首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simulation of anion transport in undisturbed soil cores under steady-state flow conditions Miscible displacement experiments with undisturbed soil columns were carried out in the laboratory. Objective of the experiments was to collect information about the transport of Cl? and NO3? through field soils. The experiments were carried out with a forest soil and an agricultural soil. The flow velocity of the chloride and the nitrate solution was either 1 cm/day or 0,3 cm/day. Of each soil there were 5 replicates. The effluent of each of the columns was analyzed and the collected data were used for model calculations. It was found that the breakthrough curves of Cl? and NO3? were similar in shape. For the well-aggregated forest soil the apparent diffusion coefficient was much larger than for the agricultural soil. For both soils practically all of the chloride could be recovered in the effluent, but for nitrate considerable losses within the soil column were noted. It was also found that the chloride breakthrough could be described with a simple convection-dispersion equation. However a reduction of the total pore space, accounting for anion exclusion, was needed. Furthermore it was observed that for nitrate an additional sink term in the convection-dispersion equation was needed to account for the observed nitrate losses. It appears that the transport of nitrate and chloride through the soils that were studied can be described mathematically, provided the anion exclusion space and the rate of nitrate losses are known. The nature of the anion exclusion and the nitrate transformation needs further study.  相似文献   

2.
Cation exchange is often studied with disturbed and dried soils, but the applicability of the results to undisturbed soils is not straightforward. We investigated the value of exchange coefficients obtained from standard procedures for predicting cation exchange in soil. Columns of undisturbed and disturbed subsoil of a Luvisol (SBt horizon) were leached under saturated conditions with 0.4, 4, 20, 41, 102 and 205 mm BaCl2 at a Darcy velocity of 1400 mm day?1. The model PHREEQC was used to calculate one‐dimensional transport, inorganic complexation and multiple cation exchange. Two model variants were tested: m1 (exchangeable cations obtained by percolation with NH4Cl) and m2 (exchangeable cations obtained by shaking the soil with BaCl2). The exchange coefficients (Gaines–Thomas formalism) were calculated from the ion activities in solution and exchangeable cations obtained by NH4Cl percolation (m1) or shaking with BaCl2 (m2). Variant m1 predicted cation exchange of the disturbed (homogenized) soil for the entire BaCl2 concentration range, whereas variant m2 resulted in a two‐fold overestimation of desorbed K for all experiments, which was related to large amounts of K released from the soil by shaking with BaCl2. In experiments with undisturbed soil, variant m1 predicted the concentrations of Mg, Ca, K, and Na in the solution phase and the sum of cations released from exchange sites. However, variant m2 predicted changes in ion concentrations and exchangeable cations somewhat less well. This study suggests that the amounts of exchangeable cations and exchange coefficients obtained from experiments with homogenized soil by percolation are useful to predict cation concentrations in column experiments with undisturbed soils.  相似文献   

3.
Abstract: In recent years, sulfur (S) deficiencies in winter wheat (Triticum aestivum L.) have become more common, particularly on coarse‐textured soils. In Study I, field experiments were conducted in 2001/2002 through 2003/2004 on Mississippi River alluvial soils (Experiment I) and an upland, loessial silt loam (Experiment II) to evaluate the influence of spring S rates of 0, 5.6, 11.2, and 22.4 kg ha?1 and a fall rate of 22.4 kg sulfate (SO4)‐S ha?1 on grain yield of three varieties. In Study II, field experiments were conducted in 2001/2002 and 2004/2005 on alluvial soils to evaluate the influence of spring S rates of 0, 5.6, 11.2, and 22.4 kg SO4‐S ha?1 in fields where S‐deficiency symptoms were present. Grain yield response to applied S occurred only on alluvial, coarse‐textured, very fine sandy loam soils (Study II) that had soil SO4‐S levels less than the critical level of 8 mg kg?1 and organic‐matter contents less than 1 g kg?1 in the 0‐ to 15‐, 15‐ to 30‐, and 30‐ to 45‐cm depths. Soil pH increased with soil depth. Optimum S rate was 11.2 kg SO4‐S ha?1 in 2001/2002 and 5.6 kg SO4‐S ha?1 in 2004/2005. On the upland, loessial silt loam soil, soil SO4‐S levels accumulated with depth, whereas organic‐matter content and pH decreased. In the loessial soils, average soil SO4‐S levels in the 15‐ to 30‐ and 30‐ to 45‐cm soil depths were 370% greater than SO4‐S in the surface horizon (0 to 15 cm).  相似文献   

