首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
● Soil nitrogen fluxes and influencing factors were reviewed in the subtropical hilly regions. ● Fertilizer application and atmospheric deposition contributed largely to soil nitrogen input. ● High gaseous, runoff and leaching losses of soil nitrogen were measured. ● Soil nitrogen cycles are well modelled with the Catchment Nutrients Management Model. The subtropical hilly region of China is a region with intensive crop and livestock production, which has resulted in serious N pollution in soil, water and air. This review summarizes the major soil N cycling processes and their influencing factors in rice paddies and uplands in the subtropical hilly region of China. The major N cycling processes include the N fertilizer application in croplands, atmospheric N deposition, biological N fixation, crop N uptake, ammonia volatilization, N2O/NO emissions, nitrogen runoff and leaching losses. The catchment nutrients management model for N cycle modeling and its case studies in the subtropical hilly region were also introduced. Finally, N management practices for improving N use efficiency in cropland, as well as catchment scales are summarized.  相似文献   

2.
● Sustainable nitrogen management strategies for Chinese vegetable production are summarized. ● Research on reactive N (Nr) losses in Chinese vegetable systems is limited compared to cereal crop systems. ● Knowledge-based optimization of N fertilizer rate strategy maintains soil N supply to meet the dynamic vegetable demand in time, space and quantity. ● Innovative products and technology strategy regulates the soil N forms and promotes the vegetable root growth to further control the Nr loss. ● Integrated knowledge and products strategy is needed to produce more vegetables with lower Nr losses. Inappropriate nitrogen fertilizer management for the intensive Chinese vegetable production has caused low N use efficiency (NUE), high reactive nitrogen (Nr) losses and serious environmental risks with limited yield increase. Innovative N management strategy is an urgent need to achieve sustainable vegetable production. This paper summarizes recent studies on Nr losses and identifies the limitations from Chinese vegetable production systems and proposes three steps for sustainable N management in Chinese vegetable production. The three N management steps include, but are not limited to, (1) knowledge-based optimization of N fertilizer rate strategy, which maintains soil N supply to meet the dynamic vegetable demand in time, space and quantity; (2) innovative products and technology, which regulates the soil N forms and promotes the vegetable root growth to reduce the Nr loss; (3) integrated knowledge and products strategy (IKPS). The knowledge-based optimization of N fertilizer rate strategy and innovative products and technology, can maintain or increase vegetable yield, significantly improve NUE, and mitigate the region-specific and crop-specific Nr losses. More importantly, IKPS, based on combination of in-season root-zone N management strategy, innovative products and technology, and best crop cultivation management, is needed to produce more vegetables with lower Nr losses.  相似文献   

3.
● Progress on nitrogen management in agriculture is overviewed in China. ● 4R principles are key to high N use efficiency and low N losses in soil-crop systems. ● A new framework of food-chain-N-management is proposed. ● China’s success in N management provides models for other countries. Since the 1980s, the widespread use of N fertilizer has not only resulted in a strong increase in agricultural productivity but also caused a number of environmental problems, induced by excess reactive N emissions. A range of approaches to improve N management for increased agricultural production together with reduced environmental impacts has been proposed. The 4R principles (right product, right amount, right time and right place) for N fertilizer application have been essential for improving crop productivity and N use efficiency while reducing N losses. For example, site-specific N management (as part of 4R practice) reduced N fertilizer use by 32% and increased yield by 5% in China. However, it has not been enough to overcome the challenge of producing more food with reduced impact on the environment and health. This paper proposes a new framework of food-chain-nitrogen-management (FCNM). This involves good N management including the recycling of organic manures, optimized crop and animal production and improved human diets, with the aim of maximizing resource use efficiency and minimizing environmental emissions. FCNM could meet future challenges for food demand, resource sustainability and environmental safety, key issues for green agricultural transformation in China and other countries.  相似文献   

4.
● The Green Revolution broadened the trade-off between yield and nitrogen-use efficiency. ● Root developmental and metabolic adaptations to nitrogen availability. ● Mechanisms of nitrogen uptake and assimilation have been extensively studied. ● Modulating plant growth-metabolic coordination improves nitrogen-use efficiency in crops. The Green Revolution of the 1960s boosted crop yields in part through widespread production of semidwarf plant cultivars and extensive use of mineral fertilizers. The beneficial semidwarfism of cereal Green Revolution cultivars is due to the accumulation of plant growth-repressing DELLA proteins, which increases lodging resistance but requires a high-nitrogen fertilizer to obtain high yield. Given that environmentally degrading fertilizer use underpins current worldwide crop production, future agricultural sustainability needs a sustainable Green Revolution through reducing N fertilizer use while boosting grain yield above what is currently achievable. Despite a great deal of research efforts, only a few genes have been demonstrated to improve N-use efficiency in crops. The molecular mechanisms underlying the coordination between plant growth and N metabolism is still not fully understood, thus preventing significant improvement. Recent advances of how plants sense, capture and respond to varying N supply in model plants have shed light on how to improve sustainable productivity in agriculture. This review focuses on the current understanding of root developmental and metabolic adaptations to N availability, and discuss the potential approaches to improve N-use efficiency in high-yielding cereal crops.  相似文献   

