首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forest planning needs to assess various risks that may cause economic or other losses to forest owners. This study aimed at developing a wind risk assessment method, which considers the occurrence and directional distribution of strong winds, and the effect of snow loads and support by neighbouring trees on the expected wind damage. For this purpose, regression models were developed for predicting the critical wind speeds needed to uproot Scots pine, Norway spruce and birch trees at the downwind stand edges in Finnish conditions under unfrozen soil conditions, based on the characteristics of both downwind and upwind stand, and additional snow load on tree crowns. Furthermore, a risk index was developed for the forest landscape, based on the critical wind speeds of stands, occurrence of strong winds and their directional distribution, and the prevailing snow loading in the region. Thereafter, the mean risk index was used as an objective variable in heuristic optimization in forest planning to demonstrate how the optimal cuttings and the spatial layout of the landscape may change depending on the wind and snow conditions and the support that trees provide to each other. Our results show that the directional distribution of strong winds shape the optimal forest landscape structure markedly. Consideration of snow loading in the calculation of critical wind speeds increased the mean risk clearly and produced slightly more aggregated landscape structures in terms of tree height. The consideration of support that neighbouring trees provide to each other had minor effects. To conclude, the consideration of risk of wind induced damages in forest planning calculations clearly affects the selected cutting strategies and impacts the spatial layout of the landscape.  相似文献   

2.
Variability in short root morphology of the three main tree species of Europe's boreal forest (Norway spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth)) was investigated in four stands along a latitudinal gradient from northern Finland to southern Estonia. Silver birch and Scots pine were present in three stands and Norway spruce was present in all stands. For three fertile Norway spruce stands, fine root biomass and number of root tips per stand area or unit basal area were assessed from north to south. Principal component analysis indicated that short root morphology was significantly affected by tree species and site, which together explained 34.7% of the total variability. The range of variation in mean specific root area (SRA) was 51-74, 60-70 and 84-124 m(2) kg(-1) for Norway spruce, Scots pine and silver birch, respectively, and the corresponding ranges for specific root length were 37-47, 40-48 and 87-97 m g(-1). The range of variation in root tissue density of Norway spruce, Scots pine and silver birch was 113-182, 127-158 and 81-156 kg m(-3), respectively. Sensitivity of short root morphology to site conditions decreased in the order: Norway spruce > silver birch > Scots pine. Short root SRA increased with site fertility in all species. In Norway spruce, fine root biomass and number of root tips per m(2) decreased from north to south. The differences in morphological parameters among sites were significant but smaller than the site differences in fine root biomass and number of root tips.  相似文献   

3.

The aim of this study was to assess the risk of snow damage to trees in unmanaged and managed stands of Scots pine (Pinus sylvestris L.), Norway spruce [Picea abies (L.) Karst.] and birch (Betula spp.) over a rotation. The risk assessment was based on the prediction of critical snow loads in interaction with the windspeed at which trees can be expected to break or be uprooted, and on the frequency of long-term extremes of precipitation and of suitable temperature conditions for the accumulation of snow on the tree crowns. The Scots pine stands were found to be more susceptible to snow damage than the others, and an unmanaged stand of Scots pine to be more susceptible to break and uproot than a managed one. Correspondingly, an unmanaged stand of Norway spruce was more susceptible to stem breakage than a managed one, but less susceptible to uprooting. Neither unmanaged nor managed birch stands were likely to suffer any kind of snow damage. The susceptibility of unmanaged stands is caused by low tapering of the trees. Based on the frequency of long-term extremes in precipitation at the temperatures needed for snow accumulation on tree crowns, critical snow loads of 10-19, 20-29 and 30-39 kg m-2 occurred 19.3, 3.3 and 1.3 times in a decade in southern Finland. Critical snow loads of 10-19, 20-29, 30-39 and 60-69 kg m-2 occurred in northern Finland 17.0, 6.3, 1.7 and 0.3 times in a decade.  相似文献   

4.
The clear cuts and seedling stands can speed up winds and may trigger blowdown at the edges of neighbour stands. Therefore, the height contrast of the neighbour stands and fragmentation at landscape level could be used to indicate the susceptibility of windthrow. In this study, we studied how forest fragmentation affects the susceptibility of a boreal forest ecosystem to wind damage, both at patch and landscape level based on theoretical computations. For this purpose we generated, based on real stand inventory data of a Finnish forest ecosystem, different landscape configurations of Scots pine and Norway spruce forests using Monte Carlo simulation. Thereafter, we applied a mechanistic wind damage model to predict the wind speeds needed for wind damage at forest edges. The fragmentation metrics of Contrast-Weighted Edge Density with three different height dissimilarity calculation methods were used to analyze the fragmentation at the landscape level.  相似文献   