4.
Leaching of nutrients in soil can change the surface and groundwater quality. The present study aimed at investigating the effects of raw and ammonium (NH4+)-enriched zeolite on nitrogen leaching and wheat yields in sandy loam and clay loam soils. The treatments were one level of nitrogen; Z0: (100 kg (N) ha?1) as urea, two levels of raw zeolite; Z1:(0.5 g kg?1 + 100 kg ha?1) and Z2: (1 g kg?1 + 100 kg ha?1), and two levels of NH4+-enriched zeolite; Z3: (0.5 g kg?1 + 80 kg ha?1) and Z4: (1 g kg?1 + 60 kg ha?1). Wheat grains were sown in pots and, after each irrigation event, the leachates were collected and their nitrate (NO3?) and NH4+ contents were determined. The grain yield and the total N in plants were measured after four months of wheat growth. The results indicated that the amounts of NH4+ and NO3? leached from the sandy loam soil were more than those from the clay loam soil in all irrigation events. The maximum and minimum concentrations of nitrogen in the drainage water for both soils were observed at control and NH4+-zeolite treatments, respectively. Total N in the plants grown in the sandy loam was higher compared to plants grown in clay loam soil. Also, nitrogen uptake by plants in control and NH4+-zeolite was higher than that of raw-zeolite treatments. The decrease in the amount of N leaching in the presence of NH4+-zeolite caused more N availability for plants and increased the efficiency of nitrogen fertilizers and the plants yield.  相似文献   

5.
A field study was conducted in alluvial sandy loam soil to assess the impact of amendments and hydrogel application on soil hydrophysical properties. Soil physical environment was characterized and quantified using soil physical quality index (S). The main treatments include farmyard manure (FYM) and tank soil applied at 5 t ha?1 and no amendment, and subtreatments included three rates of hydrogel: 5, 2.5, and 0 kg ha?1. Hydrogel was applied at 5–7 cm deep just below the seed in rows. Results revealed that FYM along with gel application at 5 kg ha?1 significantly increased mean weight diameter, field capacity moisture content, plant-available water content and relative field capacity, retention pores (Ret P), water-stable structural units, and structural coefficient and reduced transmission pores (TP), penetration resistance, and saturated hydraulic conductivity (Ks). Significantly greater values of S in hydrogel-treated plots and close associations of S with other soil physical parameters were obtained.  相似文献   

6.
7.
《Geoderma》2005,124(3-4):335-348
In order to gain understanding of the movement of pollutant metals in soil, the chemical mechanisms involved in the transport of zinc were studied. The displacement of zinc through mixtures of sand and cation exchange resin was measured to validate the methods used for soil. With cation exchange capacities of 2.5 and 5.0 cmolc kg−1, 5.6 and 8.4 pore volumes of 10 mM CaCl2, respectively, were required to displace a pulse of ZnCl2 . A simple Burns-type model (Wineglass) using an adsorption coefficient (Kd) determined by fitting a straight line relationship to an adsorption isotherm gave a good fit to the data (Kd=0.73 and 1.29 ml g−1, respectively).Surface and subsurface samples of an acidic sandy loam (organic matter 4.7 and 1.0%, cation exchange capacity (CEC) 11.8 and 6.1 cmolc kg−1, respectively) were leached with 10 mM calcium chloride, nitrate and perchlorate. With chloride, the zinc pulse was displaced after 25 and 5 pore volumes, respectively. The Kd values were 6.1 and 2.0 ml g−1, but are based on linear relationships fitted to isotherms which are both curved and show hysteresis. Thus, a simple model has limited value although it does give a general indication of rate of displacement. Leaching with chloride and perchlorate gave similar displacement and Kd values, but slower movement occurred with nitrate in both soil samples (35 and 7 pore volumes, respectively) which reflected higher Kd values when the isotherms were measured using this anion (7.7 and 2.8 ml g−1, respectively). Although pH values were a little higher with nitrate in the leachates, the differences were insufficient to suggest that this increased the CEC enough to cause the delay. No increases in pH occurred with nitrate in the isotherm experiments. Geochem was used to calculate the proportions of Zn complexed with the three anions and with fulvic acid determined from measurements of dissolved organic matter. In all cases, more than 91% of the Zn was present as Zn2+ and there were only minor differences between the anions. Thus, there is an unexplained factor associated with the greater adsorption of Zn in the presence of nitrate.Because as little as five pore volumes of solution displaced Zn through the subsurface soil, contamination of ground waters may be a hazard where Zn is entering a light-textured soil, particularly where soil salinity is increased. Reductions in organic matter content due to cultivation will increase the hazard.  相似文献   