5.
● There is huge potential for improvement of nitrogen management in Australia. ● N management should incorporate environmental, social and economic sustainability. ● Agronomic, ecological and socioeconomic approaches and efforts are needed. Nitrogen is an essential nutrient that supports life, but excess N in the human-environment system causes multiple adverse effects from the local to the global scale. Sustainable N management in agroecosystems, therefore, has become more and more critical to address the increasing concern over food security, environmental quality and climate change. Australia is facing a serious challenge for sustainable N management due to its emission-intensive lifestyle (high level of animal-source foods and fossil fuels consumption) and its diversity of agricultural production systems, from extensive rainfed grain systems with mining of soil N to intensive crop and animal production systems with excessive use of N. This paper reviews the major challenges and future opportunities for making Australian agrifood systems more sustainable, less polluting and more profitable.  相似文献   

6.
● A composite N management index is proposed to measure agriculture sustainability. ● Nitrogen management has been moving towards sustainability targets globally. ● The improvement was achieved mainly by yield increase, while Nitrogen Use Efficiency (NUE) stagnated. ● No country achieved both yield and NUE targets and spatial variation is large. ● Region-specific yield targets can be used to supplement the standard Sustainable Nitrogen Management Index (SNMI). To represent the sustainability of nitrogen management in the Sustainable Development Goals indicator framework, this paper proposes a sustainable nitrogen management index (SNMI). This index combines the performance in N crop yield and N use efficiency (NUE), thereby accounting for the need for both food production and environmental protection. Applying SNMI to countries around the world, the results showed improvement in the overall sustainability of crop N management over the past four decades, but this improvement has been mainly achieved by crop yield increase, while global NUE has improved only slightly. SNMI values vary largely among countries, and this variation has increased since the 1970s, implying different levels of success, even failure, in improving N management for countries around the world. In the standard SNMI assessment, the reference NUE was defined as 1.0 (considered an ideal NUE) and the reference yield was defined as 90 kg·ha−1·yr−1 N (considering a globally averaged yield target for meeting food demand in 2050). A sensitivity test that replaced the reference NUE of 1.0 with more realistic NUE targets of 0.8 or 0.9 showed overall reduction in SNMI values (i.e., improved performance), but little change in the ranking among countries. In another test that replaced the universal reference yield with region-specific attainable yield, SNMI values declined (i.e., improved performance) for most countries in Africa and West Asia, whereas they increased for many countries in Europe and South America. The index can be improved by further investigation of approaches for setting region-specific yield targets and high-quality data on crop yield potentials. Overall, SNMI offers promise for a simple and transparent approach to assess progress of countries toward sustainable N management with a single indicator.  相似文献   

7.
● Agriculture on Loess Plateau has transformed from food shortage to green development. ● Terracing and check-dams are the key engineering measures to increase crop yields. ● Agronomic measures and policy support greatly increased crop production. ● Increasing non-agricultural income is a key part of increasing farmers’ income. ● Grain for Green Program had an overwhelming advantage in protecting environment. Loess Plateau of China is a typical dryland agricultural area. Agriculture there has transformed from food shortage toward green development over the past seven decades, and has achieved world-renowned achievements. During 1950–1980, the population increased from 42 to 77 million, increasing grain production to meet food demand of rapid population growth was the greatest challenge. Engineering measures such as terracing and check-dam were the crucial strategies to increase crop production. From 1981 to 2000, most of agronomic measures played a key role in increasing crops yield, and a series of policy support has benefited millions of smallholders. As expected, these measures and policies greatly increased crop production and basically achieved food security; but, low per capita GDP (only about 620 USD in 2000) was still a big challenge. During 2001–2015, the increase in agricultural and non-agricultural income together supported the increase in farmer income to 5781 USD·yr–1. Intensive agriculture that relies heavily on chemicals increased crop productivity by 56%. Steadfast policy support such as “Grain for Green Program” had an overwhelming advantage in protecting the natural ecological environment. In the new era, the integration of science and technology innovations, policy support and positive societal factors will be the golden key to further improve food production, protect environment, and increase smallholder income.  相似文献   

