首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This study evaluated the effect of barley varieties in the diets of finishing steers on carcass composition, fat, and lean color and the fatty acid profile of subcutaneous fat. Crossbred steers (391 kg initial BW) were assigned randomly to one of five finishing diets composed primarily of corn (n = 9), Morex barley (n = 9), Steptoe barley, (n = 9), or two experimental barley varieties SM3 (n = 9) and SM5 (n = 9). Grains were cracked prior to feeding. Diets were formulated (DM basis) to be isonitrogenous (2.24% N) and isocaloric (2.01 Mcal/kg NEm and 1.35 Mcal/kg NEg). Steers were slaughtered according to industry-accepted procedures when it was visually estimated that 70% of carcasses would grade USDA Choice. After a 24-h chill at 4 degrees C, carcass quality and yield grade data were collected by trained, experienced university personnel. Objective color (L*, a*, and b*) of both the LM and subcutaneous fat were measured, and samples of subcutaneous fat were removed from the 10th- to 12th-rib region for fatty acid analysis. Diet did not affect hot carcass weight (P = 0.15), fat thickness (P = 0.58), LM area (P = 0.57), percentage of internal fat (P = 0.52), yield grade (P = 0.96), marbling (P = 0.73), or quality grade (P = 0.10). However, the LM from steers fed diets formulated with Morex and SM5 barley varieties tended to be lighter (higher L* values, P = 0.08) than the LM from steers fed the corn-based diet. Additionally, fat from steers fed corn tended to be more yellow (higher Hunter b* values, P = 0.09) than fat from steers fed barley-based diets. Although grain source had only minimal effects on the fatty acid composition of subcutaneous fat samples, pentadecanoic acid (15:0) was greater (P < 0.05) in fat from steers fed SM3 and Steptoe barley varieties than in fat from steers fed corn. Stearic acid (18:0) concentrations were higher (P < 0.05) in fat samples from steers fed corn than in those fed the experimental barley lines (SM3 and SM5). Conversely, fat samples from steers fed Steptoe and SM5 barley had greater (P < 0.05) gadoleic acid (20:1) concentrations than fat from steers fed corn or Morex variety. Although the variety/line of barley included in the finishing diet may affect LM and fat color, grain-source (barley vs. corn) had little effect on beef carcass quality and yield grades and did not greatly alter the fatty acid composition of subcutaneous fat.  相似文献   

2.
Sixty crossbred beef steers (initial BW = 412 kg) were used in a 83-d finishing study to determine the effect of feeding dry rolled high-oil corn on performance and total-tract digestibility of finishing diets. Steers were allotted by weight to the following dietary treatments: 1) control corn (C; 82% normal corn, 12% triticale silage), 2) high-oil corn (HO; 82% high-oil corn, 12% silage), and 3) high-oil corn formulated to be isocaloric to C (ISO; 74% high-oil corn, 20% silage). Total lipid content was 4.9% (DM basis) for normal corn and 7.0% for high-oil corn. Steers were individually fed using electronic gates. Quantity of feed offered and refused was recorded daily. Fecal samples were collected on d 63 to 66 of the trial to determine digestibility. Chromic oxide was fed as an indigestible marker for 7 d before fecal collection began. Planned contrasts of HO vs C and ISO vs C were used to assess treatment differences. Dry matter intake was greater for steers fed C vs HO (P < 0.01) or C vs ISO (P < 0.01), but daily gain and feed efficiency were not affected (P > 0.05) by treatments. Digestibility of DM, OM, starch, and GE was greater (P < 0.05) for the HO diet than the C diet, but lipid digestibility did not differ among treatments (P > 0.05). The combined effect of greater GE content and digestibility resulted in greater (P < 0.01) DE content for the HO than for the C diet. Calculated DE of the corn was 8.3% greater (3.74 Mcal/kg; P < 0.01) for the HO diet and 6.5% greater (3.67 Mcal/kg; P < 0.01) for the ISO diet than the corn in the C diet (3.25 Mcal/kg). Dry matter and GE digestibility did not differ (P > 0.05) between the C and ISO diets. Steers consuming ISO had greater (P < 0.05) starch digestibility than steers fed the C diet. Although HO had higher DE, DE intake was similar (P > 0.05) for HO and C due to lower DMI for HO. These results indicate that available energy is greater from high-oil corn than from typical corn, but depressed voluntary feed intake prevented performance improvements and resulted in equal energy intakes between high-oil corn and typical corn diets.  相似文献   

