首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied variations in tree biomass and carbon sequestration rates of Chir Pine(Pinus roxburghii. Sarg.) forest in three categories of forest disturbance, protected, moderately disturbed, and highly disturbed. In the first year, total biomass was 14.7 t?ha-1 in highly disturbed site, 94.46 t?ha-1 in moderately disturbed forest, and 112.0 t?ha-1 in protected forest. The soil organic carbon in the top 20 cm of soil ranged from 0.63 to 1.2%. The total rate of carbon sequestration was 0.60(t/ha)·a-1on the highly disturbed site, 1.03(t/ha)·a-1 on the moderately disturbed site, and 4.3(t/ha)·a-1 on the protected site.  相似文献   

2.
Several studies have been conducted in the past on carbon stock measurements in the tropical forests of Indonesia.This study is the first related research conducted in the New Guinea Island.In a degraded logged-over secondary forest in Manokwari Regency (West Papua,Indonesia),carbon stocks were measured for seven parts,i.e.,above-ground biomass (AGB),below-ground biomass (BGB),under-storey biomass (B u),necromass of dead leaves (N l),necromass of dead trees (N t),litter (L) and soil (S) using appropriate equations and laboratory analysis.Total carbon stocks were measured at 642.8 tC·ha-1 in the low disturbance area,536.9 tC·ha-1 in the moderate disturbance area and 490.4 tC·ha-1 in the high disturbance area.B u,N l and N t were not significant in the carbon stock and were collectively categorized as a total biomass complex.The carbon stock of litter was nearly equal to that of the total biomass complex,while the total carbon stock in the soil was eight times larger than the total biomass complex or the carbon stock of the litter.We confirmed that the average ratio of AGB and BGB to the total biomass (TB) was about 84.7% and 15.3%,respectively.Improvements were made to the equations in the low disturbance logged-over secondary forest area,applying corrections to the amounts of biomass of sample trees,based on representative commercial trees of category one.TB stocks before and after correction were estimated to be 84.4 and 106.7 tC·ha-1,indicating that these corrections added significant amounts of tree biomass (26.4%) during the sampling procedure.In conclusion,the equations for tree biomass developed in this study,will be useful for evaluating total carbon stocks,especially TB stocks in logged-over secondary forests throughout the Papua region.  相似文献   

3.
There are many uncertainties in the estimation of forest car- bon sequestration in China, especially in Liaoning Province where vari- ous forest inventory data have not been fully utilized. By using forest inventory data, we estimated forest vegetation carbon stock of Liaoning Province between 1993 and 2005. Results showed that forest biomass carbon stock increased from 68.91 Tg C in 1993 to 97.51 Tg C in 2005, whereas mean carbon density increased from 18.48 Mg·ha -1 C to 22.33 Mg·ha -1 C. The carbon stora...  相似文献   

4.
Community forests of developing countries are eligible to participate in the Reducing Emissions from Deforestation and Forest Degradation (REDD+) scheme. For this, estimation of carbon stock and the sequestration is essential. The carbon stock in the living biomass of nine community managed Shorea robusta forests of the mid hill regions of central Nepal (managed for 4–29 yr) were estimated. The carbon stock of trees and shrubs was estimated using an allometric equation while the biomass of herbaceous vegetation was estimated by the harvest method. The carbon stock in the living biomass of the studied forests ranged from 70–183 Mg ha?1(mean: 120 Mg ha?1) and it increased with increasing soil organic carbon. However, the carbon stock did not vary significantly with species richness and litter cover. The biomass and carbon stock in the forests managed for >20 yr were significantly higher than in the forests managed for < 20 yr. The carbon stock increased with the management duration (p < .05) with sequestration rate of 2.6 Mg C ha?1 yr?1. The local management has had positive effects on the carbon stock of the forests and thus the community forests have been acting as a sink of the atmospheric CO2. Therefore, the community managed forests of Nepal are eligible to participate in the REDD+ scheme.  相似文献   