8.
● Virtual joint centers on N agronomy were established between UK and China. ● Key themes were improving NUE for fertilizers, utilizing livestock manures, and soil health. ● Improved management practices and technologies were identified and assessed. ● Fertilizer emissions and improved manure management are key targets for mitigation. Two virtual joint centers for nitrogen agronomy were established between the UK and China to facilitate collaborative research aimed at improving nitrogen use efficiency (NUE) in agricultural production systems and reducing losses of reactive N to the environment. Major focus areas were improving fertilizer NUE, use of livestock manures, soil health, and policy development and knowledge exchange. Improvements to fertilizer NUE included attention to application rate in the context of yield potential and economic considerations and the potential of improved practices including enhanced efficiency fertilizers, plastic film mulching and cropping design. Improved utilization of livestock manures requires knowledge of the available nutrient content, appropriate manure processing technologies and integrated nutrient management practices. Soil carbon, acidification and biodiversity were considered as important aspects of soil health. Both centers identified a range of potential actions that could be taken to improve N management, and the research conducted has highlighted the importance of developing a systems-level approach to assessing improvement in the overall efficiency of N management and avoiding unintended secondary effects from individual interventions. Within this context, the management of fertilizer emissions and livestock manure at the farm and regional scales appear to be particularly important targets for mitigation.  相似文献   

9.
● Matching nitrification inhibitors with soil properties and nitrifiers is vital to achieve a higher NUE. ● Enhancing BNF, DNRA and microbial N immobilization processes via soil amendments can greatly contribute to less chemical N fertilizer input. ● Plant-associated microbiomes are critical for plant nutrient uptake, growth and fitness. ● Coevolutionary trophic relationships among soil biota need to be considered for improving crop NUE. Soil microbiomes drive the biogeochemical cycling of nitrogen and regulate soil N supply and loss, thus, pivotal nitrogen use efficiency (NUE). Meanwhile, there is an increasing awareness that plant associated microbiomes and soil food web interactions is vital for modulating crop productivity and N uptake. The rapid advances in modern omics-based techniques and biotechnologies make it possible to manipulate soil-plant microbiomes for improving NUE and reducing N environmental impacts. This paper summarizes current progress in research on regulating soil microbial N cycle processes for NUE improvement, plant-microbe interactions benefiting plant N uptake, and the importance of soil microbiomes in promoting soil health and crop productivity. We also proposes a potential holistic (rhizosphere-root-phyllosphere) microbe-based approach to improve NUE and reduce dependence on mineral N fertilizer in agroecosystems, toward nature-based solution for nutrient management in intensive cropping systems.  相似文献   

10.
● Excessive application of N fertilizers in orchards and vegetable fields (OVFs) in China is particularly common. ● Long-term excessive application of N fertilizers has made OVFs hotspots for N surplus and loss in China. ● Nitrate accumulation in the soil profile is the main fate of N fertilizers in OVF systems. ● Reducing the N surplus is the most effective way to reduce N loss and increase NUE. China is the largest producer and consumer of fruits and vegetables in the world. Although the annual planting areas of orchards and vegetable fields (OVF) account for 20% of total croplands, they consume more than 30% of the mineral nitrogen fertilizers in China and have become hotspots of reactive N emissions. Excess N fertilization has not only reduced the N use efficiency (NUE) and quality of grown fruits and vegetables but has also led to soil acidification, biodiversity loss and climate change. Studies using 15N labeling analysis showed that the recovery rate of N fertilizer in OVFs was only 16.6%, and a high proportion of fertilizer N resided in soils (48.3%) or was lost to the environment (35.1%). Nitrate accumulation in the soil of OVFs is the main fate of N fertilizer in northern China, which threatens groundwater quality, while leaching and denitrification are the important N fates of N fertilizer in southern China. Therefore, taking different measures to reduce N loss and increase NUE based on the main pathways of N loss in the various regions is urgent, including rational N fertilization, substituting mineral N fertilizers with organic fertilizers, fertigation, and adding mineral N fertilizers with urease inhibitors and nitrification inhibitors.  相似文献   

