首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feline calicivirus (FCV) comprises a large number of strains which are related antigenically to varying degrees. The antigenic variability creates problems for choosing antigens to include in vaccines. Historically, these have been selected for use based on their cross-reactivity with a high proportion of field strains. However, it is important to determine the current level of cross-reactivity of vaccines and whether or not this may be decreasing owing to widespread vaccine use. In this in vitro study, we have compared the ability of antisera to two vaccine viruses (FCV strain F9 and FCV strain 255) to neutralise a panel of 40 recent UK field isolates. These 40 isolates were obtained by randomised, cross-sectional sampling of veterinary practices in different geographical regions of the UK so as to ensure they were representative of viruses circulating in the veterinary-visiting population of cats in the UK. Virus neutralisation assays showed that both vaccine strains are still broadly cross-reactive, with F9 antiserum neutralising 87.5% and 255 antiserum 75% of isolates tested with antiserum dilutions of 1 in 2 or greater. However, when antibody units were used, in order to take account of differences in homologous titres between antisera, fewer isolates were neutralised, with F9 antiserum showing a slightly higher proportion of isolates neutralised than 255. Multivariable analysis of the sample population of 1206 cats from which the 40 isolates were derived found that vaccinated cats were at a decreased risk of being positive for FCV, whereas cats from households with more than one cat, and cats with mouth ulcers were at increased risk. In addition as cats became older their risk of shedding FCV decreased.  相似文献   

2.
Feline calicivirus (FCV) is characterised by a high degree of antigenic variation potentially compromising vaccine efficacy. Inclusion of several FCV strains or antigens in current vaccines could be a means to improve protection against antigenically distinct isolates. This study evaluated the synergy between two FCV strains (FCVG1 and FCV431) by comparing immunity induced by either strain with that provided by a combination of the two strains against an heterologous challenge with antigenically distant FCV strains (FCV393 and FCV220). Thirty-two SPF kittens were randomly allocated to four groups of eight cats in each group. Groups B, C and D cats were vaccinated once subcutaneously with strains FCVG1, FCV431, and FCVG1 + FCV431, respectively. Each kitten received a total dose of 10(3.4) CCID50 of FCV. Control group A was not immunised. On day 31, four cats from each group were challenged oronasally with FCV220 and four cats with FCV393. Following challenge, the cats were monitored for clinical signs, viral shedding and antibody responses. FCV220 and FCV393 induced severe clinical signs in control cats typical of FCV infection. Immunisation with both strains mixed together induced higher neutralizing antibody titres against FCV220 and FCV393 strains on average. Protection was observed in all groups, however combination of the two strains resulted in a better clinical protection and reduction of virus shedding after heterologous challenge. A moderate correlation was observed between neutralizing antibody titres at the time of challenge and protection against clinical signs. These results indicated that vaccines combining antigens from different FCV strains may induce a broader heterologous protection.  相似文献   

3.
The neutralisation patterns of 103 recent isolates of feline calicivirus from cats with chronic stomatitis or acute feline calicivirus disease, and from cats with neither oral nor respiratory disease were compared. There were no statistically significant differences between the proportions of isolates from each clinical source neutralised by individual feline calicivirus cat antisera. Different antisera showed widely differing degrees of cross reactivity; antisera to the most widely used vaccine strain F9 being the most cross reactive, neutralising 54 per cent of all the field isolates, and antisera to a field isolate LS015 the next most cross reactive, neutralising 29 per cent of the field isolates. However, the cross reactivity of antisera to early British isolates (A4, 68/40 and 69/1112) was much reduced (overall less than 10 per cent) whereas in the early 1970s 65 per cent of 117 field isolates from clinically normal cats were neutralised by A4 antiserum, and 40 per cent by each of 68/40 and 69/1112 antisera. This suggests a change in the spectrum of antigenicity among feline calicivirus isolates over the past 15 years. However, the cross reactivity of F9 antisera appeared to be similar to that in earlier studies. The relevance of these findings to vaccination is discussed.  相似文献   