8.
Changes to soil nutrient availability and increases for crop yield and soil organic C (SOC) concentration on biochar‐amended soil under temperate climate conditions have only been reported in a few publications. The objective of this work was to determine if biochar application rates up to 20 Mg ha?1 affect nutrient availability in soil, SOC stocks and yield of corn (Zea mays L.), soybean (Glycine max L.), and switchgrass (Panicum virgatum L.) on two coarse‐textured soils (loamy sand, sandy clay loam) in S Quebec, Canada. Data were collected from field experiments for a 3‐y period following application of pine wood biochar at rates of 0, 10, and 20 Mg ha?1. For corn plots, at harvest 3 y after biochar application, 20 Mg biochar ha?1 resulted in 41.2% lower soil NH on the loamy sand; the same effect was not present on the sandy clay loam soil. On the loamy sand, 20 Mg biochar ha?1 increased corn yields by 14.2% compared to the control 3 y after application; the same effect was not present on the sandy clay loam soil. Biochar did not alter yield or nutrient availability in soil on soybean or switchgrass plots on either soil type. After 3 y, SOC concentration was 83 and 258% greater after 10 and 20 Mg ha?1 biochar applications, respectively, than the control in sandy clay loam soil under switchgrass production. The same effect was not present on the sandy clay loam soil. A 67% higher SOC concentration was noted with biochar application at 20 Mg ha?1 to sandy clay loam soil under corn.  相似文献   

9.
Silver nanoparticles (AgNPs) can enter the environment when released from products containing them. As AgNPs enter soil, they are often retained in the soil profile and/or leached to the groundwater. This research assessed the transport of AgNPs in their “particle form” through the soil profile using a series of columns. Three soil types were put into soil columns: LSH (loam with high organic matter (OM)), LSL (loam with low OM), and Sand (no OM). The results showed that AgNP transport and retention in soil as well as particle size changes are affected by soil organic matter (OM) and the cation exchange capacity (CEC) of soil. OM affected the transport and retention of AgNPs. This was evident in the LSH columns where the OM concentration was the highest and the AgNP content the lowest in the soil layers and in the effluent water. The highest transported AgNP content was detected in the Sand columns where OM was the lowest. CEC had an impact on the particle size of the AgNPs that were retained in the soil layers. This was clear in columns packed with high CEC-containing soils (LSL and LSH) where AgNP particle size decreased more substantially than in the columns packed with sand. However, the decrease in AgNP sizes in the effluent water was less than the decrease in particle size of AgNPs transported through but retained in the soil. This means that the AgNPs that reached the effluent were transported directly from the first layer through the soil macropores. This work highlights the ability to track AgNPs at low concentrations (50 μg kg?1) and monitor the changes in particle size potential as the particles leach through soil all of which increases our knowledge about AgNP transport mechanisms in porous media.  相似文献   