11.
● Grasslands in many regions of the world have been impacted by atmospheric nitrogen deposition. ● Nitrogen deposition commonly leads to reductions in species richness. ● Increases in biomass production is a common response to increased N deposition. ● In some parts of the world there has been limited research into the impacts of nitrogen deposition. Grasslands are globally-important ecosystems providing critical ecosystem services. The species composition and characteristics of grasslands vary considerably across the planet with a wide variety of different grasslands found. However, in many regions grasslands have been impacted by atmospheric nitrogen deposition originating from anthropogenic activities with effects on productivity, species composition and diversity widely reported. Impacts vary across grassland habitats but many show declines in species richness and increases in biomass production related to soil eutrophication and acidification. At a continental level there is considerable variation in the research effort that has been put into understanding the impacts of nitrogen deposition. In Europe, North America and parts of Asia, although there are unanswered research questions, there is a good understanding of N deposition impacts in most grassland habitats. This is not the case in other regions with large knowledge gaps in some parts of the world. This paper reviews the impacts of N deposition on grasslands around the world, highlighting recent advances and areas where research is still needed.  相似文献   

12.
● Interflow acts as the dominant pathway for N loss loadings. ● The purple soil region is a hot spot of nitrate leaching in China. ● Mineral N substitution with organic amendments can be recommended as optimal practices for cropland N management. Nitrogen loss from purple soil can lead to large negative impacts to the environment considering the wide distribution of this soil type in the upper reaches of the Yangtze River. Therefore, nitrogen loss patterns from sloping cropland of purple soil in the Sichuan Basin with the following fertilization regimes were studied in a wheat-maize rotation system: 100% organic fertilizer (OM), using pig manure to replace 30% of mineral N (OMNPK) and crop residue to replace 15% of the mineral N (CRNPK) plus standard mineral fertilization (NPK) and no fertilizer control. The cumulative hydrological N loss could be as high as 45 kg·ha−1 N. The interflow accounted for up to 90% of the total N loss followed by sediment and overland flow losses. The high N loss via interflow found in this study highlighting that sloping cropland of purple soil may be one of the hot spots of N leaching. Compared to the NPK regime, organic substitution regimes (i.e., OM, OMNPK and CRNPK) decreased total hydrological N loss loadings by 30% to 68%. In addition, they can maintain annual crop yields and decrease yield-scaled total hydrological N losses by 18% to 71%. In conclusion, long-term substitution of mineral N with organic amendments can maintain high crop productivity and reduce environmental N loss loadings, and thereby recommended as good N management practices to minimize the risk of agricultural non-point source pollution in the purple soil region of China.  相似文献   

13.
● Patterns and effects of N deposition on urban forests are reviewed. ● N deposition generally shows an urban hotspot phenomenon. ● Urban N deposition shows high ratios of ammonium to nitrate. ● N deposition likely has distinct effects on urban and natural forests. The global urban area is expanding continuously, resulting in unprecedented emissions and deposition of reactive nitrogen (N) in urban environments. However, large knowledge gaps remain in the ecological effects of N deposition on urban forests that provide key ecosystem services for an increasing majority of city dwellers. The current understanding of the spatial patterns and ecological effects of N deposition in urban forests was synthesized based on a literature review of observational and experimental studies. Nitrogen deposition generally increases closer to cities, resulting in an urban hotspot phenomenon. Chemical components of N deposition also shift across urban-suburban-rural gradients, showing higher ratios of ammonium to nitrate in and around urban areas. The ecological effects of N deposition on urban forest ecosystems are overviewed with a special focus on ecosystem N cycling, soil acidification, nutrient imbalances, soil greenhouse gas emissions, tree growth and forest productivity, and plant and soil microbial diversity. The distinct effects of unprecedented N deposition on urban forests are discussed in comparison with the common effects in natural forests. Despite the existing research efforts, several key research needs are highlighted to fill the knowledge gaps in the ecological effects of N deposition on urban forests.  相似文献   

14.
● Diversification enhances nature-based contributions to cropping system functions. ● Soil management to improve production and ecosystem function has variable outcomes. ● Management of the production-system to use legacy nutrients will reduce inputs. ● Intercrops, companion crops and cover crops improve ecological sustainability. ● Sustainable interventions within value chains are essential to future-proof agriculture. To achieve the triple challenge of food security, reversing biodiversity declines plus mitigating and adapting to climate change, there is a drive to embed ecological principles into agricultural, value-chain practices and decision-making. By diversifying cropping systems at several scales there is potential to decrease reliance on inputs, provide resilience to abiotic and biotic stress, enhance plant, microbe and animal biodiversity, and mitigate against climate change. In this review we highlight the research performed in Scotland over the past 5 years into the impact of the use of ecological principles in agriculture on sustainability, resilience and provision of ecosystem functions. We demonstrate that diversification of the system can enhance ecosystem functions. Soil and plant management interventions, including nature-based solutions, can also enhance soil quality and utilization of legacy nutrients. Additionally, this is facilitated by greater reliance on soil biological processes and trophic interactions. We highlight the example of intercropping with legumes to deliver sustainability through ecological principles and use legumes as an exemplar of the innovation. We conclude that there are many effective interventions that can be made to deliver resilient, sustainable, and diverse agroecosystems for crop and food production, and these may be applicable in any agroecosystem.  相似文献   