3.
To measure the effects of dietary fat on feedlot performance and carcass characteristics, and on beef appearance, moisture binding, shelf life, palatability, and fatty acid content, 126 crossbred beef steers (321.1 +/- 0.57 kg of BW) were allotted to a randomized complete block (3) design with a 3 x 2 + 1 factorial arrangement of dietary treatments. The main effects were level of yellow grease (0, 3, or 6%) and alfalfa hay (3.5 or 7%) in corn-based diets containing 15% potato by-product (PB). The added treatment was 6% tallow and 7% alfalfa in a barley-based diet containing 15% PB. Dry matter intake and ADG were not affected by diet; however, G:F and diet NE content increased linearly (P < 0.10) with yellow grease. Kidney, pelvic, and heart fat (2.0 to 2.3 +/- 0.07) and yield grade (2.8 to 3.1 +/- 0.09) increased linearly (P < or = 0.05) with yellow grease. Steers fed corn plus 6% yellow grease had lower (P < 0.05) beef firmness and beef texture scores but greater (P < 0.01) fat color score than those fed barley plus 6% tallow. Moisture retention of beef was not affected by dietary treatment, except purge score during retail storage, which was decreased linearly (P < 0.01) from 2.1 to 1.6 +/- 0.06 by level of yellow grease. Steaks from steers fed barley plus 6% tallow had greater (P < 0.05) shear force than those from steers fed corn plus 6% yellow grease, and beef flavor increased linearly (P < 0.05) from 6.2 to 6.7 +/- 0.11 as the level of yellow grease increased. Level of yellow grease linearly increased (P < 0.01) transvaccenic acid (TVA) by 61% and CLA content of beef by 48%. Beef from steers fed corn plus yellow grease had lower (P < 0.05) palmitoleic and oleic acids and greater (P < 0.05) linoleic, TVA, and CLA than beef from steers fed the barley-tallow diet. Feeding yellow grease increased diet energy content, which increased carcass fatness, and altered beef fatty acid content, which increased beef flavor without affecting moisture retention, shelf life, or cooking properties of the beef. Additionally, beef from steers fed corn plus 6% yellow grease was more tender and had more polyunsaturated fatty acid content and CLA than beef from steers fed barley plus 6% tallow.  相似文献   

4.
Our objective was to compare the effects of feeding steam-flaked, high-oil corn with normal steam-flaked corn to which yellow grease was added to equalize dietary fat on performance and carcass characteristics of finishing beef steers, and palatability, retail case life, and fatty acid composition of strip loins. Angus steers (n = 120; initial BW = 288 kg) were allotted to dietary treatments consisting of 1) normal mill-run, steam-flaked corn plus added fat (NMR) or 2) high-oil, steam-flaked corn (HOC) and assigned randomly to pens (12 pens/treatment with 5 steers/pen). Performance (ADG, DMI, and G:F) was measured over time, and cattle were shipped to a commercial abattoir for collection of carcass data after 165 d on feed. Carcass data were collected at 48 h postmortem on all carcasses, and 2 carcasses from each pen were selected randomly for collection of strip loins (IMPS #180A). At 14 d postmortem, 4 steaks (2.54 cm thick) were removed for retail display, trained sensory panel analysis, Warner-Bratzler shear force determination, and fatty acid analysis. Daily BW gain was greater (P = 0.03) and G:F was increased 8.4% (P = 0.01) for steers fed NMR compared with HOC, but DMI was not affected (P > 0.10) by treatment. No treatment differences were observed (P > 0.10) for HCW, 12th-rib fat, KPH, and yield grade. Marbling scores were greater (P = 0.01) for NMR than for HOC, and LM area tended (P = 0.07) to be greater in NMR than in HOC carcasses. The proportion of carcasses grading USDA Choice did not differ (P = 0.77) between treatments, but a greater (P = 0.04) proportion of carcasses graded in the upper two-thirds of Choice for NMR vs. HOC. Trained sensory panel traits and Warner-Bratzler shear force values did not differ between treatments (P > 0.10), and no differences (P > 0.10) were detected for purge loss or fatty acid composition. Overall, ADG and G:F were less and marbling score was decreased, but there were no differences between treatments in beef palatability, retail case life, or concentrations of fatty acids in strip loins.  相似文献   