5.
通过对国营雷州林业局30个5年生桉树无性系人工林的调查、试验,旨在阐明不同桉树无性系人工林碳储量的变化规律及营建桉树碳汇林的合理措施.结果表明:30个桉树无性系人工林生态系统平均碳储量为148.743 t·hm-2,高于之前学者研究的桉树人工林碳储量,其中,乔木层和土壤层分别占34.39%、61.88%;乔木层平均碳储量达51.948 t·hm-2,不同无性系间差异极显著(p<0.01),其中,23(101-1)、25(179-1)、4(BU1)、26(184-1)号无性系表现最优;土壤层的平均碳储量为92.033 t·hm-2,不同无性系土壤层碳储量差异不明显;灌木层、草本层、凋落物层碳储量分别是2.430、0.731、1.592 t·hm-2,占比例较小.营建桉树碳汇林关键在于无性系的正确选择.  相似文献   

6.
Carbon stock estimation was conducted in tree species of Sem Mukhem sacred forest in district Tehri of Garhwal Himalaya, Uttarakhand, India. This forest is dedicated to Nagraj Devta and is dominated by tree species, including Quercus floribunda, Quercus semecarpifolia and Rhododendron arboreum. The highest values of below ground biomass density, total biomass density and total carbon density were (34.81±1.68) Mg·ha?1, (168.26±9.04) Mg·ha?1 and (84.13±4.18) Mg·ha?1 for Pinus wallichiana. Overall values of total biomass density and total carbon density calculated were 1549.704 Mg·ha?1 and 774.77 Mg·ha?1 respectively. Total value of growing stock volume density for all species was 732.56 m3·ha?1 and ranged from (144.97±11.98) m3·ha?1 for Pinus wallichiana to (7.78±1.78) m3·ha?1 for Benthamidia capitata.  相似文献   

7.
Carbon sequestration is important in studying global carbon cycle and budget. Here, we used the National Forest Resource Inventory data for China collected from 2004 to 2008 and forest biomass and soil carbon storage data obtained from direct field measurements to estimate carbon (C) sequestration rate and benefit keeping C out of the atmosphere in forest ecosystems and their spatial distributions. Between 2004 and 2008, forests sequestered on average 0.36 Pg C yr?1 (1 Pg = 1015g), with 0.30 Pg C yr?1 in vegetation and 0.06 Pg C yr?1 in 0–1 meter soil. Under the different forest categories, total C sequestration rate ranged from 0.02 in bamboo forest to 0.11 Pg C yr?1 in broadleaf forest. The southwest region had highest C sequestration rate, 30% of total C sequestration, followed by the northeast and south central regions. The C sequestration in the forest ecosystem could offset about 21% of the annual C emissions in China over the same period, especially in provinces of Tibet, Guangxi, and Yunnan, and the benefit was similar to most Annex I countries. These results show that forests play an important role in reducing the increase in atmospheric carbon dioxide in China, and forest C sequestration are closely related to forest area, tree species composition, and site conditions.  相似文献   

8.
Although agrosystems are recognized for their socio-economic value, few works have been conducted to assign its sequestration potential and ecological services. Accordingly, this study aimed to evaluate the ecological services of the eucalyptus stands in order to permit to small producers the access in carbon credit market. Three stands were selected according to age. Data were compared to that of a savannah (control). In total, 12,817 individuals belonging to 30 families, 53 genera and 70 species were identified in the plantations against 7107 individuals belonging to 24 families, 36 genera and 42 species in the savannah. Gmelina, Annona, Hymenocardia, Allophyllus, Daniellia, Terminalia and Piliostigma were the most represented genera. There was no significant difference between Savannah and plantations in terms of diversity (p > 0.05). The largest stock of carbon was found in oldest stands (108.51 ± 26.46 t C/ha) against 13.62 ± 3.03 t C/ha in Savannah. Eucalyptus saligna stored 39.66 t C/ha (4 t C ha?1year?1) in young stands; 57.28 t C/ha (6 t C ha?1year?1) in medium stands and 85.46 t C/ha (9 t C ha?1year?1) in old stands. The sequestration potential was higher in eucalyptus stands (398.25 t CO2eq/ha) than savannah (50.05 t CO2eq/ha). In total 956.82 t CO2eq/ha were sequestered for an economic value of $9568.45/ha against 50.05 t CO2eq/ha corresponding to $500.56/ha in Savannah. Eucalyptus stands are carbon sinks and could be an opportunity for financial benefits in the event of payment for environmental services in the context of the CDM process.  相似文献   

