首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
气候变化对长江口鱼类资源密度分布的重塑作用   总被引:1,自引:0,他引:1       下载免费PDF全文
本研究以2012-2013年长江口鱼类资源密度分布为基础,通过动态生物气候分室模型(DBEM)预估了不同气候变化情景下(IPCC,RCP2.6、RCP6.0和RCP8.5)长江口鱼类资源密度增量分布的变化.在RCP2.6、RCP6.0和RCP8.5这3种气候变化情景下,鱼类资源密度增量、底层鱼类资源密度增量随着时间推移均呈递增趋势,且递增程度和增量重心分布范围随着温室气体排放的增加而扩大(RCP8.5>RCP6.0>RCP2.6).鱼类资源密度增量重心主要分布在长江口崇明岛沿岸水域,长江口外侧水域资源密度增量相对较低,并且资源密度增量重心有向南迁移的趋势.  相似文献   

2.
Analyses of climate effects often ignore differences in life history for individual species. We analyzed a 34‐year time series of eastern Bering Sea fish surveys to evaluate changes in distribution by length and between cold and warm shelf‐wide average water temperatures for 20 species over inhabited depth, temperature, and location. All species showed evidence of ontogenetic migration. Differences in distribution between years with warm and years with cold shelf‐wide water temperatures varied among species and within species at different lengths. For species where shelf‐wide temperature effects were detected, the mid‐sized fish were most active in changing spatial distribution. For aquatic organisms ontogenetic migration occurs because life history stages have different environmental requirements. This study illustrates the need to consider species responses to climate change over different life history stages, and that studies on ecosystem responses should take ontogenetic differences into consideration when assessing impacts.  相似文献   

3.
Pelagic fish stocks in the Java Sea have been exploited intensively since the beginning of the 1970s. However, due to the effect of increased fishing power of the fleets and the changing nature of spatial and temporal distribution of the fishing effort, assessment of stock trends based on commercial data of catch and effort requires the standardization of both effort and catch data. Here we present the first attempt to reconstruct a standardized time series of commercial catch per unit of effort (CPUE) for the main pelagic species exploited by the purse seine fleet in the Java Sea. The results showed that all the stocks analysed have largely declined since the beginning of the 1990s. For bigeye scad, Indian mackerel and sardine, current estimates are only between 3 and 19% of the maximum observed value while round scads and spotted sardine biomass estimates lie between 18 and 34%. However, our assumptions about the effect of lamp power and level of creeping and the fact that the influence of fish density on catchability and the effect of targeting were not taken into account thus observed decline is a rather conservative estimate of the real decline of the stocks. If effective management actions are not put in place as a matter of urgency in the Java Sea for small pelagic fisheries, one runs the risk of adding those species to the long list of overexploited stocks of the world oceans.  相似文献   

4.
The ocean is affected by multiple anthropogenic stressors including climate change, the effects of which are already evident in many ocean ecosystems. The ABACuS v2 end‐to‐end model together with climate projections from the NEMO‐MEDUSA 2.0 model were used to evaluate the effects of fishing, warming and horizontal and vertical mixing on the southern Benguela upwelling system. Of the drivers examined in this study, warming had the greatest effect on species biomass, with mainly negative effects. The magnitude of the impacts of warming intensified from the RCP 2.6 to the 8.5 emission scenario. Fishing negatively affected demersal and large pelagic fish, which in turn resulted in a biomass increase of forage fish due to a decrease in predation pressure. Water mixing was found to have minor indirect effects on zooplankton biomass and fish. The responses of species and species groups to the combined effects of fishing and warming were approximately equally divided between additive, synergistic and antagonistic. Interpretation of our model results suggests that the southern Benguela system is likely to be affected by climate change, including substantial changes in the abundance of some species important to the region's fisheries. Future planning for fisheries needs to take this into account, including through management that strives to maintain the resilience of key species and the system as a whole. In line with previous studies on the southern Benguela, the results reinforce the importance of including consideration of the indirect and combined impacts of climate change and fishing in management and planning.  相似文献   

5.
An assessment of climate change impacts on the habitat suitability of fish species is an important tool to improve the understanding and decision‐making needed to reduce potential climate change effects based on the observed relationships of biological responses and environmental conditions. In this study, we use historical (2010–2015) environmental sea surface temperature (SST), upwelling index (UI), chlorophyll‐a (Chl‐a) and biological (i.e., anchovy adults acoustic presence) data (i.e., Maxent) to determine anchovy habitat suitability in the coastal areas off central‐northern (25°S–32°S) Chile. Using geographic information systems (GIS), the model was forced by changes in regionalized SST, UI and Chl‐a as projected by IPCC models under the RPC (i.e., RCP2.6, RCP4.5, RCP6.0 and RCP8.5) emissions scenarios for the simulation period 2015–2050. The model simulates, for all RCP scenarios, negative responses in anchovy presence, reflecting the predicted changes in environmental variables, dominated by a future positive (warming) change in SST and UI, and a decrease in chlorophyll‐a (i.e., phytoplankton biomass). The model predicts negative changes in habitat suitability in coastal areas from north of Taltal (25°S) to south of Caldera (27°45′S) and in Coquimbo littoral zone (29°–30°12′S). The habitat suitability models and climate change predictions identified in this study may provide a scientific basis for the development of management measures for anchovy fisheries in the coastal areas of the South American coast and other parts of the world.  相似文献   

