首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
采用速生人工林桉树木材苯酚液化产物和甲醛进一步树脂化制备液化木基酚醛(Liquefied wood phenol formaldehyde,LWPF)树脂作为胶合板用胶粘剂,探讨了热压温度和热压时间对LWPF树脂胶合板胶合性能的影响.结果表明,热压温度和热压时间均对LWPF树脂胶合板的胶合性能有显著影响(P<0.05),热压温度160℃、热压时间5min时所得胶合板的胶合性能好,平均木破率为86.4%.  相似文献   

2.
选择热压温度、热压时间、热压压力、板坯含水率、施胶量5个工艺参数,系统研究了在用异氰酸酯生产无醛胶合板时热压工艺条件对胶接性能的影响。结果表明:热压温度、热压时间、热压压力对胶合板胶接性能的影响比较显著;当热压温度控制在110~120℃之间、热压时间为1.0~1.2min/mm、热压压力为0.8~1.2MPa、施胶量为20g/m2左右、板坯含水率为8%~23%时,可以制得胶合强度符合国家Ⅰ类胶合板标准的无醛胶合板。  相似文献   

3.
为探索尿素—双醛淀粉树脂用于胶合板制备的施胶、热压等工艺因素及其影响,扩展淀粉基胶粘剂在人造板工业的应用,促进无醛环保型室内用胶合板的研究与发展,对尿素—双醛淀粉树脂胶合机理与热压工艺进行试验研究,试验采用响应面分析法对胶合板热压工艺予以优化,选取热压温度、热压时间和施胶量3个因素进行Box-Behnken设计,利用Design-Expert 软件对胶合强度的二次多项式回归模型进行分析。结果表明:热压温度对尿素—双醛淀粉胶合板胶合强度的影响最为显著;当选用热压温度136℃、热压时间1.99 min·mm-1、施胶量416 g·m-2时,尿素—双醛淀粉胶粘剂胶合板的胶合性能最优,且最优胶合强度预测值为2.12 MPa,与理论预测值误差小,试验所得出的拟合方程与稳定性试验匹配较好。  相似文献   

4.
对影响覆塑厚帘竹胶合板性能的主要因子进行研究.结果表明,以酚醛树脂为胶粘剂生产覆塑厚帘竹胶合板的适宜工艺参数如下:胶液质量分数26%,浸胶时间5-7 m in,热压压力2.4 MPa,热压温度135℃,每毫米板厚热压时间60 s.  相似文献   

5.
对喜树的旋切、单板干燥和热压胶合的试验结果表明喜树的旋切、单板干燥质量及胶合性能皆良好,对胶粘剂和加工过程均无特殊要求,是一种良好的胶合板用材.三层胶合板的合适热压工艺条件为热压压力0.8~1.2MPa,热压温度100~120℃,热压时间30s@mm-1,施胶量200g@m-2,单板含水率9%~12%.表7参5  相似文献   

6.
【目的】根据高密度聚乙烯塑料薄膜(HDPE)熔融后黏度大的特点,确定生产轧孔尾巨桉单板/HDPE复合无醛胶合板(简称WPCP)的可行性和热压工艺参数。【方法】利用数字显微镜揭示WPCP界面的微观形态特征,通过单因素试验分析WPCP的热压工艺条件(热压温度、热压压力、热压时间)对其胶合强度、静曲强度(MOR)和弹性模量(MOE)的影响,确定WPCP的热压工艺条件。【结果】单板表面的轧孔处理可以提高塑料薄膜的渗透性,在各单板层之间形成"树枝状胶钉"薄膜结构;在热压温度170~180℃、热压压力1.0~1.2 MPa、热压时间8~10min的条件下,WPCP胶合强度、静曲强度(MOR)和弹性模量(MOE)分别为1.21~1.32MPa,42.76~65.81MPa和6 678.43~8 348.93MPa,其MOR和MOE的值均达到普通胶合板的性能要求,可以生产出符合国家Ⅰ类胶合板胶合强度要求的无醛木塑胶合板。【结论】综合考虑生产成本和复合板性能指标,确定优化工艺因子为热压温度170℃,热压压力1.0MPa,热压时间10min,WPCP的MOR、MOE分别为64.13和8 167.57MPa,相当于中等硬材水平。  相似文献   