9.
The seasonal trend of plant carbon dioxide (CO2) sequestration is related to the photosynthetic activity, which in turn changes in response to environmental conditions. Great interest has turned to the CO2 sequestration (CS) potential of temperate forests which play an important role in global carbon (C) cycle contributing to the lowering of atmospheric CO2 concentration. In such context, the CS of an unmanaged old broad-leaf deciduous forest developing inside a Strict Nature Reserve, and its variations during the year were analyzed considering the monthly variations of leaf area index (LAI) and net photosynthetic rates (NP). Overall, the total yearly CS of the forest was 141 Mg CO2 ha?1 year?1 with the highest CS value monitored in June (405 Mg CO2 month?1) due to the highest LAI (5.0 ± 0.8 m2 m?2) and a high NP in all the broadleaf species. The first CS decline was observed in August due to the more stressful climatic conditions that constrained NP rates. Overall, the total CS of the forest reflects the good ecological health of the ecosystem due to its conservative management.  相似文献   

10.
In the context of global carbon cycle management, accurate knowledge of carbon content in forests is a relevant issue in contemporary forest ecology. We measured the above-ground and soil carbon pools in the darkconiferous boreal taiga. We compared measured carbon pools to those calculated from the forest inventory records containing volume stock and species composition data. The inventory data heavily underestimated the pools in the study area(Stolby State Nature Reserve, central Krasnoyarsk Territory, Russian Federation). The carbon pool estimated from the forest inventory data varied from 25(t ha-1)(low-density stands) to 73(t ha-1)(highly stocked stands). Our estimates ranged from 59(t ha-1)(lowdensity stands) to 147(t ha-1)(highly stocked stands). Our values included living trees, standing deadwood, living cover, brushwood and litter. We found that the proportion of biomass carbon(living trees): soil carbon varied from99:1 to 8:2 for fully stocked and low-density forest stands,respectively. This contradicts the common understanding that the biomass in the boreal forests represents only16–20 % of the total carbon pool, with the balance being the soil carbon pool.  相似文献   

11.
长白山高山冻原生态系统碳储量和碳动态研究   总被引:1,自引:0,他引:1  
王涌翔  魏晶  吴钢  姜萍  王宏昌 《林业研究》2007,18(2):109-113
本研究分析了长白山高山冻原植被-凋落物-土壤生态系统的碳储量和碳动态.冻原植被中年净储存有机碳约17251 t;凋落物中有机碳储量为15043.1 t,凋落物中有机碳储量空间分布格局:TA>LA>MA>SA>FA;冻原土壤(0~20 cm)中年均储存有机碳为1054 t·a^-1,土壤中有机碳储量为3.16×10^5 t;每年约有1.4×104 t·a^-1土壤有机碳通过土壤呼吸释放到大气圈.植被-凋落物-土壤系统共储存碳452624 t.长白山高山冻原年均固碳为3146 t·a^-1.  相似文献   