6.
Climate change can impact the pattern of marine biodiversity through changes in species’ distributions. However, global studies on climate change impacts on ocean biodiversity have not been performed so far. Our paper aims to investigate the global patterns of such impacts by projecting the distributional ranges of a sample of 1066 exploited marine fish and invertebrates for 2050 using a newly developed dynamic bioclimate envelope model. Our projections show that climate change may lead to numerous local extinction in the sub‐polar regions, the tropics and semi‐enclosed seas. Simultaneously, species invasion is projected to be most intense in the Arctic and the Southern Ocean. Together, they result in dramatic species turnovers of over 60% of the present biodiversity, implying ecological disturbances that potentially disrupt ecosystem services. Our projections can be viewed as a set of hypothesis for future analytical and empirical studies.  相似文献   

7.
During recent decades, the health of ocean ecosystems and fish populations has been threatened by overexploitation, pollution and anthropogenic-driven climate change. Due to a lack of long-term ecological data, we have a poor grasp of the true impact on the diet and habitat use of fishes. This information is vital if we are to recover depleted fish populations and predict their future dynamics. Here, we trace the long-term diet and habitat use of Atlantic bluefin tuna (BFT), Thunnus thynnus, a species that has had one of the longest and most intense exploitation histories, owing to its tremendous cultural and economic importance. Using carbon, nitrogen and sulphur stable isotope analyses of modern and ancient BFT including 98 archaeological and archival bones from 11 Mediterranean locations ca. 1st century to 1941 CE, we infer a shift to increased pelagic foraging around the 16th century in Mediterranean BFT. This likely reflects the early anthropogenic exploitation of inshore coastal ecosystems, as attested by historical literature sources. Further, we reveal that BFT which migrated to the Black Sea–and that disappeared during a period of intense exploitation and ecosystem changes in the 1980s–represented a unique component, isotopically distinct from BFT of NE Atlantic and Mediterranean locations. These data suggest that anthropogenic activities had the ability to alter the diet and habitat use of fishes in conditions prior to those of recent decades. Consequently, long-term data provide novel perspectives on when marine ecosystem modification began and the responses of marine populations, with which to guide conservation policy.  相似文献   

8.
9.
Ecological modelling tools are applied worldwide to support the ecosystem‐based approach of marine resources (EAM). In the last decades, numerous applications were attempted in the Mediterranean Sea, mainly using the Ecopath with Ecosim (EwE) tool. These models were used to analyse a variety of complex environmental problems. Many applications analysed the ecosystem impacts of fishing and assessed management options. Other studies dealt with the accumulation of pollution through the food web, the impact of aquaculture or the ecosystem effects of climate change. They contributed to the scientific aspects of an ecosystem‐based approach in the region because they integrated human activities within an ecosystem context and evaluated their impact on the marine food web, including environmental factors. These studies also gathered a significant amount of information at an ecosystem level. Thus, in the second part of this review, we used this information to quantify structural and functional traits of Mediterranean marine ecosystems at regional scales as the illustration of further potentialities of EwE for an EAM. Results highlighted differential traits between ecosystem types and a few between basins, which illustrate the environmental heterogeneity of the Mediterranean Sea. Moreover, our analysis evidenced the importance of top predators and small pelagic fish in Mediterranean ecosystems, in addition to the structural role of benthos and plankton organisms. The impact of fishing was high and of a similar intensity in the western, central and eastern regions and showed differences between ecosystem types. The keystone role of species was more prominent in protected environments.  相似文献   

10.
Global environmental changes threaten the sustainable use of resources and raise uncertainties regarding marine populations' responses in a changing Ocean. The pelagic copepods of the genus Calanus play a central role in shelf ecosystems transferring phytoplankton carbon to harvested populations, from boreal to temperate regions. Here we examined a 15‐yr time series of Calanus sinicus abundance in regards to climate forcing in the East China Sea. We identified a compound effect of the Pacific Decadal Oscillation (PDO) and the East Asian Winter Monsoon (EAWM) on environmental conditions in the East China Sea. Such climate influences not only a southward transport of Csinicus from its population centres into the Taiwan area, but favours advantageous thermal conditions for the species as well. On the interannual scale, our results show that the population size of Csinicus echoes climate‐driven temperature changes. Hence, the possibility of using the PDO and EAWM variability for assessing and predicting interannual abundance changes of Csinicus in the East China Sea is considered. The observed close relationship between climate and Csinicus may promote bottom‐up controls in the pelagic food web, further influencing the southern edge of the species' geographic distribution. Owing to the prominent role this species plays in food web dynamics these results might help integrative fisheries management policies in the heavily exploited East China Sea.  相似文献   