4.
Four types of commercially available feline calicivirus (FCV) vaccine were compared in terms of their efficacy on the basis of the ability of the sera of specific-pathogen-free cats immunized by two injections of each type of vaccine to neutralize FCV field isolates. Each vaccine immune serum neutralized relatively well strains F4, F9, and 255, which were FCV laboratory strains. As to 36 strains of field isolates, however, vaccines A, B, C, and D immune sera did not neutralize 18-20 of the strains (50.0%-55.6%), 19-22 of the strains (52.8%-61.1%), 22-25 of the strains (61.1%-69.4%), and 8-16 of the strains (22.2%-44.4%), respectively. These results indicate that there is much difference in neutralizing antigenicity between the existing vaccine strains and the FCV strains that are prevalent in Japan, suggesting the need for improvement of FCV vaccines.  相似文献   

5.
6.
Virus-like particles (VLPs) were produced in insect cells infected with a recombinant baculovirus containing the capsid gene of feline calicivirus strain F9 (FCV-F9). The FCV VLPs were morphologically and antigenically similar to the native virus and contained a single capsid protein with a molecular weight of approximately 60 kDa that reacted with FCV antiserum. Moreover, following immunization of rabbits, VLPs were able to elicit neutralizing antibodies against several FCV strains isolated from clinical samples. Our preliminary results showed that FCV-VLP could be considered a candidate vaccine against FCV infections.  相似文献   

7.
An attenuated respiratory disease vaccine against feline viral rhinotracheitis (FVR) and feline calicivirus (FCV) disease was evaluated for safety and efficacy in specific-pathogen-free cats. Twenty cats were vaccinated twice intramuscularly, with 28 days between vaccinations. Ten unvaccinated cats were used as contact controls. Adverse effects were not noticed after vaccination, and the vaccinal virus did not spread to contact controls. Arithmetical mean serum-neutralizing titers against vaccinal FCV strain F9 and challenge FCV strain 255 were 1:13 and 1:15 at 28 days after the 1st inoculation. These titers increased to 1:45 and 1:196 after the 2nd inoculation. After challenge exposure of vaccinated cats to virulent FCV 255 virus, mean titers increased to 1:129 and 1:865, respectively for F9 and 255 viruses. The F9 postchallenge mean titer for vaccinated cats was 21.5 times higher than that for the 8 contact controls that survived challenge exposure. The arithmetical mean serum neutralizing titer for FVR was low (1:2) after the 1st vaccination, but increased to 1:35 after the 2nd vaccination. Challenge exposure to virulent FVR virus resulted in a marked anamnestic immune response (mean titer of 1:207, compared with 1:12 for contact controls). In general, vaccinated cats remained alert and healthy after challenge exposure with FCV-255, whereas unvaccinated contact control cats developed definite signs of FCV disease, including central nervous system (CNS) depression (6 of 10) and dyspnea indicative of pneumonia (5 of 10). Two controls died of severe pneumonia. A mild fibrile response was detected in 28% of vaccinated cats, compared with a more severe febrile response in 78% of control cats. Some vaccinated cats developed minute lingual ulcers that did not appear to be detrimental to the health of the cat. After FVR challenge exposure, vaccinated cats were free of serious clinical signs. Five of 18 vaccinated cats had mild signs of FVR, including an occasional sneeze, low temperature, and mild serous lacrimation for 1 or 2 days. Contact controls developed definite clinical signs of FVR. The combined FVR-FCV vaccine appears to be safe and reasonably efficacious. Vaccination against FCV disease and FVR should be part of the routine feline immunization program.  相似文献   