10.
Summary Denitrification activities were measured over a 3-year period in a coarse sandy soil and a sandy loam soil. In all years the crops were spring barley in combination with Italian ryegrass as a catch crop. The denitrification loss was measured using the acetylene inhibition technique on soil cores. Furthermore, a simple model was developed, based on daily values of soil moisture and soil temperature, to calculate the denitrification loss. Soil temperatures for the model were measured, whereas soil moisture was derived from a water-balance model. Measurements of denitrification gave an annual loss of 0.6 kg N ha-1, and the model calculated a loss of 1–2 kg N ha-1 in the coarse sandy soil. In the sandy loam soil annual losses were measured as 1.5, 3.0, and 13.0 kg N ha-1 in 1988, 1989, and 1990, respectively. The corresponding values from the model simulation were 14, 9 and 14 kg N ha-1.  相似文献   

11.
伴随阴离子对马铃薯种植冲击土中钾素固持与淋溶的影响   总被引:1,自引:0,他引:1  
V. SHARMA  K. N. SHARMA 《土壤圈》2013,23(4):464-471
A column study was carried out to assess the influence of accompanying anions on potassium (K) leaching at potato growing sites with different soil textures (sandy loam and clay loam) in northwestern India. Potassium was applied in the top 15 cm layer of soil column at 30 and 60 mg K kg-1 through different sources having different accompanying anions (Cl-, SO42-, NO3- and H2PO4-). Maximum K was retained in the top 0--15 cm layer with a sharp decrease in K content occurring in 15--30 cm layer of the soil column. The trend was similar for both levels of applied K as well as frequency of leaching and soil type. The decrease of K content in soil column after four leaching events was maximum in case of Khanaura sandy loam, while only minor decrease was observed in Hundowal clay loam when K was applied at 60 mg K kg-1, indicating higher potential of clay rich soil to adsorb K. In general, the K leaching in presence of the accompanying anions followed the order of SO42- ≤ H2PO42- < NO3- = Cl-. Highest 1 mol L-1 CH3COONH4-extractable K was retained when K was applied along with SO42- and H2PO4- anions, and the least was retained when accompanying anion was Cl-1. The influence of anions was more pronounced in the light textured soil and at high amounts of K application. Higher levels of K application resulted in higher losses of K, especially in sandy loam soil as observed from the leachate concentration. Among the different K sources, the maximum amount of K leaching was noticed in the soil column amended with KCl. After four leachings, the maximum amount of K leached out was 6.40 mg L-1 in Hundowal clay loam and 9.29 mg L-1 in Khanaura sandy loam at 60 mg K kg-1 of soil application through KCl. These concentrations were lower than the recommended guideline of the World Health Organisation (12.00 mg L-1).  相似文献   

12.
The potential effect of acidification of contaminated sandy soils on Cd transport in the unsaturated zone was assessed. Forty‐eight soil profiles were sampled at five depths in a polluted field that was set aside in 1992. The Cd concentration in the top 30 cm of this field was, on average, 10 mg kg−1. A column experiment was carried out with one of the topsoil samples. Homogeneously packed columns were leached with 0.001 m CaCl2, adjusted to pH 3 or pH 5.7, at a pore water velocity of 6 cm day−1. The Cd and proton transport was predicted with coupled transport equations. The Cd transport was modelled by assuming local equilibrium and by using sorption parameters derived from batch experiments, while acidification was modelled with a kinetic approach, on the assumption that proton buffering was due to cation exchange and mineral weathering. Organic matter was the main contributor to the cation exchange capacity of these soils. Observed and predicted pH and Cd profiles in the columns agreed well. With the same model, the proton and Cd transport at field scale was calculated for each of the 48 profiles sampled (‘grid model’). It was predicted that the field‐averaged Cd concentration in the seepage water will increase from 6 μg litre−1 at present to 200 μg litre−1 over 260 years, which greatly exceeds the maximum permissible concentration (MPC) in groundwater of 5 μg litre−1. Predictions of Cd transport using field‐averaged soil properties yielded a later breakthrough time and a larger peak Cd concentration than predicted with the grid model, which illustrates the impact of spatial variability on solute transport. Continuation of liming practices is a possible solution to prevent breakthrough of Cd at concentrations far in excess of the MPC.  相似文献   