15.
● Cost escalation and declining profits evident in sugarcane production in China. ● Monoculture and fertilizer overuse causes poor soil health, crop productivity plateau. ● Matching crop nutrient demand and supply key to recovery of sugarcane soils. ● Inorganic inputs need to be replaced with organic sources to restore soil health and sustainability. ● Integrated multidisciplinary solution for sustainable sugarcane cropping system needed. Demand for sugar is projected to grow in China for the foreseeable future. However, sugarcane production is unlikely to increase due to increasing production cost and decreasing profit margin. The persisting sugarcane yield plateau and the current cropping system with fertilizer overuse, soil acidification and pests and diseases remain the major productivity constraints. Sugarcane agriculture supports the livelihood of about 28 million farmers in South China; hence, sustaining it is a socioeconomic imperative. More compellingly, to meet the ever-increasing Chinese market demand, annual sugar production must be increased from the current 10 Mt to 16 Mt by 2030 of which 80% to 90% comes from sugarcane. Therefore, increasing sugar yield and crop productivity in an environmentally sustainable way must be a priority. This review examines the current Chinese sugarcane production system and discuss options for its transition to a green, sustainable cropping system, which is vital for the long-term viability of the industry. This analysis shows that reducing chemical inputs, preventing soil degradation, improving soil health, managing water deficit, provision of clean planting material, and consolidation of small farm holdings are critical requirements to transform the current farming practices into an economically and environmentally sustainable sugarcane cropping system.  相似文献   

16.
● Constraints in cultivation and production of pearl millet in West Africa are summarized. ● Production systems and fertilization methods in pearl millet production are highlighted. ● Sustainable production needs integrated cropping systems and fertilizer use efficiency. ● A holistic approach is required to establish a strong collaboration among rural actors. West African countries are among the larger global millet producers but have low yields mainly due to the low quality of their marginal soils. The objectives of this work were to analyze the benefits and constraints of pearl millet production, to summarize the impact of different cropping systems and fertilization modes while proposing a holistic approach for sustainable production. The major constraints on millet yields are low rates or absence of fertilizers, unsuitable cropping systems, and the proliferation of pests and diseases. Intercropping with cowpea is a widely used cropping system in addition to crop rotation, monocropping and agroforestry systems. Microdosing is the best fertilization mode for West African smallholders. It is concluded that integrated systems (breeding new cultivars, intercropping and microdosing) in tied ridges or infiltration pit practices, sustained by the implementation of innovative approaches such as the ‘Science and Technology Backyards’ from China are a promising approach for increasing pearl millet production. In addition, policies such as land protection of the farmers and subsidies of inputs from the government and the effective involvement of farmers and extension officers are necessary in sustaining millet production in West Africa.  相似文献   

17.
● An overview of impacts of climate change on wheat and rice crops. ● A review on impacts of climate change on insect pests and fungal pathogens of wheat and rice. ● A selection of adaptation strategies to mitigate impacts of climate change on crop production and pest and disease management. Ongoing climate change is expected to have impacts on crops, insect pests, and plant pathogens and poses considerable threats to sustainable food security. Existing reviews have summarized impacts of a changing climate on agriculture, but the majority of these are presented from an ecological point of view, and scant information is available on specific species in agricultural applications. This paper provides an overview of impacts of climate change on two staple crops, wheat and rice. First, the direct effects of climate change on crop growth, yield formation, and geographic distribution of wheat and rice are reviewed. Then, the effects of climate change on pests and pathogens related with wheat and rice, and their interactions with the crops are summarized. Finally, potential management strategies to mitigate the direct impacts of climate change on crops, and the indirect impacts on crops through pests and pathogens are outlined. The present overview aims to aid agriculture practitioners and researchers who are interested in wheat and rice to better understand climate change related impacts on the target species.  相似文献   

18.
● Impacts of 30 cropping systems practiced on the North China Plain were evaluated. ● Trade-offs were assessed among productive, economic and environmental indicators. ● An evolutionary algorithm was used for multi-objective optimization. ● Conflict exists between productivity and profitability versus lower ground water decline. ● