首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
● Application of plant defense inducers against tea diseases. ● Application of natural enemies against insect pests. ● Application of Trifolium repens against weeds. The application and development of ‘green’ preventive technologies in tea plantations is an important means of ensuring tea quality and ecological safety. Ecological, agronomic and biological controls are the main preventive measures used in Guizhou Province. This paper summarizes the ‘green’ preventive technologies being applied in Guizhou tea plantations, including the use of plant defense inducers to regulate tea plant responses to pathogens, natural enemies to control pest species causing damage to shoots and Trifolium repens to control the main weed species. In addition, it summarizes the integrated ‘green’ preventive technologies being used in Guizhou and provides a foundation for the ecological maintenance of tea plantations.  相似文献   

2.
● Crop pests are a major factor restricting agricultural production in China. ● The National Monitoring and Early Warning System (NMEWS) was established > 40 years ago. ● Application of NMEWS has increased national capability to tackle pests. The importance of food security, especially in combating the problem of acute hunger, has been underscored as a key component of sustainable development. Considering the major challenge of rapidly increasing demands for both food security and safety, the management and control of major pests is urged to secure supplies of major agricultural products. However, owing to global climate change, biological invasion (e.g., fall armyworm), decreasing agricultural biodiversity, and other factors, a wide range of crop pest outbreaks are becoming more frequent and serious, making China, one of the world’s largest country in terms of agricultural production, one of the primary victims of crop yield loss and the largest pesticide consumer in the world. Nevertheless, the use of science and technology in monitoring and early warning of major crop pests provides better pest management and acts as a fundamental part of an integrated plant protection strategy to achieve the goal of sustainable development of agriculture. This review summarizes the most fundamental information on pest monitoring and early warning in China by documenting the developmental history of research and application, Chinese laws and regulations related to plant protection, and the National Monitoring and Early Warning System, with the purpose of presenting the Chinese model as an example of how to promote regional management of crop pests, especially of cross border pests such as fall armyworm and locust, by international cooperation across pest-related countries.  相似文献   

3.
● Agriculture on Loess Plateau has transformed from food shortage to green development. ● Terracing and check-dams are the key engineering measures to increase crop yields. ● Agronomic measures and policy support greatly increased crop production. ● Increasing non-agricultural income is a key part of increasing farmers’ income. ● Grain for Green Program had an overwhelming advantage in protecting environment. Loess Plateau of China is a typical dryland agricultural area. Agriculture there has transformed from food shortage toward green development over the past seven decades, and has achieved world-renowned achievements. During 1950–1980, the population increased from 42 to 77 million, increasing grain production to meet food demand of rapid population growth was the greatest challenge. Engineering measures such as terracing and check-dam were the crucial strategies to increase crop production. From 1981 to 2000, most of agronomic measures played a key role in increasing crops yield, and a series of policy support has benefited millions of smallholders. As expected, these measures and policies greatly increased crop production and basically achieved food security; but, low per capita GDP (only about 620 USD in 2000) was still a big challenge. During 2001–2015, the increase in agricultural and non-agricultural income together supported the increase in farmer income to 5781 USD·yr–1. Intensive agriculture that relies heavily on chemicals increased crop productivity by 56%. Steadfast policy support such as “Grain for Green Program” had an overwhelming advantage in protecting the natural ecological environment. In the new era, the integration of science and technology innovations, policy support and positive societal factors will be the golden key to further improve food production, protect environment, and increase smallholder income.  相似文献   

4.
● Progress on nitrogen management in agriculture is overviewed in China. ● 4R principles are key to high N use efficiency and low N losses in soil-crop systems. ● A new framework of food-chain-N-management is proposed. ● China’s success in N management provides models for other countries. Since the 1980s, the widespread use of N fertilizer has not only resulted in a strong increase in agricultural productivity but also caused a number of environmental problems, induced by excess reactive N emissions. A range of approaches to improve N management for increased agricultural production together with reduced environmental impacts has been proposed. The 4R principles (right product, right amount, right time and right place) for N fertilizer application have been essential for improving crop productivity and N use efficiency while reducing N losses. For example, site-specific N management (as part of 4R practice) reduced N fertilizer use by 32% and increased yield by 5% in China. However, it has not been enough to overcome the challenge of producing more food with reduced impact on the environment and health. This paper proposes a new framework of food-chain-nitrogen-management (FCNM). This involves good N management including the recycling of organic manures, optimized crop and animal production and improved human diets, with the aim of maximizing resource use efficiency and minimizing environmental emissions. FCNM could meet future challenges for food demand, resource sustainability and environmental safety, key issues for green agricultural transformation in China and other countries.  相似文献   

