber and peel tissues did not consistently reflect application of B.  相似文献   

15.
Wide variations in boron (B) contents are typical of Turkish soils and plants, and most of the variation, 84% of the plant-soil B values are within the “normal.” Boron application on low B soils can make a contribution to yield in cotton and sunflower crops. Field experiments were carried out on clayey and medium-textured soils, which are Chromoxererts, Haploxererts, Xerochrepts, and Xerofluvents in Southern Turkey to study the effects of boron fertilization on irrigated cotton and rainfed sunflower growth, yield, and yield components. Four levels of boron—0, 1, 2, and 3 kg ha?1—were applied at planting and the experimental design was completely randomized block design with four replications. There was a 31% and 31.9% increase in seedcotton yield at 3 kg and 2 kg ha?1 of B, compared to the control only two out of four sites. There was an average increase of 61.4% in boll weight with 2 kg B ha?1 application compared to the control. Effect of different application rates of B was not significant for fiber length, fiber strength, and fiber length uniformity. All levels of boron produced higher head diameters over control only one out of four sites. Boron applied at the level of 3 kg ha?1 produced the highest 1000 seed weight of 47.5 g representing an 18% increase over the control. Boron applied at the level of 1 kg ha?1 produced the highest seed yield, representing a 25% increase over the control only at one out of four sites. Boron was no value as a fertilizer for sunflower under given experimental conditions even though some uptake of boron was occurred. Boron fertilization may be regarded as effective in improving cotton yields.  相似文献   

16.
Abstract

This study was conducted to investigate the effects of four boron (B) doses (control, 0 kg B ha?1; B1, 1 kg B ha?1; B2, 3 kg B ha?1; and B3, 6 kg B ha?1) in soils deficient in available B (0.19 mg B kg?1) and lime (CaCO3) content (20.7%) on yield and some yield components of five chickpea (Cicer arietinum L.) genotypes, namely Akçin‐91, Population, Gökçe, ?zmir‐92, and Menemen‐92 in central Anatolian Turkey in the 2002 and 2003 growing seasons. Plant height, pods per plant, grain yield, protein content, protein yield, thousand seed weight, and leaf B concentration were measured. Grain yields in all genotypes (except for Gökçe) were significantly increased by 1 kg ha?1 B application. Application of 1 kg ha?1 B increased the yield by an average of 5%. Genotypes studied showed significant variations with respect to their responses to additional B. Akçin‐91 gave the highest grain yield (1704.8 kg ha?1) at 3 kg B ha?1, whereas Population, ?zmir‐92, and Menemen‐92 yielded best (1468.2 kg ha?1, 1483.0 kg ha?1, and 1484.7 kg ha?1, respectively) at 1 kg B ha?1. Interestingly, Gökçe reached to the highest level of grain yield (1827.1 kg ha?1) at the control. Gökçe was a B deficiency B tolerance genotype. The other genotypes appeared to have high sensitivity to B deficiency. This study showed that B deficiency could result in significant yield losses in chickpea under the experimental conditions tested. Thus, B contents of soils for the cultivation of chickpea should be analyzed in advance to avoid yield losses.  相似文献   

17.
ABSTRACT

In a greenhouse study, boron (B) application significantly increased dry-matter yield of sweet pepper (Capsicum annum L.) cultivars (‘California Wonder,’ ‘Anahein,’ ‘Narwala,’ and ‘2573’) grown in a B-deficient (hot-water extractable, 0.28 B mg kg?1), calcareous soil of the Shujabad series (Typic Ustochrepts). Five rates of B, ranging from 0 to 8 mg B kg?1 soil, were applied as H3BO3 along with adequate basal fertilization of nitrogen (N), phosphorus (P), potassium (K), and zinc (Zn). Four plants of sweet pepper were transplanted in each pot, two of which were harvested after three weeks of transplanting and the other two after six weeks. Maximum crop biomass was produced with ~1 mg B kg?1, but application of higher rates proved toxic, resulting in dry-matter yield reductions. The four cultivars significantly differed in relative growth rate (RGR) and relative accumulation rate of B (RARB). Cultivar ‘2573’ showed the highest RGR while ‘Anahein’ showed the highest RARB. Relative accumulation rate was positively correlated (R2 = 0.83) with dry-matter yield of four cultivars. Critical B concentration in sweet pepper whole shoots was 69 mg B kg?1 for three-week-old plants and 49 mg B kg?1 for six-week-old plants.  相似文献   