12.
Abstract

The National Forest Inventory (NFI) is an important resource for estimating the national carbon (C) balance. Based on the volume, biomass, annual biomass increment and litterfall of different forest types and the 6th NFI in China, the hyperbolic relationships between them were established and net primary production (NPP) and net ecosystem production (NEP) were estimated accordingly. The results showed that the total biomass, NPP and NEP of China's forests were 5.06 Pg C, 0.68 Pg C year?1 and 0.21 Pg C year?1, respectively. The area-weighted mean biomass, NPP and NEP were 35.43 Mg C ha?1, 4.76 Mg C ha?1 year?1 and 1.47 Mg C ha?1 year?1 and varied from 13.36 to 79.89 Mg C ha?1, from 2.13 to 9.15 Mg C ha?1 year?1 and from ?0.16 to 5.80 Mg C ha?1 year?1, respectively. The carbon sequestration was composed mainly of Betula and Populus forest, subtropical evergreen broadleaved forest and subtropical mixed evergreen–deciduous broadleaved forest, whereas Pinus massoniana forest and P. tabulaeformis forest were carbon sources. This study provides a method to calculate the biomass, NPP and NEP of forest ecosystems using the NFI, and may be useful for evaluating terrestrial carbon balance at regional and global levels.  相似文献   

13.
ABSTRACT

Plantation forests play a critical role in forest management due to their high productivity and large contribution to carbon sequestration (CSE). The purpose of this study was to assess the CSE of plantations containing four important conifer species distributed across Taiwan, namely, the China fir (Cunninghamia lanceolata), Japanese cedar (Cryptomeria japonica), Taiwania (Taiwania cryptomerioides) and Taiwan red cypress (Chamaecyparis formosensis). Data regarding the plantations were obtained from a survey of permanent sample plots (PSPs). We used these data to calculate the CSE in each PSP and adopted CSEmean and CSEperiod as indicators to assess the CSE of the four conifers. According to the CSEmean obtained from analysis of variance and the least significant difference method, two groups were identified among these four conifers: the Japanese cedar (4.03 Mg ha?1 yr?1) and Taiwania (3.52 Mg ha?1 yr?1) yielded higher CSEmean values and the China fir (1.79 Mg ha?1 yr?1) and Taiwan red cypress (2.36 Mg ha?1 yr?1) yielded lower CSEmean values. The same patterns were observed in the CSEperiod values; however, no significant difference in CSEperiod was observed between Taiwan red cypress and either of the two groups. Therefore, Japanese cedar and Taiwania have high CSE potential among conifers.  相似文献   

14.
The present study was conducted in five forest types of subtropical zone in the Northwestern Himalaya, India. Three forest stands of 0.1 ha were laid down in each forest type to study the variation in vegetation carbon pool, stem density, and ecosystem carbon density. The stem density in the present study ranged from (483 to 417 trees ha?1) and stem biomass from (262.40 to 39.97 tha?1). Highest carbon storage (209.95 t ha?1) was recorded in dry Shiwalik sal forest followed by Himalayan chir forest > chir pine plantation > lower Shiwalik pine forest > northern mixed dry deciduous forest. Maximum tree above ground biomass is observed in dry Shiwalik sal forests (301.78 t ha?1), followed by upper Himalayan chir pine forests (194 t ha?1) and lower in Shiwalik pine forests (138.73 t ha?1). The relationship with stem volume showed the maximum adjusted r2 (0.873), followed by total density (0.55) and average DBH (0.528). The regression equation of different parameters with shrub biomass showed highest r2 (0.812) and relationship between ecosystem carbon with other parameters of different forest types, where cubic function with stem volume showed highest r2 value of 0.873 through cubic functions. Our results suggest that biomass and carbon stocks in these subtropical forests vary greatly with forest type and species density. This variation among forests can be used as a tool for carbon credit claims under ongoing international conventions and protocols.  相似文献   

15.
Four forest stands each of twenty major forest types in sub-tropical to temperate zones (350 m asl–3100 m asl) of Garhwal Himalaya were studied. The aim of the study was to assess the stem density, tree diversity, biomass and carbon stocks in these forests and make recommendations for forest management based on priorities for biodiversity protection and carbon sequestration. Stem density ranged between 295 and 850 N ha−1, while total biomass ranged from 129 to 533 Mg ha−1. Total carbon storage ranged between 59 and 245 Mg ha−1. The range of Shannon–Wiener diversity index was between 0.28 and 1.75. Most of the conifer-dominated forest types had higher carbon storage than broadleaf-dominated forest types. Protecting conifer-dominated stands, especially those dominated by Abies pindrow and Cedrus deodara, would have the largest impact, per unit area, on reducing carbon emissions from deforestation.  相似文献   

