首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Thyroid function was evaluated in 18 healthy dogs by thyrotropin (TSH) stimulation. Two dose regimens were used in each dog: 0.1 IU/kg body weight of freshly reconstituted lyophilized TSH and 1 IU/dog of previously frozen and stored TSH (up to 200 days), both given intravenously. Blood samples were collected prior to and at four and six hours after TSH administration. Serum was evaluated for total thyroxine concentrations by radioimmunoassay. All dogs were classified as euthyroid on the basis of response to 0.1 IU/kg body weight of freshly reconstituted TSH at four and six hours. The 1 IU dose of TSH, previously frozen for up to 200 days, induced increases in serum total thyroxine concentration over baseline at four and six hours that were not significantly different from those resulting from the use of the higher dose of fresh TSH. In all test groups, there were no statistically significant differences between total thyroxine concentrations at four and six hours post-TSH administration. It was concluded that an adequate TSH response can be achieved with the use of 1 IU of TSH/dog for clinically normal dogs between 29.0 kg and 41.6 kg body weight, even if this TSH has been frozen at -20 degrees C for up to 200 days. Further, blood collection can be performed at any time between four and six hours. Similar studies are needed to evaluate this new protocol in hypothyroid dogs and euthyroid dogs suffering nonthyroidal systemic diseases.  相似文献   

2.
The purpose of this study was to evaluate seasonal influences on thyroid hormone levels of healthy outdoor dogs in Hokkaido. We surveyed serum basal total thyroxine (tT4), free thyroxine (fT4), and canine thyroid-stimulating hormone (cTSH) levels, and tT4 levels after administration of TSH for a year. Basal tT4 levels decreased in January, and increased in August and September. fT4 levels increased in January and November. No significant seasonal variation was found in cTSH. tT4 levels after administration of TSH in August and November increased. These results suggested that the thyroid gland may have been activated in November. We should take seasonal variation into consideration when thyroid function is tested.  相似文献   

3.
The short-term effects of prednisone and phenobarbital on serum total thyroxine (tT4), free thyroxine (fT4), and thyroid stimulating hormone (TSH) were evaluated in euthyroid dogs. Twenty-six beagles were randomly divided into 3 groups receiving, respectively, a placebo, prednisone (1.2 to 2 mg/kg body weight, per os, every 12 hours for 3 weeks), or phenobarbital (1.8 to 3 mg/kg body weight for 1 week, then 2.7 to 4.5 mg/kg body weight, per os, every 12 hours for 2 weeks). Blood samples taken over a 6-week period were assayed for serum tT4, fT4, and TSH. Phenobarbital therapy in our study did not affect serum tT4, fT4, or TSH concentrations. Prednisone therapy, however, significantly decreased serum tT4 and fT4, but did not affect serum TSH concentrations.  相似文献   

4.
The purpose of this study was to validate a thyroid-stimulating hormone (TSH) assay in a model of equine hypothyroidism. Thyrotropin-releasing hormone (TRH) stimulation tests were performed in 12 healthy adult mares and geldings, aged 4 to greater than 20 years. before and during administration of the antithyroid drug propylthiouracil (PTU) for 6 weeks. Serum concentrations of equine TSH, total and free thyroxine (T4), and total and free triiodothyronine (T3) were measured. Before PTU administration, mean +/- standard deviation baseline concentrations of TSH were 0.40 +/- 0.29 ng/mL. TSH increased in response to TRH, reaching a peak concentration of 0.78 +/- 0.28 ng/mL at 45 minutes. Total and free T4 increased from 12.9 +/- 5.6 nmol/L and 12.2 +/- 3.5 pmol/L to 36.8 +/- 11.4 nmol/L and 23.1 +/- 5.9 pmol/L, respectively, peaking at 4-6 hours. Total and free T3 increased from 0.99 +/- 0.51 nmol/L and 2.07 +/- 1.14 pmol/L to 2.23 +/- 0.60 nmol/l and 5.78 +/- 1.94 pmol/L, respectively, peaking at 2-4 hours. Weekly measurements of baseline TSH and thyroid hormones during PTU administration showed that total and free T, concentrations fell abruptly and remained low throughout PTU administration. Total and free T4 concentrations did not decrease dramatically until weeks 5 and 4 of PTU administration, respectively. A steady increase in TSH concentration occurred throughout PTU administration, with TSH becoming markedly increased by weeks 5 and 6 (1.46 +/- 0.94 ng/mL at 6 weeks). During weeks 5 and 6 of PTU administration, TSH response to TRH was exaggerated, and thyroid hormone response was blunted. Results of this study show that measurement of equine TSH in conjunction with thyroid hormone measurement differentiated normal and hypothyroid horses in this model of equine hypothyroidism.  相似文献   