11.
12.
13.
Size‐based indicators are used worldwide in research that supports the management of commercially exploited wild fish populations, because of their responsiveness to fishing pressure. Observational and experimental data, however, have highlighted the deeply rooted links between fish size and environmental conditions that can drive additional, interannual changes in these indicators. Here, we have used biogeochemical and mechanistic niche modelling of commercially exploited demersal fish species to project time series to the end of the 21st century for one such indicator, the large fish indicator (LFI), under global CO2 emissions scenarios. Our modelling results, validated against survey data, suggest that the LFI's previously proposed policy target may be unachievable under future climate change. In turn, our results help to identify what may be achievable policy targets for demersal fish communities experiencing climate change. While fisheries modelling has grown as a science, climate change modelling is seldom used specifically to address policy aims. Studies such as this one can, however, enable a more sustainable exploitation of marine food resources under changes unmanageable by fisheries control. Indeed, such studies can be used to aid resilient policy target setting by taking into account climate‐driven effects on fish community size‐structure.  相似文献   

14.
The impact of recreational fishing on fish stocks remains largely unknown, as this is inherently difficult to monitor, especially in areas such as the Mediterranean Sea where many species are targeted using a variety of fishing gears and techniques. This study attempts to complement existing data sets and construct the profile of recreational fisheries in the EU‐Mediterranean countries using videos publicly available on social media. A total of 1526 video records were selected, featuring the capture of 7799 fish specimens. The results show recreational fishing is multispecies in nature (26 species contributed to >80% % of the most numerically important species caught) and exhibits a spatially homogeneous pattern, with differences in species composition being mostly dependent on the fishing technique used rather than on the country. Such findings fill an important knowledge gap on recreational fishing activities, and the methodology provides an innovative approach to gather statistics on data‐poor thematic areas that can potentially complement other data sets, such as the EU Data Collection Multi‐Annual Programme.  相似文献   

15.
Meta‐analysis of marine biological resources can elucidate general trends and patterns to inform scientists and improve management. Crustacean stocks are indispensable for European and global fisheries; however, studies of their aggregate development have been rare and confined to smaller spatial and temporal scales compared to fish stocks. Here, we study the aggregate development of 63 NE Atlantic and Mediterranean crustacean stocks of six species (Nephrops norvegicus, Pandalus borealis, Parapenaeus longirostris, Aristeus antennatus, Aristaeomorpha foliacea and Squilla mantis) in 1990–2013 using biomass index data from official stock assessments. We implemented a dynamic factor analysis (DFA) to identify common underlying trends in biomass indices and investigate the correlation with the North Atlantic Oscillation (NAO) index. The analysis revealed increasing and decreasing trends in the northern and southern NE Atlantic, respectively, and stable or slowly increasing trends in the Mediterranean, which were not related to NAO. A separate meta‐analysis of the fishing mortality (F) and biomass (B) of 39 analytically assessed crustacean stocks was also carried out to explore their development relative to MSY. NE Atlantic crustacean stocks have been exploited on average close to FMSY and remained well above BMSY in 1995–2013, while Mediterranean stocks have been exploited 2–4 times above FMSY in 2002–2012. Aggregate trends of European crustacean stocks are somewhat opposite to trends of fish stocks, suggesting possible cascading effects. This study highlights the two‐speed fisheries management performance in the northern and southern European seas, despite most stocks being managed in the context of the European Union's Common Fisheries Policy.  相似文献   

16.
In Mediterranean European countries, 85% of the assessed stocks are currently overfished compared to a maximum sustainable yield reference value (MSY) while populations of many commercial species are characterized by truncated size‐ and age‐structures. Rebuilding the size‐ and age‐structure of exploited populations is a management objective that combines single species targets such as MSY with specific goals of the ecosystem approach to fisheries management (EAF), preserving community size‐structure and the ecological role of different species. Here, we show that under the current fishing regime, stock productivity and fleet profitability are generally impaired by a combination of high fishing mortality and inadequate selectivity patterns. For most of the stocks analysed, a simple reduction in the current fishing mortality (Fcur) towards an MSY reference value (FMSY), without any change in the fishing selectivity, will allow neither stock biomass nor fisheries yield and revenue to be maximized. On the contrary, management targets can be achieved only through a radical change in fisheries selectivity. Shifting the size of first capture towards the size at which fish cohorts achieve their maximum biomass, the so‐called optimal length, would produce on average between two and three times higher economic yields and much higher biomass at sea for the exploited stocks. Moreover, it would contribute to restore marine ecosystem structure and resilience to enhance ecosystem services such as reservoirs of biodiversity and functioning food webs.  相似文献   