5.
● Soil nitrogen fluxes and influencing factors were reviewed in the subtropical hilly regions. ● Fertilizer application and atmospheric deposition contributed largely to soil nitrogen input. ● High gaseous, runoff and leaching losses of soil nitrogen were measured. ● Soil nitrogen cycles are well modelled with the Catchment Nutrients Management Model. The subtropical hilly region of China is a region with intensive crop and livestock production, which has resulted in serious N pollution in soil, water and air. This review summarizes the major soil N cycling processes and their influencing factors in rice paddies and uplands in the subtropical hilly region of China. The major N cycling processes include the N fertilizer application in croplands, atmospheric N deposition, biological N fixation, crop N uptake, ammonia volatilization, N2O/NO emissions, nitrogen runoff and leaching losses. The catchment nutrients management model for N cycle modeling and its case studies in the subtropical hilly region were also introduced. Finally, N management practices for improving N use efficiency in cropland, as well as catchment scales are summarized.  相似文献   

6.
● The Green Revolution broadened the trade-off between yield and nitrogen-use efficiency. ● Root developmental and metabolic adaptations to nitrogen availability. ● Mechanisms of nitrogen uptake and assimilation have been extensively studied. ● Modulating plant growth-metabolic coordination improves nitrogen-use efficiency in crops. The Green Revolution of the 1960s boosted crop yields in part through widespread production of semidwarf plant cultivars and extensive use of mineral fertilizers. The beneficial semidwarfism of cereal Green Revolution cultivars is due to the accumulation of plant growth-repressing DELLA proteins, which increases lodging resistance but requires a high-nitrogen fertilizer to obtain high yield. Given that environmentally degrading fertilizer use underpins current worldwide crop production, future agricultural sustainability needs a sustainable Green Revolution through reducing N fertilizer use while boosting grain yield above what is currently achievable. Despite a great deal of research efforts, only a few genes have been demonstrated to improve N-use efficiency in crops. The molecular mechanisms underlying the coordination between plant growth and N metabolism is still not fully understood, thus preventing significant improvement. Recent advances of how plants sense, capture and respond to varying N supply in model plants have shed light on how to improve sustainable productivity in agriculture. This review focuses on the current understanding of root developmental and metabolic adaptations to N availability, and discuss the potential approaches to improve N-use efficiency in high-yielding cereal crops.  相似文献   

7.
● For 8000 years, agricultural practices have affected atmospheric CO2 concentrations. ● Paddy rice cultivation has impacted atmospheric CH4 concentration since 5000 years ago. ● Modern agricultural practices must include carbon storage and reduced emissions. ● Sustainable management in agriculture must be combined with decarbonizing the economy and reducing population growth. Since humans started practicing agriculture at the expense of natural forests, 8000 years ago, they have affected atmospheric CO2 concentrations. Their impact on atmospheric CH4 started about 5000 years ago, as result of the cultivation of paddy rice. A challenge of modern agricultural practices is to reverse the impact cropping has had on greenhouse gas emissions and the global climate. There is an increasing demand for agriculture to provide food security as well as a range of other ecosystem services. Depending on ecosystem management, different practices may involve trade-offs and synergies, and these must be considered to work toward desirable management systems. Solution toward food security should not only focus on agricultural management practices, but also on strategies to reduce food waste, more socially-just distribution of resources, changes in lifestyle including decarbonization of the economy, as well as reducing human population growth.  相似文献   