8.
We analysed genogroups of four feline calcivirus (FCV) isolates (FCV-S, H10, Ao198-1 and ML89) obtained from cats that experienced FCV infection after having been vaccinated against FCV. New PCR primer sets (8F/8R, Ao-S/Ao-A, cp-S/cp-A) were also designed, since the conventional Seal primer failed to amplify the target sequences in two samples. The genogroups of the four isolates as well as eight global and 17 domestic strains were determined by phylogenetic analysis of their amino acid sequences. One out of the four strains (25%) isolated in this study, H10, was grouped into genogroup I, along with the vaccine strains F9 and FCV-255. The other three isolates (75%) belonged to genogroup II. Thus, there were more isolates in genogroup II than in genogroup I. However, the antibody values of the four isolates against cat anti-F9 antisera were significantly decreased. There may be no relationship between the neutralizing antibody titre and genogroup. Amino acid sequence alignment of the four isolates showed that only a single amino acid in region C, which is involved in neutralization epitopes, was different in ML89 strain from that of F9. The other three strains, H10, Ao198-1 and FCV-B, shared the same amino acid sequence with F9. Alignment of amino acids for linear epitopes in the F9 strain, which are located at regions D and E, showed variations in 5' hypervariable region (HVR) of E, whereas D and conE had only synonymous substitutions i.e. no change in the amino acid sequence. This mutation in 5' HVR of region E suggested a vaccine breakdown, as the region is known to be essential for antigenicity. The genogroup II FCV is likely to be the cause of the FCV infection in this study, while the vaccine strains belong to genogroup I. Thus, the existing vaccine may need reevaluation for its effectiveness.  相似文献   

9.
Epidemiology of upper respiratory infections of cats was studied. Nasal, ocular, and oral swabs collected from 111 cats presented at animal hospitals during the past 2.5 years were examined. Twenty-four (21.6%) and 4 (3.6%) cats were diagnosed as feline calicivirus (FCV) infection and feline viral rhinotracheitis, respectively, indicating FCV is more prevalent than feline herpesvirus-1, which revealed a considerable shift from data obtained in 1970s. Cat sera immunized by using vaccines containing either FCV F9 or 255 strains neutralized 42.9% and 66.7% of the FCV isolates, respectively. Chlamydia psittaci, examined by a PCR assay amplifying the ompA gene, was found in 26.9% of 26 diseased cats that typically showed conjunctivitis and rhinitis.  相似文献   

10.
Although prevention of feline calcivirus (FCV) infection by vaccination has been attempted, and isolation of FCV, development of the disease, and a few fatal cases in vaccinated cats have been reported. Fifteen FCV strains isolated from cats that had been vaccinated with commercially available FCV vaccines (F9, FCV-255, and FC-7) were genogrouped. Molecular analysis of viral genomes involved the construction of a phylogenetic tree of capsid genes using the NJ method. Cat anti-F9 serum and rabbit anti-FCV-255 serum were used for virus neutralization tests. Molecular phylogenetic analysis of the amino acid sequences of 15 virus isolates and those of the previously published and GenBank-deposited 9 global and 14 Japanese strains showed that 8 (53%) of the 15 virus isolates as well as the vaccine strains F9 and FCV-255 belonged to genogroup I (GAI), and 7 (47%) belonged to genogroup II (GAII). Of the 8 GAI strains, 2 were isolated from cats that had been vaccinated with an F9 strain live vaccine, 5 from cats vaccinated with an FCV-255-derived vaccine, and 1 from a cat vaccinated with an FC-7-derived vaccine. Of the 7 GAII strains, 5 were isolated from cats that had been vaccinated with the F9 strain live vaccine, 1 from a cat vaccinated with the FCV-255-derived vaccine, and 1 from a cat vaccinated with the FC-7-derived vaccine. These results indicate that more vaccine breakdown strains isolated from the cats vaccinated with the F9 strain-derived vaccine belong to GAII than to GAI, whereas more vaccine breakdown strains isolated from the cats vaccinated with the FCV-255 strain-derived vaccine belong to GAI than to GAII, and that when the FC-7 strain-derived vaccine is used, the vaccine breakdown strains belong almost equally to GAI and GAII. Thus, the genogroups of virus isolates varied with the vaccine strain used (p < 0.05). On the other hand, the neutralizing titres of feline anti-F9 serum and rabbit anti-FCV-255 serum against the 15 isolates were very low, showing no relationships between neutralizing antibody titres and genogroups. The DNA sequence identities between the virus isolates and the vaccine strains were low, at 70.6–82.9%, and no strains were found to have sequences derived from the vaccine strains. Alignment of amino acid sequences showed that the GAI or GAII virus isolates from the F9-vaccinated cats differed at position 428 of the 5’ hypervariable region (HVR) of capsid region of the F9 strain, whereas those from the FCV-255-vaccinated cats differed at positions 438, 453, and 460 of the 5’HVR of capsid region E of the F9 strain. We speculate that these differences influence genogrouping. The amino acid changes within the F9 linear epitopes common to G A I and G A II were noted at positions 450, 451, 457 of 5’HVR of the capsid region E in the isolates from F9-derived vaccine-treated cats, and 449, 450, and 451 of 5’HVR of capsid region E in the isolates from FCV-255-derived vaccine-treated cats, suggesting that these amino acid changes are involved in escapes. These results suggest that alternate vaccination with the F9 and FCV-255 strains or the use of a polyvalent vaccine containing GAII strains serves to inhibit development.  相似文献   