5.
The occurrence of Heterobasidion annosum in stumps and growing trees was investigated on 15 forest sites in southern Finland where the previous tree stand had been Norway spruce (Picea abies) infected by H. annosum, and the present stand was either Scots pine (Pinus sylvestris), lodgepole pine (Pinus contorta), Siberian larch (Larix siberica), silver birch (Betula pendula) or Norway spruce 8–53 years old. Out of 712 spruce stumps investigated of the previous tree stand, 26.3% were infected by the S group and 0.3% by the P group of H. annosum. The fungus was alive and the fruit bodies were active even in stumps cut 46 years ago. In the subsequent stand, the proportion of trees with root rot increased in spruce stands and decreased in stands of other tree species. On average, one S type genet spreading from an old spruce stump had infected 3.0 trees in the following spruce stand, 0.5 trees in lodgepole pine, 0.3 trees in Siberian larch, 0.05 trees in Scots pine and 0.03 trees in silver birch stand. Although silver birch generally was highly resistant to the S type of H. annosum, infected trees were found on one site that was planted with birch of a very northern provenance.  相似文献   

6.
A process-based ecosystem model was used to assess the impacts of changing climate on net photosynthesis and total stem wood growth in relation to water availability in two unmanaged Norway spruce (Picea abies) dominant stands with a mixture of Scots pine (Pinus sylvestris) and birch (Betula sp.). The mixed stands were grown over a 100-year rotation (2000-99) in southern and northern Finland with initial species shares of 50, 25 and 25% for Norway spruce, Scots pine and birch, respectively. In addition, pure Norway spruce, Scots pine and birch stands were used as a comparison to identify whether species' response is different in mixed and pure stands. Soil type and moisture conditions (moderate drought) were expected to be the same at the beginning of the simulations irrespective of site location. Regardless of tree species, both annual net canopy photosynthesis (P(nc)) and total stem wood growth (V(s)) were, on average, lower on the southern site under the changing climate compared with the current climate (difference increasing toward the end of the rotation); the opposite was the case for the northern site. Regarding the stand water budget, evapotranspiration (E(T)) was higher under the changing climate regardless of site location. Transpiration and evaporation from the canopy affected water depletion the most. Norway spruce and birch accounted for most of the water depletion in mixed stands on both sites regardless of climatic condition. The annual soil water deficit (W(d)) was higher on the southern site under the changing climate. On the northern site, the situation was the opposite. According to our results, the growth of pure Norway spruce stands in southern Finland could be even lower than the growth of Norway spruce in mixed stands under the changing climate. The opposite was found for pure Scots pine and birch stands due to lower water depletion. This indicates that in the future the management should be properly adapted to climate change in order to sustain the productivity of mixed stands dominated by Norway spruce.  相似文献   

7.
  • ? The aim of this work was to analyze how the forest structure affects the risk of wind damage at the landscape level in a boreal forest.
  • ? This was done by employing: (i) Monte Carlo simulation technique for generating landscapes with different age class distributions, proportions of open areas (gaps), and tree species composition; and (ii) a mechanistic wind damage model, HWIND, for predicting the critical wind speeds at downwind stand edges of open areas (gaps) for risk consideration. The level of risk of wind damage observed at the landscape level was significantly affected by the presence of gaps and old stands. Even a slight increase in the proportion of gap areas or older stands had a significant impact on the total length of edges at risk. As a comparison, variation in species composition (Scots pine and/or Norway spruce) had much smaller impact on the risk of damage.
  • ? In conclusion, the effects of forest structure on the risk of wind damage should especially be considered by forest managers in day-to-day forest planning in order to reduce the risk of wind damage both at the stand and landscape level.
  •   相似文献   

