首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Supplying juvenile sea urchins with an abundant supply of resources and essential nutrients for growth will facilitate somatic growth and, hence, improve the success of the sea urchin aquaculture industry. Lipids are essential in physical processes such as membrane production and are a concentrated source of energy. This study, using prepared diets, tested the effects of lipid sources containing different major fatty acids (i.e., n‐3 and/or n‐6) (Part 1) and lipid concentration (i.e., 1, 3, 7, and 10%) (Part 2) on the somatic (i.e., test or shell) growth of two size cohorts (7.0‐ and 15.3‐mm average initial test diameter [TD]) of juvenile green sea urchins, Strongylocentrotus droebachiensis. The growth of the sea urchins fed prepared diets was compared to the growth of sea urchins fed a kelp reference diet, Laminaria longicruris. After both feeding trials, the kelp‐fed sea urchins had superior test growth and were more similar in physical appearance to wild sea urchins (i.e., test color, spine length, and gonad color). The sea urchins fed the prepared diets had pale test color, short, stubby spines, and large, pale‐colored gonads compared to wild sea urchins. The smaller cohort of sea urchins grew at a faster rate, but growth patterns for both cohorts were similar. The juveniles fed the prepared diets (in both feeding trials) had high initial growth rates that decreased after approximately 100 d compared to the kelp‐fed juveniles. Differences in test growth were not shown to be affected by sea urchin size (i.e., similar results for both cohorts) or by differences in dietary lipid sources (i.e., the presence of n‐3 and/or n‐6 fatty acids). However, the sea urchins fed diets with lower lipid concentration (≤3%) had larger average TDs than those fed diets with higher lipid concentrations (≥7%). Differences in test growth and physical appearance among those fed the prepared diets and kelp may have been because of nutritional deficiencies in the prepared diets.  相似文献   

2.
Abstract— An important aspect in the development of any aquaculture industry is the maximization of juvenile somatic growth (i.e., body growth) to reduce production time and increase the size of the final product. In this study, green sea urchins Strongylocentrotus clroebachiensis were fed a prepared diet from 4 December 1998 to 10 September 1999 (i.e., 280 d) in a laboratory to investigate the effect of protein source (soybean andlor fish), protein concentration (20,30,40, and 50% dry mass) and juvenile size (4‐8 mm and 12‐20 mm initial test diameter) on somatic growth. A natural diet of Laminwia longicrurus (i.e., kelp) was used as a reference. There was no difference in initial size among the treatments for either the smaller cohort 1 or the larger cohort 2 sea urchins (6.3 mm and 13.8 mm initial average test diameter, respectively) (P > 0.05 for all tests). After 280 d, the sea urchins fed kelp had an average size of 20.7 mm and 24.5 mm (cohort 1 and cohort 2, respectively). The final average sizes of the sea urchins fed the prepared diets, which did not relate to dietary protein concentrations andlor protein source, ranged from 13.2 mm to 16.2 mm (cohort 1) and from 20.4 mm to 22.9 mm (cohort 2), and were significantly smaller than the kelpfed sea urchins (P < 0.05 and P < 0.001, cohort 1 and cohort 2, respectively). All treatments experienced 95% survivorship or greater. Sea urchin size appears to affect growth rate when optimal conditions for growth are available (i.e., diet and water temperature). As water temperatures increased during the summer of 1999, the sea urchins in cohort 1 fed kelp had a significantly higher growth rate (0.069 dd) than the cohort 2 kelpfed sea urchins (0.052 dd) (P < 0.05). However, within each cohort, there were no significant difference in growth rate (P > 0.05) among the sea urchins fed prepared diets, suggesting sea urchins do not require high concentrations of dietary protein for superior growth, and that plant protein can substitute fish protein in sea urchin diets. Furthermore, the sea urchins fed the prepared diets had poorer test quality and larger gonad yields (13‐22%) compared to the kelpfed sea urchins (4.2%) and a wild sample of sea urchins of similar size (4.0%). The results suggest that the sea urchins fed the prepared diets allocated more energy to gonad production, whereas those fed a natural diet allocated more energy toward test production. To address this gap, more research is required to identify the nutritional components required for test growth that were present in kelp, but appeared to be deficient in the prepared diets.  相似文献   