11.
Isolation rates of feline herpesvirus (FHV) and feline calicivirus (FCV) from oropharyngeal swabs, taken from 6866 cats in 1980 to 1989 were studied retrospectively. FCV was isolated from 1364 (19.9 per cent) and FHV from 285 (4.2 per cent). The ratio of FCV:FHV isolations varied from 1.3:1 to 15:1 in individual years with an overall ratio of 4.8:1. Isolation of both viruses was fairly uniform for each year and there was no breed or sex disposition to either virus. Of 872 cats shedding FCV and 213 cats shedding FHV, of known age, 447 (51.3 per cent) with FCV and 140 (65.7 per cent) with FHV were under one year old, compared to only 35.3 per cent of the whole population sampled. For the years 1985 to 1989, more information was obtained about the cases. Of 4626 cats tested, 1180 (25.5 per cent) had acute upper respiratory tract disease (URTD) of which 348 (29.5 per cent) were shedding FCV and 162 (13.7 per cent) FHV. A further 597 had chronic URTD and of these, 102 (17.1 per cent) were shedding FCV and 18 (3 per cent) FHV. In 120 cases of suspected vaccine reaction/breakdown, FCV was isolated from 34 (28.3 per cent) and FHV from only two (1.7 per cent). FHV was not isolated from any of 412 cases presenting with chronic gingivitis/stomatitis alone; 181 (43.9 per cent) were shedding FCV and when cats with other signs in addition to chronic gingivitis were included, this proportion increased to 70.4 per cent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
In June 1993, two of five pet cats kept in Yokohama city in Japan suddenly became agitated and died. Feline calicivirus (FCV) was isolated from them. One strain (FCV-S) was isolated from the spinal cord, lung and tonsil of cat 1, another (FCV-B) from the ileum, medulla oblongata and cervical spinal cord of cat 2, and a third (FCV-SAKURA) from the oral cavity of one of the three surviving cats which showed no clinical signs. These three strains were equally resistant to pH 3.0 and serologically similar to each other, but distinct from strain F9. A genetic analysis, using a 208 base pair fragment from region E of the capsid, showed that FCV-Ari had a 70.4 per cent nucleotide and 77.3 per cent amino acid homology and FCV-F9 had a 68.6 per cent nucleotide and 73.9 per cent amino acid homology with the three strains, indicating that these two strains were genetically distinct from the three new isolates. Unvaccinated cats and cats which had been vaccinated against FCV-F9 developed watery diarrhoea but did not become agitated after the administration of FCV-S. The FCV-S strain did not induce signs of excitability after it was administered orally to specific pathogen-free cats.  相似文献   