    8.
    Abstract

    Tree mortality, its causes, and the input of dead charred wood were studied in 11 managed 30–45-year-old Scots pine (Pinus sylvestris L.) stands 1 year after experimental low-intensity prescribed burnings in southern Finland. First, the relationship between fire-induced tree damage and several external variables, e.g. stand density, within-stand wind speed, open-air wind speed, the Finnish Forest Fire Index (FFI) and flame height, was studied. Secondly, the study examined which damage and morphological characteristics best predicted tree mortality. Tree mortality was very variable in the experimental plots, ranging from 0% to 48% on the basis of stem number and from 0% to 41% in terms of wood volume. The input of dead and charred wood decreased with stand age, being 19.4 m3 ha?1 in 30–35-year-old stands, but only 1.7 m3 ha?1 in 45-year-old stands. The input of dead wood was on average 10 m3 ha?1, representing less than 5% of the mean volume before the prescribed fire. The external variables that best explained fire-induced damage were within-stand wind speed, flame height and FFI. Tree mortality was best predicted by charred stem ratio with bark thickness, and by charred stem ratio with tree diameter. The results indicate that prescribed burning that is conducted downwind increases tree mortality and changes subsequent stand structure with increasing within-stand wind speed.  相似文献   

    9.

    Mean age, mean and top heights and yield were studied in 20 mixed stands of birch ( Betula pubescens Ehrh. and B. pendula Roth) and Picea abies (L.) Karst. and nine mixed stands of birch and Pinus sylvestris L. in south-eastern Norway. Each mixed stand and the adjacent pure coniferous stand (control) were growing under the same site conditions and had not been commercially thinned. There were no significant differences in mean age at breast height or in top heights between birch and conifers in the mixed stands, while mean height was significantly higher for birch than for spruce. A growth index was calculated based on total volume and age at breast height. For the spruce sites the growth in young mixed stands (birch < 17 m) was superior to that of pure spruce, while the difference was insignificant in older stands. The growth index correlated positively with the ratio between generatively and vegetatively regenerated birch trees, and negatively with the age of the oldest species in the mixture and with site quality. For the pine sites there was no significant difference in the growth index between mixed birch-pine and pure pine stands. A mixture effect of birch on the volume yield of spruce or pine could not be demonstrated.  相似文献   

    10.
    Model computations were made on the critical combination of snow loading and windspeed for snow damage of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies Karst.) and birch sp. (Betula sp.) at the newly formed stand edge with varying tree height and stem taper using the model developed by H. Peltola, S. Kellomäki and H. Väisänen (1996, HWIND: A Mechanistic Model for Wind and Snow Damage of Scotts Pine, Norway Spruce and Birch sp.) for the mechanism of wind and snow damage. In the computations, the total turning moment arising from the wind and snow load and from the bending of stem and crown was calculated along with the breaking stress of the stem and root anchorage. Windspeed variation within the crown and the vertical distribution of snow, stem and crown weight were also taken into account.According to computations, the critical combination of snow and wind loading for stem breakage and uprooting of trees was caused mainly by accumulation of snow on tree crowns, rather than by wind, which did, however, increase the risk of damage. The risk of damage increased along with stem taper decrease or tree height increase for all tree species studied. However, Scots pine and Norway spruce were found much more susceptible to snow damage than birch, which (being leafless) had much less crown area for snow attachment and wind loading.The trees most likely to suffer stem breakage were slightly tapering Scots pines and Norway spruces with tapers of 1:120 for varying tree heights of 12–20 m under short-term snow loading of 60 kg m−2, i.e. they would have suffered stem breakage under windspeeds of less than 9 m s−1 above the tree canopy top. Respectively, even Scots pine and Norway spruce with tapers of 1:100 were at risk of stem breakage through sustained snow loading of 60 kg m−2. In addition, even snow loads of 20–40 kg m−2 were found big enough to cause stem breakage of these trees with stem tapers of 1:120 during sustained snow loading. Correspondingly, similar pines and spruces with stem tapers of 1:120 were found to even more liable to be uprooted during conditions of unfrozen soil than of having their stem broken by short-term snow loading of 20–60 kg m−2, i.e. less windspeed was needed to cause uprooting. However, pines and spruces with tapers of 1:80 were not at risk for stem breakage and uprooting. This was because snow would have more probably been dislodged from the tree crowns by windspeeds greater than 9 ms−1 which are needed to worsen the damage. Nor would very slender birch without leaves have suffered stem breakage or uprooting under any circumstances with windspeeds of less than 9 ms−1.  相似文献   