5.
Three Angus steers (410 kg) cannulated in the proximal duodenum were used in a replicated 3 x 3 Latin square to evaluate the effects of dietary lipid level and oil source on ruminal biohydrogenation and conjugated linoleic acid (CLA) outflow. Dietary treatments included: 1) typical corn (TC; 79.2% typical corn), 2) high-oil corn (HOC; 79.2% high-oil corn), and 3) the TC diet with corn oil added to supply an amount of lipid equal to the HOC diet (OIL; 76.9% TC + 2.4% corn oil). Duodenal samples were collected for 4 d following 10-d diet adaptation periods. Data were analyzed with animal, square, period, and treatment in the model and planned, nonorthogonal contrasts were used to test the effects of dietary lipid content (TC vs HOC and OIL) and oil source (HOC vs OIL) on ruminal biohydrogenation. Intake and duodenal flow of total long-chain fatty acids were increased (P < 0.05) by over 63% for diets containing more lipid regardless of oil source. Apparent ruminal dry matter and long chain fatty acid digestibilities were not altered (P > 0.05) by dietary lipid level or oil source. Ruminal biohydrogenation of total and individual 18-carbon unsaturated fatty acids was greater (P < 0.05) for diets with higher lipid content. Biohydrogenation of oleic acid was greater (P < 0.05) for HOC than OIL, but biohydrogenation of linoleic acid was lower (P < 0.05) for HOC than OIL. Duodenal flows of palmitic, stearic, oleic, linoleic, and arachidic acids were more than 30% greater (P < 0.05) for diets containing more lipid. Flow of all trans-octadecenoic acids was greater (P < 0.05) for diets containing more lipid. Corn oil addition increased (P < 0.05) the flow of trans-10 octadecenoic acid and the trans-10, cis-12 isomer of CLA by threefold compared to feeding high-oil corn. Feeding high-oil corn or adding corn oil to typical corn rations increased intake, biohydrogenation, and duodenal flow of unsaturated long-chain fatty acids. Compared with high-oil corn diets, addition of corn oil increased duodenal flow of trans-10, trans-12 and cis-12 isomers of octadecenoic acid and the trans-10, cis-12 isomer of CLA. The amount of cis-9, trans-11 isomer of conjugated linoleic acid flowing to the duodenum was less than 260 mg/d, a value over 20 times lower than flow of trans-11 vaccenic acid indicating the importance of tissue desaturation for enhanced conjugated linoleic acid content of beef.  相似文献   

6.
An experiment was conducted to evaluate the effects of grain processing and lipid addition to finishing diets on cattle performance, carcass characteristics, and meat quality. Eighty Hereford x Angus steers (384 kg +/- 17 kg of BW) were fed diets containing steam-flaked corn (SFC) or dry-rolled corn (DRC) with and without the addition of tallow (SFC/Fat and DRC/Fat) or steam-flaked corn with ground flaxseed (SFC/Flax). Ribeye steaks from steers fed SFC, SFC/Fat, or SFC/ Flax were used to evaluate the effects of fat source on meat quality. Cattle fed SFC and SFC/Fat tended to have greater ADG, G:F, HCW, and USDA yield grade, compared with those fed DRC and DRC/Fat (P < 0.10). Steaks from steers fed SFC/Flax developed a detectable off-flavor (P < 0.05) compared with steaks from steers fed SFC and SFC/Fat, and steaks from steers fed SFC retained desirable color longer than those from steers fed SFC/Flax (P < 0.05). Feeding SFC/Flax increased deposition of alpha-linolenic acid in muscle tissue compared with feeding SFC or SFC/Fat (P < 0.01). Dietary treatment did not cause differences in tenderness, juiciness, or flavor intensity. Ground flaxseed can replace tallow in finishing diets without loss in performance, but flax may affect flavor and color stability of beef. Feeding flaxseed can effectively alter composition of carcass tissues to yield beef that is high in n-3 fatty acids.  相似文献   

7.
The hypothesis of this experiment was that increasing dietary fat through the use of whole oilseeds and altering the dietary ratio of PUFA:saturated fatty acids would alter carcass composition of finishing steers. Seventy-two steers (443.6 +/- 1.0 kg) were fed for 76 d one of four dietary treatments: a corn/ soybean meal-based diet (NOFAT); two diets containing 16% (DM basis) whole raw soybeans; and a corn/soybean meal-based diet containing choice white grease (CWG) equal to the fat addition supplied by the soybeans. Soybeans used in the diets were either a standard variety (NORM-SB) or a variety high in oleic acid content (HO-SB). The fatty acid profile of diets differed (P < 0.05) in the degree of saturation and content of palmitic, stearic, oleic, linoleic, and linolenic acids. There were no differences in ADG (1.73 kg/d), hot carcass weight (347 kg), longissimus muscle area (79.4 cm2), yield grade (3.31), or percentage of boneless retail cuts (48.8%). Contrasts revealed differences (P < 0.05) in G:F and marbling score with the addition of fat (0.126 vs. 0.137 and 4.66 vs. 4.91, respectively, for NOFAT vs. fat). The addition of fat tended (P < 0.10) to increase backfat, and feeding NORM-SB increased (P < 0.01) dressing percent compared with the HO-SB treatment. Loin samples taken from steers fed NOFAT, NORM-SB, and HO-SB did not differ in alpha-tocopherol content. Loins from the CWG treatment tended (P < 0.10) to have lower alpha-tocopherol content than did the soybean treatments (0.79 vs. 0.99 ppm, respectively). From main-effects analysis, HO-SB loin samples had the highest (F3,8 = 32.91; P < 0.01) concentration of gamma-tocopherol (0.33 ppm); this resulted in differences (P < 0.05) in gamma-tocopherol when comparing all contrasts. When comparing loin samples from NORM-SB-fed steers with those from HO-SB-fed steers, NORM-SB samples had a greater (P < 0.05) percentage oflinoleic acid and PUFA and a lower (P < 0.05) percentage of oleic acid and monounsaturated fatty acids. Furthermore, loin samples from soybean-fed steers tended (P < 0.10) to have a greater concentration of conjugated linoleic acid than samples from CWG-fed steers. These data suggest that the source of added dietary fat may affect overall carcass composition. Furthermore, dietary addition of soybeans or CWG can improve feed efficiency and marbling, whereas the addition of whole raw soybeans compared with CWG may increase unsaturation and total vitamin E content of beef.  相似文献   