3.
The effects of varying protein and carbohydrate levels in prepared diets on the somatic growth of juvenile green sea urchins, Strongylocentrotus droebachiensis, were examined. Ten diets were tested on 600 hatchery reared urchins (mean start weight = 0.11 g) for 6 mo with three replicate groups per diet. Nine of the diets were prepared specifically for urchins and varied in protein (16–40% protein) and carbohydrate (29–49% carbohydrate) levels. The other two diets consisted of a commercially available abalone diet and the kelp, Saccharina latissima. Weight measurements were carried out at 6‐wk intervals, and at the end of the study urchins were individually weighed and a subsample from each treatment was analyzed for gonad weight and color. End weights after 6 mo ranged from 2.56 g for urchins fed the abalone diet to 6.11 g for urchins fed one of the prepared diets. Most of the prepared feeds outperformed kelp, and significant differences in growth were detected between some of the diets. In general, diets with lower protein levels (16–22% protein) and higher carbohydrate levels (>40% carbohydrate) produced the fastest growth. However, further diet refinement and/or use of finishing diets may be necessary to optimize gonad quality.  相似文献   

4.
Adult green sea urchins Strongylocentrotus droebachiensis were fed three different quantities (0.25, 0.50, 1.00% body weight/d) of a prepared feed during a 12‐wk experiment to determine the effect of food ration on gonad quantity and quality. A diet of kelp, Laminaria longicruris and/or L. digitata, fed at satiation (3% body weight/d) and urchins taken from the wild at the beginning and end of the experiment served as controls. Urchins fed prepared feed or kelp increased their percent gonad yield significantly over the experimental period. Affer 12 wk, individuals fed the prepared diet at 0.50 or 1.00% body weighffd had significantly higher percent gonad yields (mean ± SEM: 23.5 ± 0.6% and 23.4 ± 0.7%, respectively) than urchins fed at 0.25% body weight/d (18.0 ± 1.0%) or control animals given kelp (18.3 ± 0.8%). There was no significant difference in gonad yield between the 0.50 and 1.00% feeding levels. All feeding treatments had significantly higher percent gonad yields than urchins sampled from the wild at the end of the experiment that had recently spawned (2.8 ± 0.5%). There was no significant difference in gonad taste among urchins fed the prepared diet at 0.25% body weight/d, those given kelp, or those collected from the wild at the end of the experiment (good to very good ratings), but all of these treatments had significantly better tasting gonads than urchins given the prepared feed at 0.50 or 1.00% body weight/d (satisfactory ratings). Gonad taste rating of urchins fed a prepared diet was dependent on ration with greater feed amounts leading to worse tasting gonads (linear regression: r2= 0.68, P < 0.01). Gonad color, texture, and firmness did not differ significantly among any of the feed ration treatments or kelp control. Results suggest that the best ration for prepared feed would be 0.50% body weightld since this would optimize gonad yield while minimizing feed costs. Further research on prepared feeds is required to optimize both gonad color and taste.  相似文献   

5.
The nutritive values of three pelleted prepared diets, based on animal (AP), vegetable (VP) and yeast protein (YP) were studied for the sea urchin Heliocidaris erythrogramma (Val.). Fresh macroalga Ulva australis was used as a natural control diet. Triplicate groups of five animals were fed one of the four diets ad libitum every second day for 85 days. Sea urchins fed pelleted feeds had significantly higher food consumption rates (dry basis) and significantly lower total and protein absorption efficiencies compared with the algal diet. The gonad yield and gonad production efficiency in sea urchins fed the natural diet were significantly higher compared with initial group (gonad yield only) and urchins fed animal and vegetable diets, but did not differ significantly from those of the animals fed the yeast diet. Percent protein and lipid in the gonads were not affected by the dietary source. The taste and smell of gonads were generally better in sea urchins collected from the wild or fed yeast and natural diets than in sea urchins fed animal and vegetable diets. The animal protein diet was the most stable in seawater while the yeast protein diet had the poorest water stability. The results of this study suggest that development of a more stable, single‐cell, protein‐based diet has a potential to promote gonad production of H. erythrogramma.  相似文献   