16.
Chinese fir [(Cunninghamia lanceolata (Lamb.) Hook (Taxodiaceae)] plantations are helping to meet China's increasing demands for timber, while, at the same time, sequestering carbon (C) above and belowground. The latter function is important as a means of slowing the rate that CO2 is increasing in the atmosphere. Available data are limited, however, and even if extensive, would necessitate consideration of future changes in climatic conditions and management practices. To evaluate the contribution of Chinese fir plantations under a range of changing conditions a dynamic model is required. In this paper, we report successful outcome in parameterizing a process-based model (3-PG) and validating its predictions with recent and long-term field measurements acquired from different ages of Chinese fir plantations at the Huitong National Forest Ecosystem Research Station. Once parameterized, the model performed well when simulating leaf area index (LAI), net primary productivity (NPP), biomass of stems (WS), foliage (WF) and roots (WR), litterfall, and shifts in allocation over a period of time. Although the model does not specifically include heterotrophic respiration, we made some attempts to estimate changes in root C storage and decomposition rates in the litterfall pool as well as in the total soil respiration. Total C stored in biomass increased rapidly, peaking at age 21 years in unthinned stands. The predicted averaged above and belowground NNP (13.81 t ha−1 a−1) of the Chinese fir plantations between the modeling period (from 4 to 21-year-old) is much higher than that of Chinese forests (4.8–6.22 t ha−1 a−1), indicating that Chinese fir is a suitable tree species to grow for timber while processing the potential to act as a C sequestration sink. Taking into account that maximum LAI occurs at the age of 15 years, intermediate thinning and nutrient supplements should, according to model predictions, further increase growth and C storage in Chinese fir stands. Predicted future increases (approximately 0–2 °C) in temperature due to global warming may increase plantation growth and reduce the time required to complete a rotation, but further increases (approximately 2–6 °C) may reduce the growth rate and prolong the rotational age.  相似文献   

17.
The decomposition of harvest residues (brash) in managed forests has an important influence on the carbon (C) and nitrogen (N) stocks of these ecosystems. The brash input from thinning events in a 25-year-old Sitka spruce plantation was determined. A litter-bag method was used to determine the mass loss and decomposition rate of brash left on the forest floor. The changes in C and N concentrations and the C:N ratio of the needles and branches were also monitored as decomposition progressed for 2.5 years. Using the decomposition rate (k b) and estimated brash inputs, we then determined the total cumulative stock of C that the brash could supply to the deadwood pool over a 41-year rotation period. The three thinning events resulted in the addition of 37.99 t C ha?1 and 0.61 t N ha?1 to the forest floor. A significant mass loss of 44 % was recorded from brash decomposition bags after 2.5 years, with a rapid loss of 35 % in the first year, after which the rate of decomposition slowed. The k b-value and residence time (95 % decomposition) were 0.311 year?1 and 9.6 years, respectively. There was a 69 % increase in the N concentration of needles after 1.5 years, while an increase of 185 % in the N concentration of branches was recorded after 2.5 years. The C concentration (48.55 ± 0.20 %) did not differ significantly between the needles and branches over time. The accumulated C stock from decomposing brash at clearfell was estimated at 18.51 t C ha?1.  相似文献   