8.
Strip loins from 236 carcasses from crossbred yearling steers were collected on each of 2 slaughter dates (slaughter 1 or 2) to determine the effects of feeding corn or sorghum distillers grains (DG) on beef color, fatty acid profiles, lipid oxidation, tenderness, and sensory attributes. Dietary treatments consisted of a steam-flaked corn (SFC) diet without (control) or with 15% (DM basis) corn dry or wet DG (CDDG and CWDG) or sorghum dry or wet DG (SDDG and SWDG) and alfalfa hay (R). Additional treatments included SDDG or SWDG with no alfalfa hay (NR). In slaughter 2, steaks from steers fed SFC had lesser L*, but greater a* (P < 0.05) values than those from steers fed DG. When comparing sorghum and corn DG steaks, the same color differences were detected. Steaks from steers fed sorghum DG had lower L*, but greater a* (P < 0.05) values than those from steers fed corn DG. Also, L* values in steaks from steers fed SWDG with R were greater (P < 0.05) than those from steers fed SWDG with NR. In slaughter 1, feeding DG increased (P < 0.05) steak n-6 fatty acid concentrations compared with SFC. In both slaughter groups, feeding dry DG increased (P < 0.05) steak linoleic acid concentrations compared with wet DG. In slaughter 2, feeding corn DG diets increased (P < 0.05) linoleic acid concentrations of steaks compared with sorghum DG diets. In addition, increased (P < 0.05) concentrations of alpha-linolenic acid in steaks resulted from feeding SDDG or SWDG with R compared with those sorghum treatments with NR. In each slaughter group, feeding DG increased (P < 0.05) the n-6:n-3 ratio of steaks compared with SFC, and feeding corn DG increased (P < 0.05) this ratio compared with sorghum DG. Furthermore, steaks from steers fed corn DG had greater (P < 0.05) concentrations of trans-vaccenic acid than those from steers fed sorghum DG. In slaughter 1, the CLA isomer 18:2, trans-10, cis-12 was greater (P < 0.05) in steaks from DG diets. On d 1 of retail display, steaks from steers fed SDDG with R in slaughter 2 had greater (P < 0.05) thiobarbituric acid reactive substances values than those from steers fed SDDG with NR. Feeding DG at 15% of the dietary DM did not affect sensory attributes or Warner-Bratzler shear force values of steaks. Feeding DG from either corn or sorghum as either a wet or dry by-product had no effect on beef sensory attributes.  相似文献   

9.
This paper reports the effects of reduced sensitivity to growth hormone-releasing hormone and thyrotropin-releasing hormone through feeding a subtherapeutic level of chlortetracycline (CTC; 350 mg CTC/d) and two levels of dietary CP (10% and 13% of diet DM) on growth performance and carcass merit characteristics. Thirty-two steers (initial average BW, 286 kg) were adapted to a common 13% CP diet consisting primarily of grass hay, corn, and soybean meal fed to gain 1.25 kg/d. The steers were assigned to four treatments (with or without CTC and 10% or 13% dietary CP in a factorial arrangement) and fed ad libitum amounts of diet for 91 d. Feed intake was determined daily and steers were weighed weekly. Steers were killed at the end of the feeding period for carcass merit determinations. Efficiency of BW gain was greater (P < .05) for steers fed the 13% CP diet than for the 10% CP diet and tended to be less for CTC-steers when the 10% CP diet was fed and greater for the CTC-steers when the 13% CP diet was fed (CTC x dietary CP interaction, P < .10). Feeding CTC increased (P < .01) fat over the longissimus muscle and marbling. This study is interpreted to indicate that the sustained effect of subtherapeutic feeding of CTC to cattle appears to increase fat deposition consistent with a reduced growth hormone and thyroid status reported earlier for these same steers. This would tend to increase energy utilization but may not necessarily produce a measurable increase in BW gain.  相似文献   