5.
Serum thyroid hormone concentrations were determined before and after thyrotropin (thyroid stimulating hormone [TSH]) stimulation in caged psittacine birds to determine whether the TSH stimulation test could be used to evaluate thyroid function in this class of birds. The mean (+/- SD) resting thyroxine concentrations (ng/ml) for the species studied were: cockatoos, 13.63 +/- 6.53 (n = 6); Amazon parrots, 8.19 +/- 6.90 (n = 8); scarlet macaws, 1.34 +/- 0.51 (n = 9); blue and gold macaws, 3.41 +/- 1.78 (n = 8); African gray parrots, 1.42 +/- 0.44 (n = 6); conures, 1.76 +/- 0.77 (n = 5); and cockatiels, 11.83 +/- 6.76 (n = 3). The mean (+/- SD) thyroxine concentrations (ng/ml) 4 to 6 hours after TSH stimulation were 35.10 +/- 13.16, 27.40 +/- 15.93, 6.46 +/- 3.10, 12.36 +/- 6.34, 9.30 +/- 2.90, 13.50 +/- 7.71, and 39.0 +/- 5.66, respectively. Serum tri-iodothyronine concentration did not increase significantly after TSH stimulation. The results demonstrated that the TSH stimulation test can be used to evaluate thyroid function in caged psittacine birds.  相似文献   

6.
Obesity and weight loss have been shown to alter thyroid hormone homeostasis in humans. In dogs, obesity is the most common nutritional problem encountered and weight loss is the cornerstone of its treatment. Therefore, it is important to clarify how obesity and weight loss can affect thyroid function test results in that species. The objectives of this study were to compare thyroid function in obese dogs and in lean dogs and to explore the effects of caloric restriction and weight loss on thyroid hormone serum concentrations in obese dogs. In the first experiment, 12 healthy lean beagles and 12 obese beagles were compared. Thyroid function was evaluated by measuring serum concentrations of total thyroxine (TT4), free thyroxine (FT4), total triiodothyronine (TT3), thyrotropin (TSH), and reverse triiodothyronine (rT3) as well as a TSH stimulation test using 75 microg i.v. of recombinant human TSH. In the second experiment, eight obese beagles were fed an energy-restricted diet [average 63% maintenance energy requirement (MER)] until optimal weight was obtained. Blood samples for determination of TT4, FT4, TT3, TSH and rT3, were taken at the start and then weekly during weight loss. Only TT3 and TT4 serum concentrations were significantly higher in obese dogs as compared to lean dogs. In the second experiment, weight loss resulted in a significant decrease in TT3 and TSH serum concentrations. Thus obesity and energy restriction significantly alter thyroid homeostasis in dogs, but the observed changes are unlikely to affect interpretation of thyroid function test results in clinics.  相似文献   

7.
Primary hypothyroidism was diagnosed in a 26-yr-old female western lowland gorilla (Gorilla gorilla gorilla) on the basis of serum levels of thyroxine (T4), free T4, and thyroid-stimulating hormone (TSH) measured by human immunoassays. Compared with clinically normal gorillas, the TSH level (107 mlIU/L) was markedly elevated, and T4 (<14.0 nmol/L) and free T4 (5.0 pmol/L) levels were decreased. Thyroid hypofunction could explain the weight gain, unsettled appetite, anxious behavior, lethargy, and poor intraspecies interactions shown by this gorilla. The antibodies in the commercial immunoassay used in this study apparently cross-reacted with gorilla TSH. Supplementation with levothyroxine sodium was initiated and was followed by a marked decrease in circulating TSH and a noticeable improvement in the animal's physiologic status and activity level.  相似文献   