6.
In adult sea urchins, formulated feeds can support both weight gain and gonad production; however, studies demonstrating the effects of formulated feeds on juvenile sea urchin growth are limited. In this study, juvenile sea urchins (test diameter: 3.20–7.33 mm, N = 12 per treatment) were reared individually in artificial seawater and fed with one of four experimental feeds: (1) mixed‐taxa algal biofilm (MTAB), (2) freeze‐dried MTAB, (3) a commercial, small‐mammal feed (Friskies® cat treats), or (4) a semipurified feed formulated for sea urchins. The MTAB and sea urchin feed supported weight gain and survival throughout the study; however, those individuals fed with the sea urchin feed exhibited a short lag period at the onset of feeding. This short lag period may be, in part, because of an initial lack of attraction of the urchins to the formulated feed. Furthermore, we hypothesize that gut physiology or gut flora must acclimatize to a new diet (all sea urchins were reared initially on the MTAB diet). The freeze‐dried MTAB and mammal feed did not support substantial weight gain. This study suggests that sea urchin juveniles as small as 3–4 mm can utilize formulated feeds for growth.  相似文献   

7.
We compared the gonad-enhancing effects of two diets (NIWA and NIFA diets) in two size classes of sea urchins (Evechinus chloroticus): small and large urchins with a test diameter of 75.6 ± 1.2 mm and 93.8 ± 0.5 mm, weighing 174.8 ± 7.9 g and 315 ± 5.6 g, respectively. After eight weeks being fed prepared diets, urchin gonad index (GI) had significantly surpassed that of the initial and final samples of wild urchins. Urchins in the NIWA/small treatment had a larger GI than the NIFA/small and NIFA/large treatments. The NIWA/large treatment had a larger GI than the NIFA/large treatment. The overall percentage increase in GI for the NIWA/small, NIWA/large, NIFA/small and NIFA/large treatments were 183%, 135%, 132% and 85%, respectively. In terms of gonad colour (CIELAB), there were no significant differences in gonad redness (a*) or yellowness (b*) between experimental treatments, but there was a significant difference in gonad lightness (L*) with small urchins fed both diets having lighter-coloured gonads than the large urchins fed both diets. Sensory assessment of gonads revealed that gonads from small urchins fed both diets were rated as being of better colouration and more uniform in colour than gonads from large urchins. Gonads of urchins fed the NIFA diet were rated as being less bitter and of better overall taste than gonads from urchins fed the NIWA diet. This study shows that feeding prepared diets to E. chloroticus can significantly increase gonad yield but that different diets can affect the magnitude of GI increase and the taste of gonads, and that smaller urchins appear more suitable for gonad enhancement.  相似文献   

8.
Cultured sea urchins of similar size (mean ± SE = 4.33 ± 0.48 g in body weight) were fed biofilms only, kelp (Laminaria japonica)+biofilms (biofilms as supplementary food) and a control diet of kelp only for 7 months in the laboratory. The somatic growth and the survival rate of the sea urchins were measured monthly, and the gonad wet weight and gonad color difference were determined at the end of the experiment. The results show that diet did not significantly affect survival rate (P > 0.05), but had highly significant effects on somatic growth from the first month to the end of the experiment (P < 0.01). Sea urchins fed biofilms only showed negligible or even negative somatic growth at the end of the experiment. Sea urchins on the kelp+biofilms grazed biofilms and consumed kelp during the experiment, and showed sustained greater increase in body weight than those of fed kelp only after the fourth month (P < 0.05). The biofilms may have supplied micronutrients. At the end of the experiment, gonad production of sea urchins fed biofilms was too little (0.11 ± 0.09 g) to identify sex and measure color. Gonad wet weights of males and females and gonad color fed kelp+biofilms did not differ significantly from those of fed kelp only (P > 0.05). However, sea urchins fed kelp+biofilms were more uniform in gonad color than those fed kelp only (P < 0.01), indicating biofilms supplementation could reduce the percentage of low-grade roe. This study therefore reveals the potential of biofilms as a supplementary food in the culture of sea urchins.  相似文献   

9.
A feeding trial was conducted in a recirculating system to determine the dietary protein requirement for juvenile black sea bass. Six isocaloric diets were formulated to contain varying levels of crude protein (CP) ranging from 36 to 56% (36, 40, 44, 48, 52, and 56%) by substituting a mixture of carbohydrates and lipid for fish meal. The feeding experiment was carried out in 18‐75 L aquaria stocked at a density of 15 juveniles (initial average weight 6.7 g) per tank. Fish were fed test diets in triplicate tanks to apparent satiation twice a day for 8 wk. Whole‐body proximate composition was analyzed after the feeding trial. After the feeding trial, weight gain and specific growth rate of fish fed the 44% CP diet were not significantly different from those fed the 48, 52, and 56% CP diets, but were significantly higher (P < 0.05) than those fed the 36 and 40% CP diets. Feed conversion efficiency and protein efficiency ratio were significantly affected by dietary protein level. The dietary requirement of protein for maximum growth of black sea bass juveniles, estimated using broken‐line regression analysis on weight gain, was 45.3% and maximum weight gain occurred at 52.6% based on polynomial regression analysis.  相似文献   