13.
Feline calicivirus (FCV) can be typed by exploiting antigenic differences between isolates or, more recently, by the sequence analysis of a hypervariable region of the virus's capsid gene. These two methods were used to characterise FCV isolates from 20 vaccine failures which occurred after the use of a commercial, live-attenuated vaccine. Using virus neutralisation, the isolates showed a spectrum of relatedness to the vaccine; depending on the criterion adopted for identity, 10 to 40 per cent of them appeared to be similar to the vaccine virus. Using sequence analysis, the isolates fell into one of two categories; 20 per cent had a similar sequence to the vaccine (0-67 to 2-67 per cent distant), and the remainder had a dissimilar sequence (21-3 to 36-0 per cent distant). Sequence analysis identified one cat that appeared to be infected with two distinct FCVs. The serological and sequence-based typing methods gave the same result in 80 to 95 per cent of individual cases, depending on the criterion adopted for serological identity. It is suggested that molecular typing is a more definitive method for characterising the relatedness of FCV isolates.  相似文献   

14.
The efficacy of an inactivated vaccine derived from feline calicivirus (FCV) strain FS2 was assessed against challenge with three UK field strains of FCV. The mean clinical score, calculated on the number of signs recorded per day over 21 days after challenge, was lower for vaccinated cats when compared to unvaccinated animals though the difference was not statistically significant. All cats excreted FCV throughout the three weeks following challenge and there was no difference in the number of days of virus shedding during this period between vaccinated and unvaccinated animals. The development of FCV serum neutralising antibody titres following vaccination and challenge was recorded. In the second part of the study the ability of vaccinated and challenged cats to become FCV carriers and then infect susceptible in-contact animals was demonstrated.  相似文献   

15.
OBJECTIVE: To determine whether detection of virus-specific serum antibodies correlates with resistance to challenge with virulent feline herpesvirus 1 (FHV-1), feline calicivirus (FCV), and feline parvovirus (FPV) in cats and to determine percentages of client-owned cats with serum antibodies to FHV-1, FCV, and FPV. DESIGN: Prospective experimental study. ANIMALS: 72 laboratory-reared cats and 276 client-owned cats. PROCEDURES: Laboratory-reared cats were vaccinated against FHV-1, FCV, and FPV, using 1 of 3 commercial vaccines, or maintained as unvaccinated controls. Between 9 and 36 months after vaccination, cats were challenged with virulent virus. Recombinant-antigen ELISA for detection of FHV-1-, FCV-, and FPV-specific antibodies were developed, and results were compared with results of hemagglutination inhibition (FPV) and virus neutralization (FHV-1 and FCV) assays and with resistance to viral challenge. RESULTS: For vaccinated laboratory-reared cats, predictive values of positive results were 100% for the FPV and FCV ELISA and 90% for the FHV-1 ELISA. Results of the FHV-1, FCV, and FPV ELISA were positive for 195 (70.7%), 255 (92.4%), and 189 (68.5%), respectively, of the 276 client-owned cats. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that for cats that have been vaccinated, detection of FHV-1-, FCV-, and FPV-specific antibodies is predictive of whether cats are susceptible to disease, regardless of vaccine type or vaccination interval. Because most client-owned cats had detectable serum antibodies suggestive of resistance to infection, use of arbitrary booster vaccination intervals is likely to lead to unnecessary vaccination of some cats.  相似文献   

16.
An isolated epizootic of a highly fatal feline calicivirus (FCV) infection, manifested in its severest form by a systemic hemorrhagic-like fever, occurred over a 1-month period among six cats owned by two different employees and a client of a private veterinary practice. The infection may have started with an unowned shelter kitten that was hospitalized during this same period for a severe atypical upper respiratory infection. The causative agent was isolated from blood and nasal swabs from two cats; the electron microscopic appearance was typical for FCV and capsid gene sequencing showed it to be genetically similar to other less pathogenic field strains. An identical disease syndrome was recreated in laboratory cats through oral inoculation with tissue culture grown virus. During the course of transmission studies in experimental cats, the agent was inadvertently spread by caretakers to an adjoining room containing a group of four normal adult cats. One of the four older cats was found dead and a second was moribund within 48-72h in spite of symptomatic treatment; lesions in these animals were similar to those of the field cats but with the added feature of severe pancreatitis. The mortality in field cats, deliberately infected laboratory cats, and inadvertently infected laboratory cats ranged from 33-50%. This new isolate of calicivirus, named FCV-Ari, was neutralized at negligible to low titer by antiserum against the universal FCV-F9 vaccine strain. Cats orally immunized with FCV-F9, and then challenge-exposed shortly thereafter with FCV-Ari, developed a milder self-limiting form of disease, indicating partial protection. However, all of the field cats, including the three that died, had been previously immunized with parenteral FCV-F9 vaccine. FCV-Ari caused a disease that was reminiscent of Rabbit Hemorrhagic Disease, a highly fatal calicivirus infection of older rabbits.  相似文献   