8.
● Analyse the effects of ecological management measures undertaken so far. ● Point out the main problems that confront effective ecological management. ● Suggest some measures to guide ecological management and high-quality development. ● Develop some models to improve the quality of clear waters and green mountains. ● Provide scientific and technological support for green and eco-friendly development. The Loess Plateau is the core area in the Yellow River basin for implementing environmental protection and high-quality development strategies. A series of ecological projects has implemented aimed at soil and water conservation and ecological management on the Loess Plateau over the past 70 years. The effects of the ecological projects are apparent mainly through a marked increase in vegetation cover, controlled soil erosion and reduced flow of sediment into the Yellow River, continual optimization of the industrial structure and increased production from arable land, poverty alleviation and greater prosperity, and optimal allocation of space for biological organisms. Major problems have also been analyzed in ecological management including the fragile ecosystem of the region, maintaining the stability of vegetation, lower agricultural productivity and continued risk from natural disasters. Some suitable schemes and models have been developed for the coordinated development of the region through research and demonstration, striking the optimum balance between rural industry and ecology, and increased regional capacity to supply high-quality ecological products. Countermeasures to address the problems are suggested to guide ecological management and high-quality development in the future.  相似文献   

9.
● Diversification enhances nature-based contributions to cropping system functions. ● Soil management to improve production and ecosystem function has variable outcomes. ● Management of the production-system to use legacy nutrients will reduce inputs. ● Intercrops, companion crops and cover crops improve ecological sustainability. ● Sustainable interventions within value chains are essential to future-proof agriculture. To achieve the triple challenge of food security, reversing biodiversity declines plus mitigating and adapting to climate change, there is a drive to embed ecological principles into agricultural, value-chain practices and decision-making. By diversifying cropping systems at several scales there is potential to decrease reliance on inputs, provide resilience to abiotic and biotic stress, enhance plant, microbe and animal biodiversity, and mitigate against climate change. In this review we highlight the research performed in Scotland over the past 5 years into the impact of the use of ecological principles in agriculture on sustainability, resilience and provision of ecosystem functions. We demonstrate that diversification of the system can enhance ecosystem functions. Soil and plant management interventions, including nature-based solutions, can also enhance soil quality and utilization of legacy nutrients. Additionally, this is facilitated by greater reliance on soil biological processes and trophic interactions. We highlight the example of intercropping with legumes to deliver sustainability through ecological principles and use legumes as an exemplar of the innovation. We conclude that there are many effective interventions that can be made to deliver resilient, sustainable, and diverse agroecosystems for crop and food production, and these may be applicable in any agroecosystem.  相似文献   

10.
● An overview of impacts of climate change on wheat and rice crops. ● A review on impacts of climate change on insect pests and fungal pathogens of wheat and rice. ● A selection of adaptation strategies to mitigate impacts of climate change on crop production and pest and disease management. Ongoing climate change is expected to have impacts on crops, insect pests, and plant pathogens and poses considerable threats to sustainable food security. Existing reviews have summarized impacts of a changing climate on agriculture, but the majority of these are presented from an ecological point of view, and scant information is available on specific species in agricultural applications. This paper provides an overview of impacts of climate change on two staple crops, wheat and rice. First, the direct effects of climate change on crop growth, yield formation, and geographic distribution of wheat and rice are reviewed. Then, the effects of climate change on pests and pathogens related with wheat and rice, and their interactions with the crops are summarized. Finally, potential management strategies to mitigate the direct impacts of climate change on crops, and the indirect impacts on crops through pests and pathogens are outlined. The present overview aims to aid agriculture practitioners and researchers who are interested in wheat and rice to better understand climate change related impacts on the target species.  相似文献   

11.
● A simple model was used to evaluate how increasing temporal variability in precipitation influences crop yields and nitrogen losses. ● Crop yields are reduced and nitrogen losses are increased at current levels of precipitation variability. ● Increasing temporal variability in precipitation, as is expected (and observed) to occur with anthropogenic climate change will reduce yields and increase nitrogen losses further. A simple ‘toy’ model of productivity and nitrogen and phosphorus cycling was used to evaluate how the increasing temporal variation in precipitation that is predicted (and observed) to occur as a consequence of greenhouse-gas-induced climate change will affect crop yields and losses of reactive N that can cause environmental damage and affect human health. The model predicted that as temporal variability in precipitation increased it progressively reduced yields and increased losses of reactive N by disrupting the synchrony between N supply and plant N uptake. Also, increases in the temporal variation of precipitation increased the frequency of floods and droughts. Predictions of this model indicate that climate-change-driven increases in temporal variation in precipitation in rainfed agricultural ecosystems will make it difficult to sustain cropping systems that are both high-yielding and have small environmental and human-health footprints.  相似文献   