13.
The concern for groundwater pollution by agrichemicals through solute movement within the soil is widespread. Zeolite is a type of soil amendment that is utilized to improve physical properties of soil and ameliorate polluted soil. The high negative charge of the zeolite and its open space structure allows adsorption and access of heavy metals and other cations and anions. The objectives of this research were (i) to determine the effects of different application rates of zeolite (0, 2, 4, and 8 g kg?1) on the immobile water content and mass exchange coefficient in a loam soil and then (ii) to determine the effects of optimum application rate of zeolite on the immobile water content and mass exchange coefficient of sandy loam and clay loam soils in saturated conditions by a mobile and immobile (MIM) model. In a disturbed soil column, a method was proposed for determination of MIM model parameters, that is, immobile water content (θim), mass exchange coefficient (α), and hydrodynamic dispersion coefficient (Dh). Breakthrough curves were obtained for different soil textures with different zeolite applications in three replicates, by miscible displacement of chloride (Cl?1) in disturbed soil column. Cl?1 breakthrough curves were evaluated in terms of the MIM model. The results showed that the pore water velocity calculated based on the total soil volumetric water content (θim+ θm) and real pore water velocity calculated based on the mobile water content (θm) increased in the loam soil with an increase in zeolite application rate, so that, between these different rates of zeolite application, the maximum value of pore water velocity and real pore water velocity occurred at zeolite application rates of 8.6 and 11.5 g kg?1, which are indicated as the optimum application rates. However, the comparison between different soils showed that the zeolite application rate of 8 g kg?1 could increase pore water velocity of sandy loam and loam soils by 31% more than that of clay loam soil. The immobile water content and mass exchange coefficient of loam soil were correlated with the zeolite application rate and reduced with an increase in the rate of applied zeolite. In a comparison between different soils at zeolite application rate of 8 g kg?1, the immobile water contents of the zeolite-treated soil decreased by 57%, 60%, and 39% on sandy loam, loam, and clay loam soils, respectively, compared with the untreated soil. Furthermore, zeolite application could reduce mass exchange coefficient by 9%, 43%, and 21% on sandy loam, loam, and clay loam soils, respectively. A positive linear relationship was found between θim and α. Zeolite application increased real pore water velocity of sandy loam soil by 39% and 46% compared with loam and clay loam soils, respectively. In other studies there was a decrease in ammonium and nitrate leaching due to the zeolite application, and therefore, an increase in real pore water velocity due to zeolite application in sandy loam soil, as compared with the loam and clay loam soils, may not show more rapid movement of solute and agrichemicals to the groundwater.  相似文献   

14.
Potassium (K) leaching is affected by soil texture and available K, among other factors. In this experiment, effects of soil texture and K availability on K distribution were studied in the presence of roots, with no excess water. Soils from two 6-year field experiments on a sandy clay loam and a clay soil fertilized yearly with 0, 60, 120, and 180 kg ha?1 of K2O were accommodated in pots that received 90 kg ha?1 of K2O. Soybean was grown up to its full bloom (R2). Under field conditions, K leaching below the arable layer increased with K rates, but the effect was less noticeable in the clay soil. Potassium leaching in a sandy clay loam soil was related to soil K contents from prior fertilizations. With no excess water, in the presence of soybean roots, K distribution in the profile was significant in the lighter textured soil but was not apparent on the heavier textured soil.  相似文献   

15.
Annual potassium (K) balances have been calculated over a 40‐year period for five field experiments located on varying parent materials (from loamy sand to clay) in south and central Sweden. Each experiment consisted of a number of K fertilizer regimes and was divided into two crop rotations, mixed arable/livestock (I) and arable only (II). Annual calculations were based on data for K inputs through manure and fertilizer, and outputs in crop removal. Plots receiving no K fertilizer showed negative K balances which ranged from 30 to 65 kg ha?1 year?1 in rotation I, compared with 10–26 kg ha?1 year?1 for rotation II. On sandy loam and clay soils, the K yield of nil K plots (rotation I) increased significantly with time during the experimental period indicating increasing release of K from soil minerals, uptake from deeper soil horizons and/or depletion of exchangeable soil K (Kex). Significant depletion of Kex in the topsoil was only found in the loamy sand indicating a K supply from internal sources in the sandy loam and clay soils. On silty clay and clay soils, a grass/clover ley K concentration of ~2% (dry weight) was maintained during the 40‐year study period on the nil K plots, but on the sandy loam, loam and loamy sand, herbage concentrations were generally less than 2% K.  相似文献   