18.
Boron (B) is an essential microelement, which is necessary for reproductive organs including pollen tube formation in wheat (Triticum aestivum L.), and flowering and boll formation in cotton (Gossypium hirsutum L.) The study was associated with wheat-cotton rotation in 80 farm fields, belonging to different soil series, in four districts of cotton belt of Punjab, Pakistan to assess concentrations of extractable B in soils [0.05 M hydrochloric acid (HCl) extractable B], and added fertilizer B and their relationship to some soil physico-chemical properties [pH, organic matter (OM), calcium carbonate (CaCO3) and clay content], yields and total B concentrations in wheat and cotton plants. All soils had alkaline pH (7.45 to 8.55), high CaCO3 content (2.14 to 8.65%), less than 1.0% OM (0.33 to 0.99%), low plant available-P (Olsen P less than 8 mg kg?1 soil) and medium ammonium acetate extractable potassium (K) (< 200 mg K kg?1 soil). Of the 80 soil samples, 65 samples (81%) were low in available B (<0.45 mg B kg?1, ranging from 0.11 to 0.43 mg B kg?1) Of the corresponding 80 plant samples, leaves B concentrations were below critical levels (<10 mg B kg?1 for wheat; <30 mg B kg?1 for cotton) for all the tested samples for wheat and cotton. The regression analysis between plant total B concentrations and soil extractable B concentrations showed strong linear positive relationships for both wheat (R2 = 0.509***, significant at P <0.001) and cotton (R2 = 0.525***, significant at P <0.001). Further regression analysis between extractable soil B and wheat grain yield as well as between wheat leaves total B and wheat grain yield also depicted strong linear relationships (R2 = 0.76 and 0.42, respectively). Boron fertilizer demonstration plots laid out at farmers’ fields low in extractable B, in each district not only enhanced grain yields of wheat crop but also contributed a significant increase towards seed cotton yield of succeeding cotton crop through residual B effect. In conclusion, the findings suggest that many soils in the cotton belt of Punjab may be low in extractable B for wheat and cotton, especially when these crops are grown on low OM soils with high CaCO3 content.  相似文献   

19.
A field experiment was conducted to evaluate the effect of organic amendments on grain yield, leaf chlorophyll content, and some morphological characteristics of three soybean cultivars in Mazandaran province located at north of Iran in 2006. Chemical fertilizer (75 kg ha?1 potassium sulfate and triple superphosphate), two levels of municipal solid waste, vermicompost and sewage sludge biosolid (20 and 40 Mg ha?1) enriched with%50 chemical fertilizers needed by soil were applied to soybean cultivars (‘032’ and ‘033’ promising lines and ‘JK’ cultivar). The experiment was carried out in split plot based on randomized complete block design with three replications. Some important plant characters such as grain yield, leaf chlorophyll content, number of branches, number of nodes on the main stem, length of internodes, stem diameter, first pod height and plant height were determined. Results showed that application of 40 Mg ha?1 sewage sludge enriched with chemical fertilizers increased plant grain yield and stem diameter and application of 40 Mg ha?1 vermicompost enriched with half chemical fertilizer increased the number of nodes on the main stem, significantly. The maximum length of internodes, first pod height and plant height were obtained when the 40 Mg ha?1 sewage sludge and vermicompost enriched with half chemical fertilizer in ‘032’ line was used. Biomass, number of branches, stem diameter, number of nodes on the main stem of soybean cultivars had a positive and significant correlation with grain yield.  相似文献   

20.
Yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (L. angustifolius L.) are grown as grain legumes in rotation with spring wheat (Triticum aestivum L.) on acidic sandy soils of south-western Australia. Yellow lupin can accumulate significantly larger cadmium (Cd) concentrations in grain than narrow-leafed lupin. A glasshouse experiment was undertaken to test whether adding increasing zinc (Zn) levels to soil increased Zn uptake by yellow lupin reducing accumulation of Cd in yellow lupin grain. Two cultivars of yellow lupin (cv. ‘Motiv’ and ‘Teo’) and 1 cultivar of narrow-leafed lupin (cv. ‘Gungurru’) were used. The soil was Zn deficient for grain production of both yellow and narrow-leafed lupin, but had low levels of native soil Cd (total Cd <0.05 mg kg?1) so 1.6 mg Cd pot?1, as a solution of cadmium chloride (CdCl2·H2O), was added and mixed through the soil. Eight Zn levels (0–3.2 mg Zn pot?1), as solutions of zinc sulfate (ZnSO4·7H2O), were added and evenly mixed through the soil. Yellow lupin accumulated 0.16 mg Cd kg?1 in grain when no Zn was applied, which decreased as increasing Zn levels were applied to soil, with ~0.06 mg Cd kg?1 in grain when the largest level of Zn (3.2 mg Zn pot?1) was applied. Low Cd concentrations (<0.016 mg Cd kg?1) were measured in narrow-leafed lupin grain regardless of the Zn treatment. When no Zn was applied, yellow lupin produced ~2.3 times more grain than narrow-leafed lupin, indicating yellow lupin was better at acquiring and using indigenous Zn from soil for grain production. Yellow lupin required about half as much applied Zn as narrow-leafed lupin to produce 90% of the maximum grain yield, ~0.8 mg pot?1 Zn compared with ~1.5 mg Zn pot?1. Zn concentration in whole shoots of young plants (eight leaf growth stage) related to 90% of the maximum grain yield (critical prognostic concentration) was (mg Zn kg?1) 25 for both yellow lupin cultivars and 19 for the narrow-leafed lupin cultivar. Critical Zn concentration in grain related to 90% of maximum grain yield was (mg Zn kg?1) 24 for both yellow lupin cultivars compared with 20 for the narrow-leafed lupin cultivar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号