8.
Phenobarbital can interfere with the thyroid axis in human beings and rats by accelerating hepatic thyroxine metabolism because of enzyme induction. In human beings, it also can interfere with the low-dose dexamethasone suppression test (LDDST) used to assess adrenal function by accelerating dexamethasone metabolism. This effect can cause a lack of suppression of pituitary ACTH and subsequent adrenal cortisol release after dexamethasone administration. The effects of phenobarbital on the thyroid axis, the adrenal axis, and adrenal function tests were prospectively investigated in 12 normal, adult dogs. Phenobarbital was administered at 5 mg per kilogram of body weight (range, 4.8–6.6 mg/kg) PO q12h for 29 weeks, resulting in therapeutic serum concentrations (20–40 μg/mL). Serum total thyroxine (TT4), free thyroxine (FT4) by equilibrium dialysis, total triiodothyronine (TT3), thyrotropin (TSH), and cholesterol were determined before and during phenobarbital treatment. LDDST, ACTH stimulation tests, and ultra-sonographic evaluation of the adrenal glands were performed before and during treatment. TT4 and FT4 decreased significantly ( P ≤ .05), TT3 had minimal fluctuation, TSH had only a delayed compensatory increase, and cholesterol increased during phenobarbital treatment. The delayed increase in TSH, despite persistent hypothyroxinemia, suggests that accelerated hepatic thyroxine elimination may not be the only effect of phenobarbital on the thyroid axis. There was no significant effect of phenobarbital on either of the adrenal function tests. With the methods employed, we did not find any effects of the drug on the hormonal equilibrium of the adrenal axis.  相似文献   

9.
Thyroid function tests in euthyroid dogs treated with L-thyroxine   总被引:1,自引:0,他引:1  
The effects of treatment with L-thyroxine (1 mg/m2 of body surface/d, PO, for 8 weeks) on the thyroxine (T4) and triiodothyronine (T3) responses to thyrotropin (TSH) and thyrotropin-releasing hormone (TRH) administration were determined in 10 euthyroid Beagles; 4 other dogs acted as controls. The TSH response test was performed before treatment and at weeks 2, 4, and 8 of treatment in all dogs and at 2 and 4 weeks after cessation of treatment in 6 dogs. The TRH response test was performed before treatment and at week 6 of treatment in all dogs and at 5 weeks after cessation of treatment in 6 dogs. Suppression of the T3 response to TSH was evident at treatment week 2, whereas the T4 response was suppressed at week 4 and remained suppressed for the duration of the study. Four weeks after stopping treatment, T4 and T3 responses to TSH in 2 dogs were within the hypothyroid range. The T4 response to TRH was completely suppressed after 6 weeks of thyroxine treatment, but returned to pretreatment values by 5 weeks after cessation of treatment. Suppression of thyroid and pituitary function is evident after administration of a replacement dose of L-thyroxine to euthyroid dogs.  相似文献   

10.
OBJECTIVE: To evaluate response of euthyroid cats to administration of recombinant human thyroid-stimulating hormone (rhTSH). ANIMALS: 7 healthy cats. PROCEDURE: Each cat received each of 5 doses of rhTSH (0, 0.025, 0.050, 0.100, and 0.200 mg), IV, at 1-week intervals. Serum concentration of total thyroxine (TT4) and free thyroxine (fT4) was measured immediately before each injection (time 0) and 2, 4, 6, and 8 hours after administration of each dose. RESULTS: Overall TT4 response did not differ significantly among cats when administered doses were > or = 0.025 mg. Serum TT4 concentrations peaked 6 to 8 hours after administration for all doses > or = 0.025 mg. For all doses > or = 0.025 mg, mean +/- SEM TT4 concentration at 0, 6, and 8 hours was 33.9 +/- 1.7, 101.8 +/- 5.9, and 101.5 +/- 5.7 nmol/L, respectively. For all doses > or = 0.025 mg, mean fT4 concentration at 0, 6, and 8 hours was 38.7 +/- 2.9, 104.5 +/- 7.6, and 100.4 +/- 8.0 pmol/L, respectively. At 8 hours, the fT4 response to 0.025 and 0.050 mg was less than the response to 0.100 and 0.200 mg. Adverse reactions after rhTSH administration were not detected. CONCLUSIONS AND CLINICAL RELEVANCE: The TSH stimulation test can be performed in cats by IV administration of 0.025 to 0.200 mg of rhTSH and measurement of serum TT4 concentrations at time of injection and 6 or 8 hours later. Clinical validation of the TSH stimulation test would facilitate development of additional tests of thyroid gland function, such as a TSH assay.  相似文献   