    11.
    Variations in fine root biomass of trees and understory in 16 stands throughout Finland were examined and relationships to site and stand characteristics determined. Norway spruce fine root biomass varied between 184 and 370 g m(-2), and that of Scots pine ranged between 149 and 386 g m(-2). In northern Finland, understory roots and rhizomes (< 2 mm diameter) accounted for up to 50% of the stand total fine root biomass. Therefore, the fine root biomass of trees plus understory was larger in northern Finland in stands of both tree species, resulting in a negative relationship between fine root biomass and the temperature sum and a positive relationship between fine root biomass and the carbon:nitrogen ratio of the soil organic layer. The foliage:fine root ratio varied between 2.1 and 6.4 for Norway spruce and between 0.8 and 2.2 for Scots pine. The ratio decreased for both Norway spruce and Scots pine from south to north, as well as from fertile to more infertile site types. The foliage:fine root ratio of Norway spruce was related to basal area and stem surface area. The strong positive correlations of these three parameters with fine root nitrogen concentration implies that more fine roots are needed to maintain a certain amount of foliage when nutrient availability is low. No significant relationships were found between stand parameters and fine root biomass at the stand level, but the relationships considerably improved when both fine root biomass and stand parameters were calculated for the mean tree in the stand. When the northern and southern sites were analyzed separately, fine root biomass per tree of both species was significantly correlated with basal area and stem surface area per tree. Basal area, stem surface area and stand density can be estimated accurately and easily. Thus, our results may have value in predicting fine root biomass at the tree and stand level in boreal Norway spruce and Scots pine forests.  相似文献   

    12.
    The effect of tree species mixture on stand volume yield and on tree-species-specific diameter and height growth rates were analysed in managed mixed stands of Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Ehrn.).Data were obtained from 14 repeatedly measured stands located in Southern Finland on mineral soil sites with varying admixture of Scots pine and silver birch. Statistical analysis was carried out for studying the effect of species mixture on the development of stand characteristics. For the analysis, the plots were categorised into three groups (plot types) according to the species dominance. In order to analyse species-specific growth rates, individual-tree mixed linear growth models for tree diameter and height growth were developed for both tree species.The results clearly show that the yield of the managed mid-rotation, mixed stands was greater for stands dominated by Scots pine than for stands dominated by birch, and the stand volume increment decreased with an increasing proportion of silver birch. Analysis of diameter and height growth by tree species revealed that the main reason for this pattern is the negative impact of birch competition on the growth of pine trees. The increase in diameter of pine was clearly hampered if the proportion of birch was high. An abundance of birch also slightly decreased the growth in height of Scots pine, although the effect was less than on diameter growth. Species mixture did not affect the diameter growth of birch but did have a significant effect on height development. Height growth of birch was considerably greater in pine-dominated stands than in birch-dominated stands. In pine-dominated mixed stands, the height growth of birch was quite close to that of dominant pine trees, and birches can endure in competition with pines for light.The results apply for even-aged and single-storey managed stands, where stocking density and structure are controlled with pre-commercial and commercial thinnings. The results are not applicable to unmanaged mixed stands undergoing self-thinning. This study provides new information on mixed stands from a silvicultural perspective, which can be applied in decisions involving the management of mixed stands.  相似文献   

    13.
    The objective of this study was to compare the survival and volume of conifer stands at 26 years of age with their status at planting. Survival, growth and damage were studied in eight clear felled stands regenerated in 1972. Five of the areas were planted with Norway spruce (Picea abies (L.) Karst.) and three with Scots pine (Pinus sylvestris L.). The plantings were examined in 1972 and 1974. In 1974, the number of living undamaged planted seedlings was low (10–15%). However, the number of undamaged seedlings was supplemented by naturally regenerated conifer and birch seedlings. The total number of undamaged seedling in 1974 was equivalent to 20–30% of the number of seedlings planted. In 1998, the main species in three stands had changed from Norway spruce to Scots pine, and in one stand from Norway spruce to birches. Actual volume in 1998 for the stands was compared to stand volume generate according to five scenarios based on recommended and actual seedling number in 1972 and 1974. The actual volume was 64% of that expected if the recommended number of trees had been planted. Naturally regenerated Scots pine and Norway spruce increased stand density in 1998. The actual volume was 37% higher than the average volume in the surrounding county. On average, 36% of the trees were damaged. More than 50% of the total damage was caused by moose (Alces alces L.). For Scots pine, moose or other browsing animals damaged 30% of the trees. The results of this study indicate that the 1998 volume was higher than expected, considering the low number of undamaged seedlings in 1974. This was mainly due to the large amount of naturally regenerated plants. In addition, the results indicate that the volume could have been higher if the initial conditions had been better. Despite the low number of undamaged seedlings in 1974, seven of the eight studied stands produced a higher volume than the average stand for the region. In practise, high numbers of seedlings should be planted on scarified areas. In most cases there will be a supply of naturally regenerated seedlings.  相似文献   