10.
Protein and energy are two of the main limiting factors for sea urchin growth. However, the requirement of daily protein and energy to maximize gonadal production is still unknown. Paracentrotus lividus were fed three experimental diets: Ulva lactuca, Gracilaria conferta and a prepared diet for 2 months in the fall of 1999 and spring of 2000. Sea urchins from a laboratory‐cultured population of equal age, weight and test diameter were used. Apparent digestibility coefficients (ADC%) for protein and energy, using acid‐insoluble ash as a marker, were measured for all experimental diets. Apparent digestibility coefficients for protein was high (>75%) for all diets. Energy digestibility varied among the diets and was lowest for G. conferta (50–62%). The three diets contained varying digestible protein (DP) to digestible energy (DE) ratios of 25, 26 and 12 mg kJ?1 for U. lactuca, G. conferta and the prepared diet respectively. Digestible protein intake was similar for all treatments, but DE intake was greater for sea urchins fed the prepared diet in both seasons. As a result, the gonad production was significantly higher for urchins fed the prepared diet, suggesting that energy was limiting in the algal diets. Paracentrotus lividus spawned during the spring experiment, resulting in protein loss in all treatments. Protein loss was lowest in the sea urchins fed the prepared diet. Enhanced gonadal growth and gamete development of P. lividus resulted from the higher dietary energy content of the prepared diet.  相似文献   

11.
A greater understanding of dietary protein and carbohydrate levels with regard to gonad production in Strongylocentrotus purpuratus would increase our nutritional knowledge of this sea urchin and guide the development of formulated diets for such aquaculture target species. A total of 255 purple sea urchins were captured from Ensenada Bay, Mexico, and maintained in 200‐L tanks for 9 weeks. Formulated diets that contained 30%, 26%, 23%, 20% and 17% of protein and 42%, 46%, 50%, 54% and 58% carbohydrates were offered ad libitum. Survival was affected by diets; urchins that were fed high‐protein–low‐carbohydrate diet experienced decreased survival. No significant differences were found in gonad index, but gonad production efficiency was lower in urchins that were fed a medium‐low‐protein–medium‐high‐carbohydrate diet. Urchins that were fed high carbohydrate levels utilized protein more efficiently and showed better digestibility of the diet and protein. These data suggest that all of our diets support gonad growth, but in terms of consumption, a diet that contains protein levels of 17% and 23% with carbohydrate levels of 50% and 58% are beneficial for S. purpuratus.  相似文献   

12.
To examine the feeding ecology of the sea urchin Strongylocentrotus intermedius, two types of macroalgal diet (kelp Saccharina longissima and red alga Ptilota filicina) and four types of benthic animal diet [barnacle Balanus glandula, limpet Lottia cassis, free-living Perinereis aibuhitensis and P. aibuhitensis attached to a stainless steel wire (wired polychaete)], were separately or simultaneously provided for urchins of 5- to 60-mm test diameter (TD). Sea urchins of even 3-mm TD could graze the kelp, and began to graze the red alga, the wired polychaete and limpet by 5-mm TD, the barnacle by 8-mm TD and the free-living polychaete by 15-mm TD, respectively. These results suggest that the variety of macroalgae and benthic animals which the urchin can graze increases with the ontogeny of their feeding organs, motility and ability to catch animals. Both juvenile and adult sea urchins preferred to eat the polychaete as well as the kelp fronds. Feed conversion efficiency and daily growth rate of the small sea urchins fed benthic animals like the polychaete were higher than those fed macroalgae. The sea urchins are likely to grow better when feeding on animals than on macroalgae, even in habitats where they can access adequate quantities of kelp.  相似文献   