10.
This experiment determined meat composition and palatability changes resulting from feeding Holstein (HOL) and crossbred beef (XB) steers diets containing corn silage (CS) or alfalfa haylage (AH) (forage type) and soybean meal (SM) or fish meal (FM) (protein source). Fifty-nine steers (30 HOL and 29 XB) were randomly assigned to diet combinations for a 2 x 2 x 2 (breed x forage x protein) factorial arrangement. Steers were fed to a fat-constant end point (fat depth over the longissimus muscle measured by ultrasound: 1.0 cm XB, .6 cm HOL). Proximate and fatty acid analysis and sensory evaluation were conducted on a rib eye roast and steaks, respectively, removed from the left side of each carcass at ribs 9 to 12. Proximate analysis of the longissimus muscle showed no significant difference (P greater than .05) in moisture, protein, or fat content due to breed, forage, or protein treatment. Forage type had no significant effect (P greater than .05) on amount of individual fatty acids found in longissimus muscle. However, total polyunsaturated fatty acids were higher (P greater than .05) for AH than for CS-fed animals. Longissimus muscle from steers fed FM had higher palmitoleic and lower stearic acid contents (both P less than .05) than longissimus muscle from animals fed SM. Muscle from HOL had higher palmitoleic and lower stearic acid contents than that from XB steers (both P less than .05). There was no significant interaction (P greater than .05) of breed with either diet treatment for individual fatty acid contents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A 2-yr study was conducted using a 3 × 2 factorial arrangement of treatments to evaluate the effects of feeding dried distillers grains throughout a beef production system on performance, carcass characteristics, and fatty acid profile of beef. Factors were wheat pasture supplement [no supplement (CON), dry-rolled corn (DRC), and dried distillers grains (DDG)] fed at 0.5% BW daily and finishing diet [steam-flaked corn based diet containing 0 (SFC) or 35% (35DDG) DDG]. Each year, 60 preconditioned Hereford steers (initial BW = 198 kg ± 3) grazed winter wheat pasture with or without supplement. Body weight gain was 8% greater for steers consuming DDG supplement compared with CON and DRC steers (P < 0.01). After the grazing period, pastures within supplement treatment were randomly assigned to SFC or 35DDG. There was no supplement by finishing diet interaction for any performance or carcass variable of interest (P ≥ 0.41). Previous supplementation on winter wheat affected BW at feedlot entry and adjusted G:F (P ≤ 0.05) but had no effect on finishing ADG or carcass traits (P ≥ 0.12). On a carcass-adjusted basis, steers consuming 35DDG had reduced final BW, ADG, G:F, and total BW gain throughout the system (P ≤ 0.04) compared with SFC. Additionally, steers consuming 35DDG had reduced HCW, dressing percent, and fat thickness (P ≤ 0.03) compared with SFC. There was a supplement by finishing diet interaction (P = 0.02) for 18:0, in which cattle supplemented with DRC and fed the SFC finishing diet had the lowest concentration of 18:0 but DRC supplemented steers fed the 35DDG diet had the greatest concentration. The interaction was not significant (P ≥ 0.18) for other fatty acids. Main effects of supplement and finishing diet affected (P ≤ 0.05) several other fatty acids of interest, particularly 18:2, which is associated with reduced flavor-stability of beef. The use of DDG as a supplement to wheat pasture resulted in greater ADG during wheat grazing and heavier BW at feedlot entry, but final BW was not different from CON or DRC groups. Feeding DDG at 35% DM in steam-flaked corn-based finishing diets reduced ADG, G:F, and HCW, and affected the fatty acid composition of beef.  相似文献   

12.
Five Holstein steers (235 kg of BW) fitted with ruminal, duodenal, and ileal cannulas were used in a 5 x 5 Latin square design experiment to determine the effects of supplemental fat source on site and extent of nutrient digestion and ruminal fermentation. Treatments were diets based on steam-flaked corn containing no supplemental fat (control) or 4% (DM basis) supplemental fat as tallow, dried full-fat corn germ (corn germ), corn oil, or flax oil. Fat supplementation decreased (P < 0.08) ruminal starch digestion but increased (P < 0.03) small intestinal starch digestion as a percentage of intake. Feeding corn germ decreased (P < 0.09) ruminal starch digestion and increased (P < 0.03) large intestinal starch digestion compared with steers fed corn oil. Large intestinal starch digestion was less (P < 0.04), and ruminal NDF digestion was greater (P < 0.09) for steers fed tallow compared with steers fed other fat sources. Small intestinal (P < 0.08) and total tract NDF digestibilities were greater (P < 0.02) for steers fed corn germ than for those fed corn oil. Feeding tallow increased total ruminal VFA (P < 0.03) and NH(3) (P < 0.07) concentrations compared with steers fed the other fat sources. Feeding corn germ led to a greater (P < 0.02) rate of ruminal liquid outflow compared with corn oil. A diet x hour interaction (P < 0.04) occurred for ruminal pH, with steers fed corn oil having the greatest ruminal pH 18 h after feeding, without differences at other time points. Fat supplementation increased (P < 0.09) ruminal concentrations of Fusobacterium necrophorum. Duodenal flow of C18:3n-3 was greater (P < 0.01) for steers fed flax oil compared with those fed corn oil. Feeding corn germ led to less (P < 0.01) ruminal biohydrogenation of fatty acids compared with corn oil. Steers fed tallow had greater small intestinal digestibility of C14:0 (P < 0.02) and C16:1 (P < 0.04) than steers fed the other fat sources. Fat supplementation decreased (P < 0.06) small intestinal digestibility of C18:0. Feeding corn germ decreased (P < 0.10) small intestinal digestibility of C18:1 compared with corn oil. It appears that source of supplemental fat can affect the site and extent of fatty acid and nutrient digestion in steers fed diets based on steam-flaked corn.  相似文献   