    14.
    Models for predicting tree height were constructed for Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and pubescent birch (Betula pubescens). The data consisted of two separate sets of permanent sample plots forming a representative sample of drained peatland stands in the whole country. A logarithmic height-diameter curve with one nonlinear parameter specific to each tree species was applied. It was assumed that the intercept and slope of the curve would vary randomly from stand to stand. Stand characteristics were used to predict the mean intercept and slope. A nonhomogeneous variance of the residual error was modelled as a function of tree diameter. A mixed linear model technique was applied to fit the models. The diameter of the tree of the median basal area, stand basal area, geographical location of the stand, and site quality were used as fixed independent variables in explaining the variation in the intercept. The diameter of the tree of the median basal area and the stand basal area were used in explaining the variation in the slope.  相似文献   

    15.
    JOHANSSON  M .-B. 《Forestry》1995,68(1):49-62
    Needle litter from 14 stands of Scots pine (Pinus silvestris,L.), 13 stands of Norway spruce (Picea abies (L.) Karst.) andleaf litter from three stands of white birch (Betula pubescensEhrh.) were analysed for chemical composition. The concentrationsof the elements N, P, K, Ca, Mg and Mn as well as solid organiccomponents (lignin, cellulose and hemicelluloses) and solubleswere determined. When the average chemical compositions werecompared the Scots pine needle litter was clearly the most nutrient-poorlitter type. Of the solid organic-chemical components the ligninfraction dominated in the spruce and birch litter whereas thecellulose dominated in the pine needle litter. When Norway spruce and Scots pine were growing in adjacent standson soils with the same bedrock origin the spruce litter hadsignificantly higher concentrations of nutrients (N, P, K, Ca,Mg, Mn) than the pine needle litter. At sites where Norway spruceand white birch were growing in adjacent stands, the birch leaflitter had generally higher concentrations of nutrients. However, significant or nearly significant differences were onlyobtained for Mg (P = 0.002), K (P = 0.056) and N (P = 0.087),probably due to the few replicates of stands compared. Concerningorganic chemical components, the spruce needle litter had significantlyhigher concentrations of lignin and mannan than all the otherlitters and lower levels of ethanol-soluble substances, celluloseand galactan than the pine needle litter. Further, it had lowerconcentrations of water solubles, rhamnan and xylan than thebirch litter. No relationships were established between the nutrient statusof the conifer litters and the site index H100 (the dominantheight of the trees at a reference age of 100 years) of thestands. Concentrations of solid carbohydrates in the litterswere, however, positively correlated with site index (P <0.001). Further, the concentration of nitrogen in the pine needlelitter was negatively correlated with the latitude of the sites(P < 0.01). The influence of litter chemistry on the decompositionof litter and nutrient cycling of forests is discussed.  相似文献   

    16.
    Many boreal tree stands are neither clearly even-aged nor clearly uneven-aged. The stands may undergo a series of stages, during which an even-aged stand is transformed into two-storied mixed stand, and finally to multistoried or uneven-aged stand structure. The species composition often changes during the succession of stand stages. This study developed models for stand dynamics that can be used in different stand structures and species compositions. The model set consists of species-specific individual-tree diameter increment and survival models, and models for ingrowth. Separate models were developed for Scots pine, Norway spruce, and hardwood species. The models were used in a growth simulator, to give illustrative examples on species influences and stand dynamics. Methods to simulate residual variation around diameter increment and ingrowth models are also presented. The results suggest that mixed stands are more productive than one-species stands. Spruce in particular benefits from an admixture of other species. Mixed species improve diameter increment, decrease mortality, and increase ingrowth. Pine is a more beneficial admixture than birch. Simulations showed that uneven-aged management of spruce forests is sustainable and productive, and even-aged conifer stands growing on medium sites can be converted into uneven-aged mixed stands by a series of strong high thinnings.  相似文献   