7.
在单因素试验的基础上,采用响应面分析软件分析了聚乙烯吡咯烷酮添加量、热压时间、热压温度3个因素对胶合板胶合强度的影响.结果表明:在聚乙烯吡咯烷酮添加量10.00%、热压温度163.00℃、热压时间3.70 min的条件下,胶合板的胶合强度可达1.33 MPa,与预测值相差较小.流变性能分析表明:聚乙烯吡咯烷酮的加入使得磷铝胶粘剂的粘度增大,改性胶粘剂的粘度与聚乙烯吡咯烷酮添加量呈正相关.红外分析结果表明聚乙烯吡咯烷酮可与磷酸二氢铝之间形成氢键,胶粘剂改性前后与单板之间的粘接力主要由氢键提供.  相似文献   

8.
对胶合板厚板作了缩短热压周期的试验,采用理论上较少采用的热压曲线与常规热压曲线进行对照,在2627张15mm厚的胶合板试验中,由于采用新的热压曲线及缩短热压周期压制,试验结果表明,从板的物理力学性能及外观质量等均达到令人满意的结果.  相似文献   

9.
以豆胶为胶黏剂研究一种新型的多层无醛胶合板,分析热预压温度、热压温度和压力,以及3段式热压工艺对胶合板的胶合强度影响,并用差示扫描量热仪(DSC)对豆胶胶黏剂进行热分析,研究了热压过程中板坯表芯层的热压温度变化规律.结果表明,较佳热压工艺参数为预热压温度100℃、热压温度160℃、3段式热压曲线的最高压力1.6 MPa.  相似文献   

10.
豆胶/PF的混合应用   总被引:2,自引:0,他引:2  
研究了化学改性豆胶加入酚醛(PF)树脂交联剂后提高胶合板强度的问题。利用石灰乳、氢氧化钠、硅酸钠等化学药剂按不同配制比例对豆粉进行改性,制备豆胶;按胶合强度筛选出的最优配方,以达到Ⅲ类胶合板的强度要求。将改性豆胶与PF胶按3∶1的比例混合应用,在150℃温度、2.5MPa压力、5min热压时间条件下压制的胶合板可以达到Ⅰ类胶合板的强度要求。PF胶以适当的比例添加才能起到良好的交联作用。豆胶与PF的混合应用使胶合板的强度和耐水性得到极大改善,为开发利用低成本高性能天然胶黏剂做出了有益的探索。  相似文献   

11.
在自制的酚醛树脂(PF树脂)中加入不同固化剂,考察固化剂对酚醛树脂固化时间的影响,筛选出固化速度最快的固化剂碳酸丙烯酯,同时研究了碳酸丙烯酯用量与树脂固化时间、适用期、胶合强度之间的关系,并优化出添加最佳用量的碳酸丙烯酯优化树脂的热压工艺.结果表明,当碳酸丙烯酯用量为树脂胶液量的2%时,酚醛树脂的固化时间缩短了64.4%,适用期240min.利用添加2%碳酸丙烯酯的酚醛树脂,通过不同热压工艺生产胶合板,当热压时间为1.0min·mm-1时,热压温度从105℃降到95℃;当热压温度为105℃时,热压时间从1.0min·mm-1缩短至0.7min·mm-1,两者均可减少能耗,降低生产成本.差示扫描量热法分析结果表明,添加2%碳酸丙烯酯的酚醛树脂固化起始温度为49.6℃,峰顶温度为109.2℃,固化温度较低.  相似文献   

12.
桉木单板/聚丙烯膜复合材料的制备工艺及力学性能   总被引:1,自引:0,他引:1  
为有效、合理地利用人工林速生材桉木,用塑料替代甲醛类胶黏剂,解决污染问题,以桉木单板和聚丙烯膜为原材料制备木塑复合材料,采用热—冷压制备工艺,分析了热压温度、压力及时间与塑料添加量对复合材料力学性能的影响,并确定了制备此类材料的最优工艺:热压温度180℃、热压压力0.9 MPa、热压时间420 s、塑料添加量150 g/m2;用该工艺制备的材料,物理力学性能达到或优于GB/T 9846.3—2004 I类胶合板标准。结果表明:用桉木单板和聚丙烯膜制备木塑复合材料是可行的,无游离甲醛释放。  相似文献   