12.
● There is huge potential for improvement of nitrogen management in Australia. ● N management should incorporate environmental, social and economic sustainability. ● Agronomic, ecological and socioeconomic approaches and efforts are needed. Nitrogen is an essential nutrient that supports life, but excess N in the human-environment system causes multiple adverse effects from the local to the global scale. Sustainable N management in agroecosystems, therefore, has become more and more critical to address the increasing concern over food security, environmental quality and climate change. Australia is facing a serious challenge for sustainable N management due to its emission-intensive lifestyle (high level of animal-source foods and fossil fuels consumption) and its diversity of agricultural production systems, from extensive rainfed grain systems with mining of soil N to intensive crop and animal production systems with excessive use of N. This paper reviews the major challenges and future opportunities for making Australian agrifood systems more sustainable, less polluting and more profitable.  相似文献   

13.
● Impacts of 30 cropping systems practiced on the North China Plain were evaluated. ● Trade-offs were assessed among productive, economic and environmental indicators. ● An evolutionary algorithm was used for multi-objective optimization. ● Conflict exists between productivity and profitability versus lower ground water decline. ● Six strategies were identified to jointly mitigate the trade-offs between objectives. Since the Green Revolution cropping systems have been progressively homogenized and intensified with increasing rates of inputs such as fertilizers, pesticides and water. This has resulted in higher crop productivity but also a high environmental burden due to increased pollution and water depletion. To identify opportunities for increasing the productivity and reducing the environmental impact of cropping systems, it is crucial to assess the associated trade-offs. The paper presents a model-based analysis of how 30 different crop rotations practiced in the North China Plain could be combined at the regional level to overcome trade-offs between indicators of economic, food security, and environmental performance. The model uses evolutionary multi-objective optimization to maximize revenues, livestock products, dietary and vitamin C yield, and to minimize the decline of the groundwater table. The modeling revealed substantial trade-offs between objectives of maximizing productivity and profitability versus minimizing ground water decline, and between production of livestock products and vitamin C yield. Six strategies each defining a specific combination of cropping systems and contributing to different extents to the various objectives were identified. Implementation of these six strategies could be used to find opportunities to mitigate the trade-offs between objectives. It was concluded that a holistic analysis of the potential of a diversity cropping systems at a regional level is needed to find integrative solutions for challenges due to conflicting objectives for food production, economic viability and environmental protection.  相似文献   

14.
● Data from the Park Grass Experiment shows inherent trade-offs between species richness, biomass production and soil organic carbon. ● Soil organic carbon is positively correlated with biomass production that increases with fertilizer additions. ● Variance in outcomes can be understood in terms of the dominant ecological strategies of the plant communities indicated by functional traits. ● There was an indication that data on traits associated with the spatiotemporal pattern of resource capture could be used to design species mixtures with greater resource use complementarity, increasing species richness without sacrificing productivity. ● Variance in soil organic carbon was positively correlated with pH. Quantifying the relationships between plant functional traits and ecosystem services has been promoted as an approach to achieving multifunctional grassland systems that balance productivity with other regulating, supporting and cultural services. Establishing trade-offs and synergies between traits and services has largely relied on meta-analyses of studies from different systems and environments. This study demonstrated the value of focused studies of long-term experiments in grassland systems that measure traits and services in the same space and time to better understand the ecological constraints underlying these trade-offs and synergies. An analysis is presented that uses data from the Park Grass Experiment at Rothamsted Research on above-ground productivity, species richness and soil organic carbon stocks to quantify the relationships between these three outcomes and the power of variance in plant functional traits in explaining them. There was a trade-off between plots with high productivity, nitrogen inputs and soil organic carbon and plots with high species richness that was explained by a functional gradient of traits that are indicative of contrasting strategies of resource acquisition of resource conservation. Examples were identified of using functional traits to identify opportunities for mitigating these trade-offs and moving toward more multifunctional systems.  相似文献   