11.
Serum thyroxine (T4) concentrations before and after various IV doses of bovine thyrotropin (TSH) were measured over a 48-hour period in 19 healthy cats. Base-line T4 values, as measured by radioimmunoassay, varied greatly. The peak T4 concentration occurred 6 hours after TSH injection, and there was an increase in post-TSH serum T4 concentration that was linearly related to the logarithm of the dose. Greatest stimulation was seen with the highest dose used (1 U of TSH/kg of body weight), and 6 hours after administration of this dose, the serum T4 concentration range was 4.1 to 8.4 micrograms/dl. The post-TSH serum T4 concentration and the absolute increase in serum T4 concentration after TSH administration correlated more closely with the TSH dose than did the ratio of post-TSH serum T4 concentration to base-line T4 concentration. Therefore, in cats with normal thyroid-binding protein concentrations, the former indices should represent the most reliable assessment of thyroid functional reserve.  相似文献   

12.
Serum concentrations of thyrotropin (TSH), prolactin, thyroxine, and 3,5,3'-triiodothyronine in 15 euthyroid dogs and 5 thyroidectomized and propylthiouracil-treated dogs after thyrotropin-releasing hormone (TRH) administration were measured. Although thyroidectomized and propylthiouracil-treated dogs had higher (P less than 0.01) base-line concentrations of TSH in serum than did euthyroid dogs, concentrations of TSH after TRH administration varied at 7.5, 15, and 30 minutes with 14 of 45 samples obtained from healthy dogs having lower TSH concentrations than before TRH challenge. Similarly, concentrations of 3,5,3'-triiodothyronine in the serum of euthyroid dogs 4 hours after TRH administration were similar (P less than 0.05) to concentrations before TRH challenge. Although the mean concentration of thyroxine in serum was elevated (P less than 0.05) 4 hours after administration of TRH to euthyroid animals, as compared with base-line levels, the individual response was variable with concentrations not changing or decreasing in 4 dogs. Therefore, the TRH challenge test as performed in the current investigation was of limited value in evaluating canine pituitary gland function. Although mean concentrations of TSH in serum were higher (P less than 0.05) in euthyroid dogs after TRH administration, the response was too variable among individual animals for accurate evaluation of pituitary gland function. Concentrations of prolactin in the sera of dogs after TRH administration, confirmed previous reports that exogenously administered TRH results in prolactin release from the canine pituitary and indicated that the TRH used was biologically potent.  相似文献   

13.
Tyrosine kinase inhibitors are widely utilized in veterinary oncology for the treatment of mast cell and solid tumours. In man, these drugs are associated with thyroid dysfunction: however, to date only one study has investigated this in dogs. The aim of this study was to prospectively assess thyroid function in a group of dogs with cancer receiving toceranib. Thirty‐four dogs were prospectively enrolled at two referral hospitals into two groups; those receiving toceranib with prednisolone and those receiving toceranib alone. Total thyroxine (TT4) and thyroid stimulating hormone (TSH) was monitored at regular time points during treatment. Follow‐up data was available for 19 dogs. Overall, 12 incidences of elevated TSH occurred but none of these dogs had concurrent low TT4 concentrations. There was a significant difference in median TSH at week six compared with baseline. Hypothyroidism was not diagnosed in any patient during the study period. Patient drop‐out was higher than anticipated which prevented the assessment of longer term toceranib administration on thyroid function. Toceranib therapy was not associated with hypothyroidism in this study but did result in elevations in TSH which confirms what has been previously reported. Toceranib should be considered to cause thyroid dysfunction in dogs and monitoring is advised.  相似文献   