13.
A feeding trial was conducted to determine the interactive effects of vitamin C (ascorbic acid, AsA) and E (α‐tocopherol, α‐Toc) supplementation with dietary oxidized fish oil (OFO) on the growth performance, whole‐body AsA, and α‐Toc concentrations and fatty acid composition of juvenile sea cucumber. In a 9‐wk feeding trial, juveniles (average weight: 0.6 ± 0.1 g) were cultured in twenty‐four 50‐L tanks (30 juveniles per tank) in triplicate, and fed with eight test diets containing two levels of OFO (8.9 and 156.9 meq/kg) with varying levels of vitamin C (500 and 1000 mg AsA equivalents/kg diet) and E (100 and 200 mg α‐Toc equivalents/kg diet) supplementation, respectively. Body weight gain of sea cucumber was significantly reduced by dietary OFO, while mortality and whole‐body thiobarbituric acid‐reactive substances value were increased significantly. Increasing dietary vitamin C and E levels significantly increased whole‐body α‐Toc and AsA concentrations, respectively. A high level of vitamin E combined with OFO led to consumption of AsA. Even with supplementation of a large dose of vitamin C and/or E in diets, growth performance could not be improved, probably due to the high levels of vitamins in the control diets.  相似文献   

14.
This gonad enhancement study investigates the effect of different fresh and formulated feeds and feeding regimes on the growth and gonad quality of wild‐collected adult sea urchin, Tripneustes gratilla, under farm conditions for over 18 weeks. In the first 12 weeks (phase 1), urchins were fed fresh Ulva rigida (U); a 50:50 mixture of fresh U. rigida and Gracilaria gracilis (UG); fresh G. gracilis (G) and a formulated diet 20U (containing 20% U. rigida), and in the final 6 weeks (phase 2) of the study, diet was changed to a formulated feed (20U diet). By the end of phase 1, urchins fed the 20U diet produced gonads (50.72 ± 5.4 g) that were significantly heavier (p < .001) than the gonads of urchins fed the fresh seaweed diets (U, UG & G). By the end of phase 2, gonad weight of urchins in treatment groups UG‐20U and G‐20U were similar to those fed the 20U‐20U diet. Gonad colour of urchins in the G‐20U treatment became significantly lighter (ANOVA, p = .029) and poorer quality, compared with urchins in the U‐20U group. This gonad enhancement study, conducted on wild‐collected adult T. gratilla, has shown that a formulated feed (20U diet) can enhance gonad growth and produce commercially acceptable gonads. This farm‐based study supports previous findings from aquarium‐based studies by our group and indicates that short‐term sea urchin gonad enhancement can be carried out under farm conditions in South Africa.  相似文献   

15.
Three formulated diets were tested to evaluate their effects on gonad quality in Paracentrotus lividus. Experiments were conducted in parallel by the Consiglio Nazionale delle Ricerche (CNR) of Taranto (trial 1) and the University of Genoa (trial 2), in land-based systems. In both trials, somatic and gonadsomatic index (GSI) were measured and the nutritional profile of the sea urchins has determined significant variations in the biochemical composition. Sea urchins fed the experimental diets contained higher levels of nutrients (protein and lipid and carbohydrate) compared to wild sea urchins. However, total polyunsaturated fatty acids (PUFAs), especially EPA and DHA, and the n-3/n-6 ratio were lower in urchins fed with formulated diets. In both trials, sea urchins fed with diet 2 (SABS) showed a similar profile with PUFAs higher than SAFAs and MUFAs, the highest UNS/SAT ratio, although the highest n3/n6 ratio was observed in the group fed diet 3 (CNR). Atherogenicity, thrombogenicity, and hypocholesterolemic/hypercholesterolemic indices showed the best values in sea urchins fed diet 2 in both trials.  相似文献   

16.
A pilot project aimed at testing roe enhancement strategies based on offshore Paracentrotus lividus cultures was conducted off the south‐east coast of Italy (Apulia Region). Adult sea urchins were reared in sea cages located 700 m offshore at a depth of 12 m for 3 months. The animals were fed once a week on two formulated diets, prepared mixing nutrients with agar 20 g/Kg and differing only in terms of the protein source: anchovy flour (Diet A) or krill flour (Diet K). At the end of the rearing trial, the gonad somatic index of sea urchins fed on formulated diets significantly exceeded that of wild sea urchins. Total FAA content in the gonads of wild sea urchins and Diet A‐fed sea urchins was similar, whereas in Diet K‐fed sea urchins it was significantly higher. In terms of fatty acids, the gonads contained SFAs, MUFAs and PUFAs. In visual and sensory assessment of gonads by panel test and electronic nose, the gonads of reared sea urchins were rated as being of better size, while no differences were recorded for coloration, taste and odour. This study shows that under these experimental conditions, commercial‐grade Paracentrotus lividus roe enhancement can be achieved after 3 months in sea cages.  相似文献   