15.
● Cost escalation and declining profits evident in sugarcane production in China. ● Monoculture and fertilizer overuse causes poor soil health, crop productivity plateau. ● Matching crop nutrient demand and supply key to recovery of sugarcane soils. ● Inorganic inputs need to be replaced with organic sources to restore soil health and sustainability. ● Integrated multidisciplinary solution for sustainable sugarcane cropping system needed. Demand for sugar is projected to grow in China for the foreseeable future. However, sugarcane production is unlikely to increase due to increasing production cost and decreasing profit margin. The persisting sugarcane yield plateau and the current cropping system with fertilizer overuse, soil acidification and pests and diseases remain the major productivity constraints. Sugarcane agriculture supports the livelihood of about 28 million farmers in South China; hence, sustaining it is a socioeconomic imperative. More compellingly, to meet the ever-increasing Chinese market demand, annual sugar production must be increased from the current 10 Mt to 16 Mt by 2030 of which 80% to 90% comes from sugarcane. Therefore, increasing sugar yield and crop productivity in an environmentally sustainable way must be a priority. This review examines the current Chinese sugarcane production system and discuss options for its transition to a green, sustainable cropping system, which is vital for the long-term viability of the industry. This analysis shows that reducing chemical inputs, preventing soil degradation, improving soil health, managing water deficit, provision of clean planting material, and consolidation of small farm holdings are critical requirements to transform the current farming practices into an economically and environmentally sustainable sugarcane cropping system.  相似文献   

16.
● Matching nitrification inhibitors with soil properties and nitrifiers is vital to achieve a higher NUE. ● Enhancing BNF, DNRA and microbial N immobilization processes via soil amendments can greatly contribute to less chemical N fertilizer input. ● Plant-associated microbiomes are critical for plant nutrient uptake, growth and fitness. ● Coevolutionary trophic relationships among soil biota need to be considered for improving crop NUE. Soil microbiomes drive the biogeochemical cycling of nitrogen and regulate soil N supply and loss, thus, pivotal nitrogen use efficiency (NUE). Meanwhile, there is an increasing awareness that plant associated microbiomes and soil food web interactions is vital for modulating crop productivity and N uptake. The rapid advances in modern omics-based techniques and biotechnologies make it possible to manipulate soil-plant microbiomes for improving NUE and reducing N environmental impacts. This paper summarizes current progress in research on regulating soil microbial N cycle processes for NUE improvement, plant-microbe interactions benefiting plant N uptake, and the importance of soil microbiomes in promoting soil health and crop productivity. We also proposes a potential holistic (rhizosphere-root-phyllosphere) microbe-based approach to improve NUE and reduce dependence on mineral N fertilizer in agroecosystems, toward nature-based solution for nutrient management in intensive cropping systems.  相似文献   

17.
Lysobacter enzymogenes mutants were generated for WAP-8294A biosynthesis. ● Essential and non-essential accessory genes for WAP-8294A biosynthesis were determined. ● Six new WAP-8294A analogs were identified using UHPLC-HR-MS/MS. ● Three deoxy analogs were detected supporting the function of ORF4 in asparagine hydroxylation. Naturally-occurring environmental microorganisms may provide ‘green’ and effective biocontrol tools for disease management in agricultural crops. Due to the constant threat of resistant pathogens there is a pressing and continual need to search for new biocontrol tools. This study investigated the production of new analogs of WAP-8294A compounds by the biocontrol agent Lysobacter enzymogenes OH11 through biosynthetic engineering. WAP-8294As are a family of natural cyclic lipodepsipeptides with potent activity against Gram-positive bacteria. A series of genetic manipulations was therefore conducted on the accessory genes in the WAP biosynthetic gene cluster. The resulting strains containing a single-point mutation in ORF4, which was predicted to encode a 2-ketoglutarate dependent dioxygenase, produced deoxy-WAP-8294As. This result provides evidence for the function of ORF4 in catalyzing β-hydroxylation of the D-asparagine residue in WAP-8294As. In addition, six new analogs of WAP-8294As were identified by UHPLC-HR-MS/MS. This is the first attempt to produce new WAP-8294As in Lysobacter and shows that the spectrum of the biocontrol compounds may be expanded through the manipulation of biosynthetic genes.  相似文献   