16.
Abstract

Certain concepts regarding the simultaneous transport of surface ‐salts and water under transient unsaturated flow conditions vere verified for three soils using laboratory soil columns. Treatments included different water application rates (i.e., continuous ponding and controlled rates) and different initial soil water contents. Calcium chloride, spread on the soil surface to simulate a salt‐affected soil or broadcasting of a fertilizer (or other additive), was leached with chloride free water (0.01 N CaSO4). Salt and water profiles were determined by destructive sampling at 2 cm depth intervals at two stages: (i) immediately following infiltration and (ii) after Batching infiltration plus redistribution time.

Immediately following infiltration as well as after matching infiltration and redistribution time, chloride was leached more efficiently and to relatively deeper depths with slower than with faster rates of water application only in sandy and sandy loam soils. The results, thus, show that slower rates of water application nay not increase leaching efficiency over faster rates in heavy‐textured and sodic soils with very poor permeability. Regardless of water application rate, initial soil water content, redistribution time and soil type, salt front (i.e., salt peak) did not coincide with the water front but lagged behind it by a few to several centimetres. That is to say that salt peak did not occur at a depth above which total soil water storage in the profile equalled cumulative infiltration. The higher the initial soil water content, the deeper and more complete was the displacement of chloride during infiltration for a given quantity of water applied at different rates. This trend was not modified during post‐irrigation period in sandy soil, but it was entirely reversed in sandy loam soil.  相似文献   

17.
Poor quality of sandy loam soils ?is the main reason for low crop yield. Improvement of physicochemical properties of these soils is very challenging. Addition of organic sources may improve the soil properties. Therefore, this study investigated the adequacy of poultry-manure-compost (PMC) and pressmud-compost (PrMC) at 0 (control), 2, 4, 6, 8, and 10 t ha?1 for improving the physicochemical properties of sandy loam soil and maize performance. An increasing trend in most soil and crop traits was seen with increasing compost levels. For 10 t PMC ha?1, soil inorganic-N (512%), organic-carbon (78%), and water-holding capacity (65.36%) improved maximum. This resulted in the maximum mean crop growth rate (43.85%), stover yield (94%), grain protein (21%), and nitrogen use efficiency (30.6 kg kg?1). Contrarily, grain oil (?7%) was lowest at 10 t PMC ha?1. Consequently, 10 t PMC ha?1 could be much effective to improve the physicochemical properties of sandy loam soils and maize performance.  相似文献   

18.
Leaching column experiments were conducted to determine the degree of mobility of heavy metals (HMs) and nutrients after the addition of municipal solid sewage sludge (MSS) in a sandy‐loam soil. Treatments were (1) soil application of low metal content MSS, (2) soil application of metal‐enriched municipal solid sewage sludge (EMSS), and (3) control. The MSS application represented a dose of 200 Mg dry weight (dw) ha–1. Soil columns were incubated at room temperature for 15 d and were irrigated daily with distilled water to make a total of 557 mm. Leachates were collected and analyzed for HMs and nutrients. The Ni and Pb added to soil via MSS and EMSS were found to be leached through the 20 cm columns of calcareous sandy soil although Ni and Pb concentrations in the percolate were small relative to the total amounts of metals applied. Losses of K+ from the EMSS, MSS, and control were 92.5, 82.0, and 52.5 kg ha–1, respectively. Losses of Mg2+ were in the range from 104.4 (control treatment) to 295.2 kg ha–1 (EMSS), while the loss of Ca2+ was in the range from 265.0 (control treatment) to 568.2 kg ha–1 (EMSS). The results showed that the amounts of P leached from EMSS (3.02 kg ha–1) and MSS (2.97 kg–1 ha–1) were significantly larger than those from the control treatment (1.54 kg ha–1). The geochemical code Visual MINTEQ was used to calculate saturation indices. Leaching of P in different treatments was controlled by rate‐limited dissolution of hydroxyapatite, β‐tri‐Ca phosphate, and octa‐Ca phosphate. The results indicate that application of MSS to a sandy soil, at the loading rate used in this study, may pose a risk in terms of groundwater contamination with Ni, Pb, and the studied nutrients.  相似文献   