17.
A feeding trial was conducted to investigate the effects of different dietary amino acid patterns on growth performance, feed utilization and body composition of juvenile Nibea japonica. Four semi‐purified diets were formulated to simulate the dietary amino acid profiles of juvenile giant croaker whole body protein (GCP), Peru fishmeal protein (PFP), red sea bream eggs protein (REP) and soybean meal protein (SMP) by supplementing with pre‐coated crystalline amino acids (CAA). A control diet contained only intact protein sources provided by the fishmeal and casein (2:1). Each experimental diet was fed to satiated triplicate groups of juveniles (10.73 ± 0.07 g) twice a day for 8 weeks. The highest weight gain (WG) was observed in the juveniles fed the control diet, whereas no significant differences were found between the juveniles fed the GCP and control diets. Fish fed the control, GCP, PFP and SMP diets did not exhibit any significant difference in protein efficiency ratio (PER), feed conversion (FCR) or nitrogen (N) retention. The results of this study suggest that the amino acid (AA) patterns of juvenile whole body protein could be used as a guideline in the formulation of dry diets, which also confirms that the juvenile giant croaker is able to utilize high amounts (20%) of CAA in coated form for growth.  相似文献   

18.
Growth trials for larvae and juvenile red sea bream, Pagrus major, were conducted to elucidate the efficacy of two molecular forms of methionine; dl ‐methionine (dl ‐Met) and methionine dipeptide (Met‐Met). For the larvae experiment, five experimental diets were formulated and fed to fish (42 mg) for 30 days. A diet which has 15% soy protein isolate served as the control diet. Similarly, test diets supplemented with dl ‐Met and Met‐Met at 0.5%, which were either precoated by zein or intact, were also formulated. For the juvenile experiment, five experimental diets were formulated wherein the control diet contained 25% soy protein isolate. Test diets were supplemented with dl ‐Met and Met‐Met at 0.75%, which were either coated by carboxymethycellulose or intact and fed to juveniles (0.75 g) for 56 days. The results of two feeding trials showed both dl ‐Met and Met‐Met can be equally utilized by red sea bream larvae and juveniles. Coating the amino acid significantly improved both fish larval and juvenile growth performance. The development of digestive protease activity of larvae was significantly influenced by coating the amino acid, but the type of methionine was not a factor in changing the protease activity of larvae.  相似文献   

19.
To our knowledge, little information is available on approaches to improving gonad flavor of sea urchins. Although sea urchins fed high content of glutamate and glycine perceived sweeter gonads than those fed high content of valine and methionine (Phillips et al. in Aquaculture 288:205–215, 2009), the problem of improving gonad quality has not been completely solved. Because of the high cost of glutamate and glycine, it is hard to move this finding from the laboratory to gonad production. In the present study, we found that gonad flavor of Strongylocentrotus intermedius fed banana peel was significantly better than that of individuals fed kelp or pumpkin (P < 0.001). However, banana peel did not significantly support gonad yield of sea urchins compared with kelp (P < 0.05). This novel finding provides a new insight into the gonad quality improvement in sea urchins. Further studies should be carried out to test our two suggested methods of banana peel application in sea urchin aquaculture.  相似文献   

20.
A feeding trial was conducted to estimate the optimum level of dietary n‐3 highly unsaturated fatty acids (HUFAs) for juvenile sea cucumber, Apostichopus japonicas, based on growth performance and fatty acid compositions. Diets with five n‐3 HUFAs levels (0.15, 0.22, 0.33, 0.38, and 0.46%) were fed to sea cucumber juveniles (1.97 ± 0.01 g) once a day for 60 d. The sea cucumbers fed diets containing 0.22% n‐3 HUFAs showed significantly (P < 0.05) higher body weight gain, feed efficiency, and protein efficiency ratio than the sea cucumbers fed diets containing 0.15% n‐3 HUFAs, but not significantly different (P > 0.05) from those of sea cucumbers fed diets containing 0.33, 0.38, and 0.46% n‐3 HUFAs. The sea cucumbers fed diets containing 0.46% n‐3 HUFAs showed significantly (P < 0.05) higher eicosapentaenoic acid and saturated fatty acid than the sea cucumber fed diets containing 0.15% n‐3 HUFAs, but not significantly different (P > 0.05) from those of sea cucumbers fed diets containing 0.22, 0.33, and 0.38% n‐3 HUFAs. The results of growth performance and n‐3 HUFA compositions of body wall indicated that the optimum level of dietary n‐3 HUFAs for juvenile sea cucumber is between 0.22 and 0.46%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号