13.
We conducted an experiment to determine the effects of dietary copper (Cu) source and level on carcass characteristics, longissimus muscle fatty acid composition, and serum and muscle cholesterol concentrations in steers. Sixty Angus and Angus x Hereford steers were stratified by weight and initial liver Cu concentration within a breed and randomly assigned to treatments. Treatments consisted of: 1) control (no supplemental Cu); 2) 20 mg Cu/kg DM from Cu sulfate (CuSO4); 3) 40 mg Cu/kg DM from CuSO4; 4) 20 mg Cu/kg DM from Cu citrate; 5) 20 mg Cu/kg DM from Cu proteinate; and 6) 20 mg Cu/kg DM from tribasic Cu chloride. A corn silage-soybean meal-based diet was fed for 56 d. Steers were then switched to a high-concentrate diet. Equal numbers (n = 5) of steers per treatment were slaughtered after receiving the finishing diets for either 101 or 121 d. Serum cholesterol was not affected by treatment during the growing phase but was decreased (P < .05) in steers supplemented with Cu by d 84 of the finishing period and remained lower (P < . 05) at subsequent sampling periods. Longissimus muscle cholesterol concentration tended to be reduced (P < .11) by Cu supplementation. Hot carcass weight and backfat were lower (P < .05) in animals receiving supplemental Cu. However, Cu-supplemented and control steers had similar marbling scores. Longissimus muscle polyunsaturated fatty acid concentrations (18:2 and 18:3) were increased (P < .07) and saturated fatty acid concentrations tended (P < . 11) to be reduced by Cu supplementation. These results indicate that as little as 20 mg of supplemental Cu/kg diet can reduce backfat and serum cholesterol and increase muscle polyunsaturated fatty acids in steers fed high-concentrate diets.  相似文献   

14.
In each of 2 yr, 20 Holstein steers (185+/-7 kg initial BW) were allocated to each of three treatments: pastured for 4.5 mo on grass/legume pastures and then fed 80% corn diets (DM basis) until slaughter; pastured for 4.5 mo on grass/legume pastures with ad libitum access to molasses-based protein supplements and fed 80% corn diets until slaughter; and placed in a feedlot and fed only 80% corn diets until slaughter (FEEDLOT). Half of the steers in each treatment were initially implanted with Revalor-S and not reimplanted. Supplemented steers on pasture had greater (P < 0.05) ADG than unsupplemented steers, and FEEDLOT steers gained faster and were fatter (P < 0.05) after 4.5 mo. Implanted steers had greater (P < 0.05) ADG with no significant treatment x implant status effect. Supplement intake was variable and related to ambient temperature. During the feedlot phase, steers previously on pasture had greater DMI and ADG (P < 0.05) but were not more efficient than FEEDLOT steers. Percentage of USDA Choice carcasses, fat thickness, dressing percentage, yield grade, and final weight were greater (P < 0.05) for FEEDLOT steers than for steers on other treatments. Implanting increased ADG of all steers but did not affect carcass traits, carcass composition, or feedlot performance during the finishing phase. Holstein steers consuming supplemented and unsupplemented pasture before slaughter will be leaner, have lower carcass weights, and have generally lower quality grades than those fed exclusively in a feedlot when slaughtered at similar ages.  相似文献   

15.
An experiment was conducted to determine the effects of dietary copper (Cu) on performance, carcass characteristics, and lipid metabolism in Simmental steers. Thirty-six Simmental steers (329.3 +/-11.4 kg) were stratified by weight and randomly assigned to treatments. Treatments consisted of the following: control (no supplemental Cu) and 10 or 40 mg Cu/kg DM from Cu sulfate. Each treatment consisted of six replicate pens, with each pen containing two steers. A corn silage-soybean meal-based diet was fed for 56 d. Steers were then switched to a high concentrate diet. Performance was not affected by treatment during the growing or finishing phases. Plasma Cu concentrations were higher (P < 0.05) in steers receiving supplemental Cu by d 56 of the growing phase and remained higher (P < 0.05) at all 28-d sampling periods during the finishing phase. Liver Cu concentrations were higher (P < 0.001) in steers receiving supplemental Cu at the end of the growing phase and on d 84 and at the end of the finishing phase. Steers supplemented with 40 mg Cu had higher (P < 0.001) liver Cu concentrations than those supplemented with 10 mg Cu/kg DM. Serum and longissimus muscle cholesterol concentrations were similar between treatments. Longissimus muscle and backfat fatty acid composition was similar between treatments. These results indicate that Cu supplementation given to Simmental steers increased Cu status but had no effect on performance, carcass characteristics, or lipid or cholesterol metabolism.  相似文献   