19.
Abstract

Four rates of straw (0, 4, 8 and 12 t ha?1 yr?1) were incorporated in a field experiment with continuous spring barley. The experiment was conducted on a sandy soil (5.5% clay) and a sandy loam soil (11.2% clay). After eight years, the straw incorporation was combined with catch-crop growing with and without winter application of animal slurry and also spring fertilization with mineral fertilizer (0, 50, 100 or 125 kg N ha?1 yr?1). The combined experiment was conducted for three lyears on the sandy soil and for four years on the sandy loam soil. The effects on barley dry matter yield and N uptake are presented together with the long-term effects of the straw incorporations on crop growth and soil C and N. Grain yield on the sandy loam was unaffected by straw incorporation. On the sandy soil the highest straw application rates reduced grain yield in the unfertilized barley. When the barley received mineral fertilizer at recommended levels (100 kg N ha?1 yr?1), grain yield on this soil was also unaffected by the high straw rates. Including a catch crop had a positive effect on the grain yield of barley on both soils. The total N uptake in grain and straw generally increased with straw application up to 8 t ha?1 yr?1. With the highest straw application rate (12 t ha?1 yr?1), the total N uptake decreased but still exceeded N uptake in barley grown with straw removal. The barley accumulated higher amounts of N when a catch crop was included. The total N uptake in the barley was significantly higher after animal slurry application. The extra N uptake, however, was much lower than the amounts of N applied with the slurry. Incorporation of straw had only a small influence on N uptake after slurry application. The straw, therefore, was not able to store the applied N during winter. In the two four-year periods before the combined experiment, grain yield on the sandy loam was generally negatively affected by straw incorporations. In the second period, N uptake began to show a positive effect of the straw. On the sandy soil, grain yield and N uptake during the whole period were generally positively affected by the straw incorporations except for the highest straw rate (12 t ha?1 yr?1). The sandy loam soil showed higher increases in C and N content after the repeated straw incorporations and catch-crop growing than the sandy soil. When application of animal slurry was combined with the catch crop, no further increases in soil C and N were found relative to soil where a catch crop was grown without slurry application. Large amounts of the N applied with the slurry may therefore have been lost by denitrification or nitrate leaching.  相似文献   

20.
Abstract

Importance of agricultural practices for greenhouse gases mitigation is examined worldwide. However, there is no consensus on CO2 emissions as affected by soil management practices. Deeper understanding of soil CO2 fluxes and drivers under different management practices are needed. The investigation of net CO2 exchange rate as dependent variable and drivers (soil water and temperature, air temperature) as affected by soil type (loam and sandy loam), tillage (conservation and no-tillage) and fertilization are presented.

Soil management practices and weather conditions affected the CO2 flux through effects on soil water and temperature regime. Mean net CO2 exchange rate on sandy loam was 8% higher than on loam. No-tillage, as a moisture-conserving tool, could be an appropriate tool for CO2 emissions mitigation in any weather conditions on sandy loam; however, the advantage of no-tillage on loam was negligible. Mineral NPK fertilizers promoted significantly higher net CO2 exchange rate in both soils, but suppressed it by 15% on sandy loam during a normal year. Effect of soil water content on net CO2 exchange rate was direct in all tillage and fertilization treatments in both loam and sandy loam, whereas this effect was positive only in dry and normal weather conditions. In wet weather conditions, the direct effect of soil water content on net CO2 exchange rate was negative. Soil and air temperature acted indirectly on net CO2 exchange rate. The increase in temperature markedly suppressed the positive direct impact of soil water content on net CO2 exchange rate in dry weather conditions, but did not reduce the direct effect of soil water content in normal weather conditions. In a wet year the negative indirect effect of increased temperature enhanced the negative direct impact of soil water surplus on net CO2 exchange rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号