13.
水溶性聚磷酸铵对木塑复合材料性能的影响   总被引:2,自引:0,他引:2  
为了分析聚磷酸铵在热压过程中提高木塑复合材料性能的原理,利用Coats-Redfern方法计算了经阻燃处理的木纤维在热压温度范围内(170~190℃)的表观活化能,利用红外光谱对阻燃和未处理木纤维热压后特征官能团的变化进行了比较,并制备无胶纤维板和木塑胶合板进行性能评价和验证。结果表明:1)阻燃木纤维的表观活化能比未处理木纤维的低;2)热压后,阻燃木纤维中羰基、甲基、醚键等基团都有量的变化;3)阻燃无胶纤维板有较高的抗弯强度;4)阻燃木塑胶合板有较高的干状胶合强度。可见,聚磷酸铵的加入提高了热压过程中木纤维的表面活性,改善了木塑界面的相容性,宏观表现为提高了木塑复合材料的物理力学性能。  相似文献   

14.
用二羟甲脲改性酚醛树脂制Ⅰ类胶合板的研究   总被引:1,自引:0,他引:1  
通过用尿素和二羟甲脲改性酚醛树脂的对比试验,发现先将尿素和甲醛制成二羟甲脲后再加入酚醛树脂中参与合成,可增加尿素的用量,反应终点较易控制,树脂的贮存稳定性较好;苯酚与尿素的重量比为100∶75时,合成的二羟甲脲改性酚醛树脂用于压制胶合板,板的胶合强度仍达到国家标准GB9846 88中Ⅰ类胶合板的要求;最佳的热压工艺为:热压温度130℃、单位压力0 9MPa、热压时间0 9min/mm,固化条件比纯酚醛树脂低;由红外光谱分析可知,经二羟甲脲改性后形成了酚醛—脲醛共缩聚树脂;对原料成本概算,二羟甲脲改性的酚醛树脂比纯酚醛树脂降低了26%  相似文献   

15.
为了改善生态环境,获得1种无游离甲醛释放的绿色人造板.本文以樟子松单板、塑料-低密度聚乙烯(LDPE)为主要原料,采用热压胶合方式来开展木塑复合胶合板的制备工艺及性能研究.同时,以胶合强度为主要指标对木塑复合胶合板的性能进行评价,考察工艺参数对材料性能的影响.结果表明:复合温度为160℃,偶联剂加入量为3%时,材料的胶合强度最好.复合时间对复合材料的影响不显著.经方差分析和极差分析知:最佳工艺条件为复合温度为160℃,偶联剂加入量为3%,复合时间为3min.  相似文献   

16.
以杨木碎单板切成的单板条制作PSL为研究对象,通过分析单板条的尺寸形态、施胶的胶液浓度与施胶时间对单板条吸胶量影响,考察了3种不同的施胶方法、热压时间与温度对PSL物理力学性能的影响,优化了热压工艺。结果表明,单板条的尺寸形态对其吸胶量没有显著的影响,它主要影响产品的均一性和外观质量;胶黏剂的浓度是影响单板条吸胶量的一个重要因素,选用胶液浓度为30%的酚醛树脂胶;施胶方法是影响PSL力学性能的重要因素;热压时间和热压温度对PSL的物理力学性能有显著的影响。综合考虑产品的物理力学性能和产品均一性,以单板条长度为100mm,采用喷胶方式,热压时间为35min、热压温度为150℃时制成的PSL的性能较好。  相似文献   

17.
<正>前言 制造胶合板是改善木材性能和节约木材、提高木材利用率的重要途径之一。胶合板工业目前所用的胶粘剂有两大类,即蛋白质胶粘剂和合成树脂胶粘剂。蛋白胶原料丰富、价格便宜,但其胶合强度较低,耐水、耐热和耐腐蚀性较差,不适用于室外。合成树脂胶主要有两种,即酚醛树脂和脲醛树脂胶粘剂,两者比较,酚醛树脂的耐水、耐热和耐老化性能较好,胶合强度也高,可制Ⅰ类胶合板,长期用于室外。但是,由于酚醛树脂的原料来源短缺,价格上涨以及能源耗费等原因,国外都在不断探讨研究天然胶粘剂。我省有丰富的植物性资源,  相似文献   

18.
利用响应面法分析研究了经微孔处理后的杨木单板的胶合性能。通过对杨木单板进行微孔处理,可使胶黏剂通过微孔渗入单板体内,增加杨木单板的本体强度,同时也可使相邻胶层透过微孔形成一体而增加单板的胶合强度等,以期制造出一种高性能的地板基材。结果表明:在试验范围内,随微孔孔径增大,孔距减小和施胶量的增加,其胶合强度增加;随热压压力增加,胶合强度先增强,当压力超过0.8 MPa,胶合强度反而降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号