    17.
    Incoming shortwave global radiation (Q g) and photosynthetically active radiation (PAR; Q pa as a fraction of full daylight, relative irradiance (%Q), were measured at the same time in young stands of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). Measurements were made on three levels above ground: 20 cm above ground and 50 and 15 % of stand height. Stands of three heights (75, 150 and 300 cm) were studied during two months. The stands were created by arranging young trees cut from natural stands, in nine quadratic spacings: 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0, 1.4 and 2.0 m. The leaf area index (L) was estimated. Differences in %Q‐values for Q pa and Qg in the same species and at the same stand height and level of light measurements above ground were significant only in 150 and 300 cm stands. In 75 cm high stands of Scots pine, the %Q was <60% at spacings <0.2 m and in 75 cm high stands of Norway spruce, the %Q was <60% at spacings <0.3 m. Only at 0.1x0.1–0.3x0.3 m, %Q was <20% in Norway spruce stands. In 150 cm stands %Q<20% was measured at spacings <0.7 m in Norway spruce and <0.5 in Scots pine. In 300 cm stands of Norway spruce it was measured up to 1.2 and in Scots pine <1.1 m. Light extinction coefficients, K and Kg for spruce and pine stands were 0.17–0.40 and 0.16–0.31 respectively. Some practical implications of the study are presented. Lack of light (%Q<10%) as a single factor of seriously suppressed growth and development of broad‐leaved plants and suckers by competition in young stands of spruce and pine only occur in dense stands 0.3x0.3 m‐1.1xl.l m (8000–100000 stems/hectare). Competition by light on a regenerated area generally occurs in the level of 50% of tree height (150–300 cm) and higher due to the rapid growth of broad‐leaved trees (sprouts) compared with planted conifers but the light intensity at these levels %Q>10%.  相似文献   

    18.
    The nature of interference of bracken with Scots pine and Norway spruce seedling establishment was considered in three field experiments. In a seeding experiment, it was found that Scots pine germination was highest on exposed mineral soil and lowest when intact bracken litter and humus were present, suggesting adverse effects of litter and humus on pine regeneration probably due to phytotoxicity. In a second experiment, smothering by bracken caused high mortality of Scots pine seedlings while Norway spruce seedlings were relatively unaffected. Mortality for both Scots pine and Norway spruce seedlings was low when planted in a adjacent Scots pine-bilberry stand with no bracken. Annual shoot growth of Norway spruce was higher in bracken than in Scots pine-bilberry vegetation while no differences in shoot growth between these two vegetation types occurred for Scots pine. In a third experiment, activated carbon was added to the ground under Norway spruce seedlings planted in bracken to adsorb possible phytotoxic compounds released by bracken. The addition of carbon had no effect on seedling mortality or growth rate, indicating that the seedlings were not susceptible to allelochemicals released by bracken. Since large Norway spruce seedlings were relatively unaffected by bracken interference in this study, artificial regeneration with containerized Norway spruce seedlings is suggested to achieve an acceptable conifer tree establishment on clear-cuts invaded by bracken.  相似文献   

    19.
    A series of 15 field experiments was established to quantify the growth response of first‐thinning stands of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst) to whole‐tree harvesting and to estimate the need for nutrient compensation. The experiments were undertaken in Finland, Norway and Sweden and represent a wide range of site conditions. The site index (H 100) of Scots pine stands varied from 19 to 29 m, and that of Norway spruce stands from 28 to 36 m. Total amounts of biomass and nutrients removed were calculated based on data obtained from felled sample trees. During the first 5‐yr period the growth response to the removal of logging residues varied considerably in both pine and spruce stands. Regression analyses did not reveal any functions that explained the variation in results satisfactorily. In cases where whole‐tree harvesting influenced tree growth negatively, this effect was counteracted by compensatory fertilization. It was concluded that to determine the response of remaining trees to harvesting intensity reliably, the post‐harvest period analysed must be longer than 5 yrs.  相似文献   

    20.
    A gap-model was modified in order to utilise ground-true forest data to predict the effect of climate change on forests in Finland. The model's resonse to climate change was evaluated by using test scenarios of changing temperature and precipitation in Finland. Model computations indicated that in Southern Finland conifers, Norway spruce in particular, suffered from rapidly increasing temperature (0.5°C in a decade), but Scots pine derived a small benefit from a temperature increase of 0.1°C in a decade. Pendula birch profited by increasing temperature. In Northern Finland all tree species (Scots pine, Norway spruce, Pendula birch and Pubescent birch) used in simulations increased their stand volume and total production due to increased temperature. Precipitation changes had only little effect on stand volume and total production of trees on sites with coarse moraine as soil texture. The effect of soil texture on model performance was examined at a southern site under current climate using moraine, sand and silt as soil textures. Stand volume and total production of coniferous trees remained at a lower level on sand than on moraine soils or on silt. Response of birches to soil texture was similar to that of the conifers, but differences in total production between soil textures remained smaller.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号