16.
To investigate the impact of dietary whole cottonseed (WCS) level on fatty acid composition, growth, and carcass traits, 45 Hereford steers were assigned to diets containing 0, 15, or 30% dietary WCS. The 15 and 30% WCS contributed an estimated 3.3 and 6.6% additional lipid, respectively, to the diets. After being fed for 54 d, all animals were weighed and slaughtered, and carcass measurements were obtained. There were no differences (P greater than .05) among dietary treatment groups in live weight or ADG for the 54-d feeding period. Control steers had larger (P less than .05) longissimus muscle areas than steers fed 30% WCS, which accounted for the advantage in yield grade (P less than .05) exhibited by the control group. Feeding of 30% WCS resulted in minor increases in linoleic and total polyunsaturated fatty acid content of perinephric fat expressed in both normalized (area percentage) and gravimetric (g/100 g of fresh tissue) formats. There were no significant differences in the monounsaturated or saturated fatty acid content of adipose tissues from animals fed the different diets. Subcutaneous adipose tissue samples were higher (P less than .01) in total unsaturates but had lower (P less than .05) proportions of C18:0 and C18:1 than perinephric samples. Feeding WCS at the levels reported herein only had minor effects on fatty acid composition of beef adipose tissues.  相似文献   

17.
A feedlot trial was conducted to determine the effect of dietary vitamin A concentration and roasted soybean (SB) inclusion on carcass characteristics, adipose tissue cellularity, and muscle fatty acid composition. Angus-crossbred steers (n = 168; 295 +/- 1.8 kg) were allotted to 24 pens (7 steers each). Four treatments, in a 2 x 2 factorial arrangement, were investigated: no supplemental vitamin A, no roasted soybeans (NANS); no vitamin A, roasted SB (20% of the diet on a DM basis; NASB); with supplemental (2,700 IU/kg) vitamin A, no roasted SB (WANS); and with supplemental vitamin A, roasted SB (WASB). Diets included high moisture corn, 5% corn silage, 10 to 20% supplement, and 20% roasted SB in the SB treatments on a DM basis. The calculated vitamin A concentration in the basal diet was < 1,300 IU/kg of DM. Blood samples (2 steers/pen) were collected for serum vitamin A determination. Steers were slaughtered after 168 d on feed. Carcass characteristics and LM composition were determined. Fatty acid composition of LM was analyzed, and adipose cellularity in the i.m. and s.c. depots was determined. No vitamin A x SB interactions were detected (P > 0.10) for cattle performance, carcass composition, or muscle fatty acid composition. Low vitamin A diets (NA) did not affect (P > 0.05) ADG, DMI, or G:F. Quality grade tended (P = 0.07) to be greater in NA steers. Marbling scores and the percentage of carcasses grading > or = Choice(-) were 10% greater for NA steers, although these trends were not significant (P = 0.11 and 0.13, respectively). Backfat thickness and yield grade were not affected (P > 0.26) by vitamin A supplementation. Composition of the LM was not affected (P > 0.15) by vitamin A or SB supplementation. Serum retinol at slaughter was 44% lower (P < 0.01) for steers fed NA than for steers supplemented with vitamin A (23.0 vs. 41.1 microg/dL). A vitamin A x SB interaction occurred (P < 0.05) for adipose cellularity in the i.m. depot; when no SB was fed, vitamin A supplementation decreased cell density and increased cell size. However, when SB was fed, vitamin A supplementation did not affect adipose cellularity. Adipose cellularity at the s.c. depot was not affected (P > 0.18) by vitamin A or SB treatments. Fatty acid profile of the LM was not affected by vitamin A (P > 0.05), but SB increased (P < 0.05) PUFA (7.88 vs. 4.30 g/100 g). It was concluded that feeding NA tended to increase marbling without affecting back-fat and yield grade. It appeared that NA induced hyperplasia in the i.m. but not in the s.c. fat depot.  相似文献   