14.
Thyroid function was evaluated in 20 healthy dogs by thyrotropin (TSH) response testing. Two dose regimens were used: 5 IU of TSH given IV and 1 IU of TSH given IV. Blood samples were collected prior to and at 4 and 6 hours after TSH administration. Serum was obtained and analyzed for total 3,5,3'-tri-iodothyronine and thyroxine (T4) concentrations by radioimmunoassay. All dogs were classified as euthyroid on the basis of response to 5 IU of TSH at 4 and 6 hours. The 1-IU dose of TSH failed to induce adequate increase in T4 concentration in 7 dogs at 4 and 6 hours when the criteria for normal response were post-TSH serum concentration T4 greater than or equal to 3.0 micrograms/dl and serum T4 increase by greater than or equal to 100% over baseline serum T4 concentration. One IU of TSH induced increase in serum T4 concentration over baseline; however, the increase was significantly (P less than 0.05) less than that in response to a 5-IU dose at 6 hours after administration of TSH.  相似文献   

15.
Concentrations of serum thyroxine (T4) and 3,3',5-triiodothyronine (T3) were determined in 7 clinically healthy adult dogs before and after administration of freshly reconstituted thyrotropin (TSH) and TSH that had been previously reconstituted and frozen for 1, 2, and 3 months. The 4 TSH response tests were performed at 30-day intervals by collecting blood samples for serum T4 and T3 determinations before and 4 and 6 hours after IV administration of TSH (0.1 U/kg of body weight). Baseline serum concentrations of T4 and T3 were similar at each of the 4 sample collection times over the 3-month period of the study. Mean serum concentrations of T4 and T3 increased significantly (P less than 0.01) over baseline values after administration of freshly reconstituted TSH or TSH that had been previously frozen for 1, 2, or 3 months. Significant difference was not found in the mean post-TSH serum T4 or T3 concentration after injection of freshly reconstituted TSH or TSH that had been previously frozen for 1, 2, or 3 months. In 2 of the 7 dogs, mild reactions--mild ataxia and weakness--were observed during the last of the series of TSH response tests (ie, after IV administration of TSH that had been previously frozen for 3 months). Results of this study suggest that for use in dogs, reconstituted TSH stored at -20 C maintains adequate biological activity for at least 3 months. The ability to store reconstituted TSH for a longer period than the recommended 48 hours represents an economic advantage, because it allows clinicians to perform more TSH response tests per vial of TSH.  相似文献   

16.
Thyrotropin (thyroid stimulating hormone; TSH) stimulus to thyroid cells of horses and dogs resulted in increased serum triiodothyronine (T3) concentrations that were detected earlier than those of thyroxine (T4). Doubling of the base-line T3 values in horses was detected 0.5 hours after injection of 5 IU of TSH IV, with peak response of 5 times base-line value detected 2 hours after injection. Doubling of T4 values in horses was noticed between 2 and 3 hours, with the peak response of 2.4 times base-line value at 4 hours after injection of TSH. Doubling of base-line T3 values in dogs in response to 0.2 IU TSH/kg of body weight (IV-5 IU maximum dose) was noticed at 1 hour, whereas T4 response doubled between 1.5 and 2 hours. Peak release of T3 and T4 in response to TSH in dogs had not developed by 4 hours; however, the percentage increase over base-line values was greater for T3 than T4 at early sampling time points, and this response has resulted in an increased T3/T4 ratio in hypothyroid dogs. Thus, in both dogs and horses, these studies indicated that T3 response to TSH could be used as a measure of thyroid function at earlier time intervals after TSH administration than one measures T4 response.  相似文献   

17.
OBJECTIVE: To determine the effects of racing and nontraining on plasma thyroxine (T4), free thyroxine (fT4), thyroid-stimulating hormone (TSH), and thyroglobulin autoantibody (TgAA) concentrations in sled dogs and compare results with reference ranges established for dogs of other breeds. DESIGN: Cross-sectional study. ANIMALS: 122 sled dogs. PROCEDURE: Plasma thyroid hormone concentrations were measured before dogs began and after they finished or were removed from the Iditarod Trail Sled Dog Race in Alaska and approximately 3 months after the race. RESULTS: Concentrations of T4 and fT4 before the race were less than the reference range for nonsled dogs in 26% and 18% of sled dogs, respectively. Immediately after racing, 92% of sled dogs had plasma T4 concentrations less than the reference range. Three months after the race, 25% of sled dogs had plasma T4 concentrations less than the reference range. For T4, fT4, TSH, and TgAA, significant differences were not detected in samples collected before the race versus 3 months later. CONCLUSIONS AND CLINICAL RELEVANCE: Plasma T4, fT4, and TSH concentrations decreased in dogs that complete a long distance sled dog race. Many clinically normal sled dogs have plasma T4 and fT4 values that are lower than the reference range for nonsled dogs. We suggest that the reference ranges for sled dogs are 5.3 to 40.3 nmol/L and 3.0 to 24.0 pmol/L for plasmaT4 and fT4 concentrations, respectively, and 8.0 to 370 mU/L for TSH.  相似文献   