18.
Replantation of degraded forest using rapidgrowth trees can play a significant role in global carbon budget by storing large quantities of carbon in live biomass,forest floor,and soil organic matter.We assessed the potential of 20-year old stands of three rapid-growth tree species,including Alnus subcordata,Populus deltoides and Taxodium distichum,for carbon(C) storage at ecosystem level.In September 2013,48 replicate plots(16 m × 16 m) in 8 stands of three plantations were established.36 trees were felled down and fresh biomass of different components was weighed in the field.Biomass equations were fitted using data based on the 36 felled trees.The biomass of understory vegetation and litter were measured by harvesting all the components.The C fraction of understory,litter,and soil were measured.The ecosystem C storage was as follows: A.subcordata(626.5 Mg ha~(-1)) [ P.deltoides(542.9Mg ha~(-1)) [ T.distichum(486.8 Mg ha~(-1))(P \ 0.001),of which78.1–87.4% was in the soil.P.deltoides plantation reached the highest tree biomass(206.6 Mg ha~(-1)),followed by A.subcordata(134.5 Mg ha~(-1)) and T.distichum(123.3 Mg ha~(-1)).The highest soil C was stored in theplantation of A.subcordata(555.5 Mg ha~(-1)).The C storage and sequestration of the plantations after 20 years were considerable(25–30 Mg ha~(-1) year~(-1)) and broadleaves species had higher potential.Native species had a higher soil C storage while the potential of introduced species for live biomass production was higher.  相似文献   

19.
Mangroves offer a number of ecosystem goods and services, including carbon (C) storage. As a carbon pool, mangroves could be a source of CO2 emissions as a result of human activities such as deforestation and forest degradation. Conversely, mangroves may act as a CO2 sink through biomass accumulation. This study aimed to determine carbon stocks, harvest removals and productivity of mangrove forests of mainland Tanzania. Nine species were recorded in mainland Tanzania, among them Avicennia marina (Forssk.) Vierh., Rhizophora mucronata Lam. (31%) and Ceriops tagal (Perr.) C.B.Rob. (20%) were dominant. The aboveground, dead wood, belowground and total carbon were 33.5 ± 5.8 Mg C ha?1, 1.2 ± 1.1 (2% of total carbon), 30.0 ± 4.5 Mg C ha?1 (46% of total carbon) and 64.7 ± 8.4 Mg C ha?1 at 95% confidence level, respectively. Carbon harvest removals accounted for loss of about 4% of standing total carbon stocks annually. Results on the productivity of mangrove forests (using data from permanent sample plots monitored for four years [1995-1998]) showed an overall carbon increment of 5.6 Mg C ha?1 y?1 (aboveground carbon), 4.1 C ha?1 y?1 (belowground carbon) and 9.7 C ha?1 y?1 (total carbon) at 23%, 32% and 27% levels of uncertainty, respectively. Both natural death and tree cutting/harvest removals resulted in significant decline of annual carbon productivity. Findings from this study demonstrate that mangroves store large quantities of carbon and are more productive than other dominant forest formations in southern Africa. Both their deforestation and forest degradation, therefore, is likely to contribute to large quantities of emission and loss of carbon sink functionality. Therefore, mangroves need to be managed sustainably.  相似文献   

20.
Forest soil organic carbon (SOC) and forest floor carbon (FFC) stocks are highly variable. The sampling effort required to assess SOC and FFC stocks is therefore large, resulting in limited sampling and poor estimates of the size, spatial distribution, and changes in SOC and FFC stocks in many countries. Forest SOC and FFC stocks are influenced by tree species. Therefore, quantification of the effect of tree species on carbon stocks combined with spatial information on tree species distribution could improve insight into the spatial distribution of forest carbon stocks.We present a study on the effect of tree species on FFC and SOC stock for a forest in the Netherlands and evaluate how this information could be used for inventory improvement. We assessed FFC and SOC stocks in stands of beech (Fagus sylvatica), Douglas fir (Pseudotsuga menziesii), Scots pine (Pinus sylvestris), oak (Quercus robur) and larch (Larix kaempferi).FFC and SOC stocks differed between a number of species. FFC stocks varied between 11.1 Mg C ha−1 (beech) and 29.6 Mg C ha−1 (larch). SOC stocks varied between 53.3 Mg C ha−1 (beech) and 97.1 Mg C ha−1 (larch). At managed locations, carbon stocks were lower than at unmanaged locations. The Dutch carbon inventory currently overestimates FFC stocks. Differences in carbon stocks between conifer and broadleaf forests were significant enough to consider them relevant for the Dutch system for carbon inventory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号