18.
● Sustainable nitrogen management strategies for Chinese vegetable production are summarized. ● Research on reactive N (Nr) losses in Chinese vegetable systems is limited compared to cereal crop systems. ● Knowledge-based optimization of N fertilizer rate strategy maintains soil N supply to meet the dynamic vegetable demand in time, space and quantity. ● Innovative products and technology strategy regulates the soil N forms and promotes the vegetable root growth to further control the Nr loss. ● Integrated knowledge and products strategy is needed to produce more vegetables with lower Nr losses. Inappropriate nitrogen fertilizer management for the intensive Chinese vegetable production has caused low N use efficiency (NUE), high reactive nitrogen (Nr) losses and serious environmental risks with limited yield increase. Innovative N management strategy is an urgent need to achieve sustainable vegetable production. This paper summarizes recent studies on Nr losses and identifies the limitations from Chinese vegetable production systems and proposes three steps for sustainable N management in Chinese vegetable production. The three N management steps include, but are not limited to, (1) knowledge-based optimization of N fertilizer rate strategy, which maintains soil N supply to meet the dynamic vegetable demand in time, space and quantity; (2) innovative products and technology, which regulates the soil N forms and promotes the vegetable root growth to reduce the Nr loss; (3) integrated knowledge and products strategy (IKPS). The knowledge-based optimization of N fertilizer rate strategy and innovative products and technology, can maintain or increase vegetable yield, significantly improve NUE, and mitigate the region-specific and crop-specific Nr losses. More importantly, IKPS, based on combination of in-season root-zone N management strategy, innovative products and technology, and best crop cultivation management, is needed to produce more vegetables with lower Nr losses.  相似文献   

19.
● This review systematically raises the subject concept of alfalfa biology. ● The discipline of alfalfa biology has been divided into six major sections. ● The recent advances from the perspective of discipline system have been reviewed. Alfalfa (Medicago sativa) is the main leguminous forage crop with great ecologic and economic value. The research of alfalfa in various fields has exploded, but has not been included in a systematic framework. This paper summarizes the status of global alfalfa research over the past 10 years, raise the subject concept of alfalfa biology, and review the recent advances from the perspective of discipline system as germplasm resources, multiomics and biotechnology, environmental biology, symbiotic nitrogen fixation, biological breeding and cultivation. This paper proposes the key unsolved scientific and technical issues in alfalfa biology, and hope to appeal the research interest of more plant scientists and to promote the development of alfalfa industry.  相似文献   

20.
● Arable-ley rotations can alleviate soil degradation and erosion. ● Multispecies leys can improve livestock health and reduce greenhouse gas emissions. ● Ley botanical composition is crucial for determining benefits. ● Lack of livestock infrastructure in arable areas may prevent arable-ley uptake. ● Long-term (10–25 years) research is needed to facilitate evidence-based decisions. Agricultural intensification and the subsequent decline of mixed farming systems has led to an increase in continuous cropping with only a few fallow or break years, undermining global soil health. Arable-ley rotations incorporating temporary pastures (leys) lasting 1–4 years may alleviate soil degradation by building soil fertility and improving soil structure. However, the majority of previous research on arable-ley rotations has utilized either grass or grass-clover leys within ungrazed systems. Multispecies leys, containing a mix of grasses, legumes, and herbs, are rapidly gaining popularity due to their promotion in agri-environment schemes and potential to deliver greater ecosystem services than conventional grass or grass-clover leys. Livestock grazing in arable-ley rotations may increase the economic resilience of these systems, despite limited research of the effects of multispecies leys on ruminant health and greenhouse gas emissions. This review aims to evaluate previous research on multispecies leys, highlighting areas for future research and the potential benefits and disbenefits on soil quality and livestock productivity. The botanical composition of multispecies leys is crucial, as legumes, deep rooted perennial plants (e.g., Onobrychis viciifolia and Cichorium intybus) and herbs (e.g., Plantago lanceolata) can increase soil carbon, improve soil structure, reduce nitrogen fertilizer requirements, and promote the recovery of soil fauna (e.g., earthworms) in degraded arable soils while delivering additional environmental benefits (e.g., biological nitrification inhibition and enteric methane reduction). Multispecies leys have the potential to deliver biologically driven regenerative agriculture, but more long-term research is needed to underpin evidence-based policy and farmer guidance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号