18.
The aim of this case controlled study was to determine whether dogs with behavioral problems have evidence of abnormal thyroid function on routine screening tests for hypothyroidism. The hypothesis of the study was that thyroid function, as assessed by serum total thyroxine (TT4) and serum thyroid stimulating hormone (thyrotropin) (TSH) concentrations, is normal in most dogs with behavioral problems. Concentrations of TT4 and TSH in 39 dogs with behavior problems presenting to a veterinary behavior referral clinic (abnormal behavior group), were compared with TT4 and TSH concentrations in 39 healthy control dogs without behavior problems presenting to 5 community veterinary practices (control group). Dogs in the control group were matched for age and breed with the abnormal behavior group. Dogs with behavioral problems had higher TT4 concentrations than dogs without behavioral problems (t-test: t = 2.77, N = 39, P = 0.009), however none of the TT4 values were outside the reference range. There was no significant difference in TSH concentration between the 2 groups. Two dogs with behavior problems and 1 dog without behavior problems had results suggestive of hypothyroidism. All other dogs were considered to be euthyroid. There was no evidence to support a diagnosis of hypothyroidism in the majority of dogs with behavior problems in this study. The higher concentration of TT4 in dogs with behavior problems suggests, however, that alteration in thyroid hormone production or metabolism may occur in some dogs with behavior problems. Further studies that include additional indicators of thyroid status such as serum total triiodothyronine, serum, free thyroxine, and anti-thyroid antibody concentrations are necessary to further evaluate the significance of this finding.  相似文献   

19.
A multicentric prospective study was conducted to monitor the effect of phenobarbital on serum total thyroxine (T4) and thyroid-stimulating hormone (TSH) concentrations in epileptic dogs. Serum T4 concentrations were determined for 22 epileptic dogs prior to initiation of phenobarbital therapy (time 0), and 3 weeks, 6 months, and 12 months after the start of phenobarbital. Median T4 concentration was significantly lower at 3 weeks and 6 months compared to time 0. Thirty-two percent of dogs had T4 concentrations below the reference range at 6 and 12 months. Nineteen of the 22 dogs had serum TSH concentrations determined at all sampling times. A significant upward trend in median TSH concentration was found. No associations were found between T4 concentration, dose of phenobarbital, or serum phenobarbital concentration. No signs of overt hypothyroidism were evident in dogs with low T4, with one exception. TSH stimulation tests were performed on six of seven dogs with low T4 concentrations at 12 months, and all but one had normal responses. In conclusion, phenobarbital therapy decreased serum T4 concentration but did not appear to cause clinical signs of hypothyroidism. Serum TSH concentrations and TSH stimulation tests suggest that the hypothalamic-pituitary-thyroid axis is functioning appropriately.  相似文献   

20.
Thyroid function was assessed in euthyroid dogs (n = 20), dogs suffering from canine recurrent flank alopecia (CRFA, n = 18), and hypothyroid dogs (n = 21). Blood samples obtained from all dogs in each group were assayed for total thyroxine (TT4), thyrotropin (TSH), and thyroglobulin autoantibody (TgAA) serum concentrations. Total T4 and TSH serum concentrations were significantly decreased and increased, respectively, in the hypothyroid group compared with the other 2 groups. No significant differences in TT4 and TSH serum values were found between the euthyroid and CRFA groups. Thyroglobulin autoantibodies were detected in 10, 11.1, and 61.9% of euthyroid dogs, dogs with CRFA, and hypothyroid dogs, respectively. In conclusion, dogs suffering from CRFA have a normal thyroid function, and the determination of TT4 and TSH serum concentrations allows differentiation of these dogs from dogs with hypothyroidism, in most cases. Occasionally, the 2 diseases can be concomitant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号