17.
A short synthesis of the present state of the ctenophore, Mnemiopsis leidyi , invasion in the Black Sea is given, together with a brief review of its status in other areas of the Mediterranean basin. The impact of M. leidyi on the main components of the pelagic community, mesozooplankton, ichthyoplankton and fish resources, based on published data and new field studies (1992–1997) are analysed. This assessment showed sharp fluctuations in the interannual abundance of M. leidyi . The main factors controlling the spatial distribution of M. leidyi were temperature and, to a lesser degree, salinity, whereas its abundance was controlled by food availability. An analysis of the main constituents of the pelagic ecosystem of the Black Sea before the M. leidyi outbreak showed that a reduction in numbers of planktivorous fishes, the main competitors of M. leidyi, could be a possible reason for the upsurge in abundance of M. leidyi. Following the increase of M. leidyi , there was a decline in the abundance and species diversity of ichthyoplankton and mesozooplankton. An assessment of data collected during the period 1992–1997 showed that the number of fish eggs and larvae and of zooplankton was negatively related to M. leidyi abundance. After the recent decrease of M. leidyi in the period 1995–1997, there has been an increase in abundance and diversity of fish eggs, fish larvae, and zooplankton, which together with an increased catch of planktivorous fish indicates that there has been a recovery of the ecosystem.  相似文献   

18.
Defining the oceanic habitats of migratory marine species is important for both single species and ecosystem‐based fisheries management, particularly when the distribution of these habitats vary temporally. This can be achieved using species distribution models that include physical environmental predictors. In the present study, species distribution models that describe the seasonal habitats of two pelagic fish (dolphinfish, Coryphaena hippurus and yellowtail kingfish, Seriola lalandi), are developed using 19 yr of presence‐only data from a recreational angler‐based catch‐and‐release fishing programme. A Poisson point process model within a generalized additive modelling framework was used to determine the species distributions off the east coast of Australia as a function of several oceanographic covariates. This modelling framework uses presence‐only data to determine the intensity of fish (fish km?2), rather than a probability of fish presence. Sea surface temperature (SST), sea level anomaly, SST frontal index and eddy kinetic energy were significant environmental predictors for both dolphinfish and kingfish distributions. Models for both species indicate a greater fish intensity off the east Australian coast during summer and autumn in response to the regional oceanography, namely shelf incursions by the East Australian Current. This study provides a framework for using presence‐only recreational fisheries data to create species distribution models that can contribute to the future dynamic spatial management of pelagic fisheries.  相似文献   

19.
Climate change is projected to redistribute fisheries resources, resulting in tropical regions suffering decreases in seafood production. While sustainably managing marine ecosystems contributes to building climate resilience, these solutions require transformation of ocean governance. Recent studies and international initiatives suggest that conserving high seas biodiversity and fish stocks will have ecological and economic benefits; however, implications for seafood security under climate change have not been examined. Here, we apply global‐scale mechanistic species distribution models to 30 major straddling fish stocks to show that transforming high seas fisheries governance could increase resilience to climate change impacts. By closing the high seas to fishing or cooperatively managing its fisheries, we project that catches in exclusive economic zones (EEZs) would likely increase by around 10% by 2050 relative to 2000 under climate change (representative concentration pathway 4.5 and 8.5), compensating for the expected losses (around ?6%) from ‘business‐as‐usual’. Specifically, high seas closure increases the resilience of fish stocks, as indicated by a mean species abundance index, by 30% in EEZs. We suggest that improving high seas fisheries governance would increase the resilience of coastal countries to climate change.  相似文献   

20.
The impacts of climate change have been demonstrated to influence fisheries resources. One way climate has affected fish stocks is via persistent shifts in spatio‐temporal distribution. Although examples of climate‐forced distribution shifts abound, it is unclear how these shifts are practically accounted for in the management of fish stocks. In particular, how can we take into account shifting stock distribution in the context of stock assessments and their management outputs? Here, we discuss examples of the types of fish stock distribution shifts that can occur. We then propose a decision tree framework of how shifting stock distributions can be addressed. Generally, the approaches for addressing such shifts fall into one of three main alternatives: re‐evaluate stock identification, re‐evaluate a stock unit area, or implement spatially explicit modelling. We conclude by asserting that the approach recommended here is feasible with existing information and as such fisheries managers should be able to begin addressing the role of changes in stock distribution in these fish stocks. The implications of not doing so could be notably undesirable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号