18.
Two experiments were conducted to determine the effects of Mg-mica supplementation on grazing and feedlot performance of stocker steers. In Exp. 1, eight groups of six steers were fed a basal diet of 80% ground grain sorghum, 15% corn silage, and 5% control protein supplement (DM basis) or a supplement containing Mg-mica (9% of supplement; 4.5 mg/kg diet DM) for 141 d. Marbling scores tended (P<0.10) to be greater, and the percentage of carcasses grading USDA Choice or higher was greater (P<0.05), from steers fed Mg-mica than from those fed the control supplement. In Exp. 2, eight groups of nine head each were offered either a control grain sorghum-based supplement or one containing 34 g/d of Mg-mica (2.7 g Mg) while grazing smooth bromegrass pastures for 112 d. Pasture groups were then placed in feedlot pens for 120 d and fed a basal diet similar to that described above. Two groups fed each pasture supplement received a control supplement, and two received a supplement containing Mg-mica (10% of supplement; 5 mg/kg diet DM). Steers fed Mg-mica during the pasture phase tended to have heavier (P=0.11) hot carcass weights, higher (P<0.05) dressing percentages, numerically (P>0.10) higher marbling scores, and a higher percentage of carcasses grading USDA Choice than steers fed the control supplement during the pasture phase. Therefore, adding Mg-mica to pasture supplements or feedlot diets appears to have no impact on grazing or feedlot performance, but may improve carcass quality.  相似文献   

19.
The objective of this study was to evaluate the meat quality and shelf life of steaks from steers fed dried distillers grains with solubles (DDGS) or dried corn gluten feed (CGF) compared with soybean meal with corn (SBM) as a protein supplement from weaning to slaughter. Angus cross steers (n = 81; BW = 306 ± 26.1 kg) were randomly assigned to pens (n = 9) and fed a stocker diet of corn silage (75% of DM) with DDGS, CGF, or SBM and ground ear corn. After 84 d of stockering, 12 steers (BW = 397 ± 15.3 kg) were randomly selected from each treatment and finished using the same protein supplement at 25% of DM for 100 d. Carcass data were collected (24 h) and the longissimus lumborum was fabricated into steaks at 48 h postmortem. Steaks were assigned to proximate analysis, Warner-Bratzler shear force (7-, 14-, or 21-d aging), and retail display (1, 3, 6, or 9 d). Protein source did not affect carcass yield, quality, or longissimus lumborum composition (P > 0.05). After 7 d of aging, DDGS and CGF steaks were more tender (P < 0.01) than SBM, but were similar (P = 0.30) after 14 and 21 d of aging. Feeding corn by-products did not influence subjective overall color acceptance (P = 0.17) in this study, but acceptance declined over time (P < 0.01). Subjective redness was similar (P > 0.05) among diets except SBM steaks were more red (P < 0.01) than DDGS after 9 d. On d 3 and 6 of retail display, CGF steaks exhibited more discoloration (P < 0.04) than SBM or DDGS steaks. However, after 9 d DDGS steaks were more discolored (P < 0.01) than CGF or SBM. Objective L* was lighter for CGF (P < 0.04) over 9 d of display, and all treatments became darker (P < 0.01) as time increased. Redness (a*) declined (P < 0.01) over time with SBM steaks maintaining more color in the red spectrum than CGF and DDGS after 6 d of display. Protein source did not affect (P > 0.05) the rate of lipid oxidation. Total SFA concentrations were similar (P > 0.05) among treatments; however, total MUFA were less (P < 0.05) and total PUFA concentrations were greater (P < 0.05) in DDGS steaks compared with SBM or CGF steaks. These data show that DDGS or CGF can be fed as a protein supplement at 25% DM from weaning until slaughter while maintaining meat quality when compared with steers fed soybean meal as a protein supplement.  相似文献   

20.
Forty-eight Angus and Hereford x Angus steers were used to determine the effects of copper (Cu) on lipid and catecholamine metabolism. Steers were stratified by weight within breed and randomly assigned to treatments. Treatments consisted of 0 (control, no supplemental Cu), 10, or 40 mg of supplemental Cu (from Cu2(OH)3Cl)/kg DM. Steers were fed a corn silage-soybean meal-based growing diet for 42 d. Animals were then switched to a high-concentrate finishing diet and remained on the same dietary treatments. On d 70, indwelling jugular catheters were nonsurgically inserted into five steers per treatment. Blood samples were obtained from steers after a 24-h period of feed withdrawal, 1 h after feeding, and after i.v. administration of norepinephrine and were subsequently analyzed for nonesterified fatty acid (NEFA) and catecholamine concentrations. Average daily gain over the finishing period was higher (P < 0.06) in steers receiving supplemental Cu. Serum total cholesterol concentrations were reduced (P < 0.05) on d 84 and 112 in steers supplemented with Cu. Serum norepinephrine (P < 0.14) and NEFA concentrations following feed withdrawal tended (P < 0.12) to be higher in Cu-supplemented steers. Postfeeding norepinephrine concentrations tended to be higher (P < 0.14) in Cu-supplemented steers. Nonesterifled fatty acid concentrations were lower (P < 0.10) in Cu-supplemented steers after norepinephrine administration. Backfat depth was decreased (P < 0.10) and longissimus muscle polyunsaturated fatty acid percentages were increased (P < 0.10) in steers receiving supplemental Cu. These results indicate that Cu addition to a finishing diet containing 5 mg Cu/kg DM alters lipid metabolism. The reduction in backfat depth may be due to copper altering catecholamine metabolism in steers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号