17.
A full history of the management practices and the prevalence of upper respiratory tract disease (URTD) at 218 rescue shelters, breeding establishments and private households with five or more cats was recorded. Oropharyngeal and conjunctival swabs and blood samples were taken from 1748 cats. The prevalences of feline herpesvirus (FHV), feline calicivirus (FCV), Chlamydophila felis and Bordetella bronchiseptica were determined by PCR on swab samples. An ELISA was applied to determine the prevalence of antibodies to B. bronchiseptica. The rates of detection by PCR of each pathogen in the cats in catteries with and without ongoing URTD were, respectively, FHV 16 per cent and 8 per cent; FCV 47 per cent and 29 per cent; C. felis 10 per cent and 3 per cent; and B. bronchiseptica 5 per cent and 1.3 per cent; the seroprevalences of B. bronchiseptica were 61 per cent and 41 per cent, respectively. There was evidence that FHV, FCV and B. bronchiseptica played a role in URTD. The risk factors associated with the disease were less than excellent hygiene, contact with dogs with URTD, and larger numbers of cats in the cattery or household.  相似文献   

18.
Feline calicivirus (FCV) is a highly infectious pathogen in cats and widely distributed worldwide with high genetic variation. Full-length open reading frame 2 of 5 from recently isolated Korean FCV isolates were sequenced and compared with those of global isolates. The results of phylogenetic analysis supported dividing global FCV isolates into two genogroups (type I and II) and demonstrated the presence of genogroup II in Korea, indicating their geographic spread in East Asia. High sequence variations in region E of the FCV isolates emphasizes that a novel vaccine needs to be developed to induce protective immunity against various FCV strains.  相似文献   

19.
Two groups of feline panleukopenia virus (FPV), feline calicivirus (FCV), and feline herpesvirus-1 (FHV-1) seronegative cats (five cats per group) were administered one of two modified live feline viral rhinotracheitis, calicivirus, and panleukopenia virus (FVRCP) vaccines and the serological responses to each agent were followed over 28 days. While all cats developed detectable FPV and FCV antibody titers; only two cats developed detectable FHV-1 antibody titers using the criteria described by the testing laboratory. For FPV and FHV-1, there were no differences in seroconversion rates between the cats that were administered the intranasal (IN) FVRCP vaccine and the cats that were administered the parenteral FVRCP vaccine on any day post-inoculation. For FCV, the cats that were administered the IN FVRCP vaccine were more likely to seroconvert on days 10 and 14 when compared to cats that were administered the parenteral FVRCP vaccine.  相似文献   

20.
The prevalence of feline calicivirus (FCV), feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) antibodies were assessed in 78 British and 18 North American household cats with chronic stomatitis and in appropriate controls. In British cats, FCV was significantly (P less than 0.005) more prevalent in both hospital (92 per cent) and general practice (79 per cent) cases compared to their controls (19 per cent in both cases). A similar difference in prevalence of FCV was noted in North American cats where 50 per cent of cases were positive compared to 0 per cent of controls (P less than 0.01). FeLV prevalence was low in all chronic stomatitis populations. A significantly higher prevalence of antibody to FIV was found in British hospital cases (81 per cent) compared with time-matched controls (16 per cent) (P less than 0.001): a similar rate was found in the general practice cases (75 per cent) for which no controls were available. In the North American sample, FIV antibody status was similar in cases (54 per cent positive) and their age, sex and breed matched controls (50 per cent). The possible role of FCV and FIV in the pathogenesis of feline chronic stomatitis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号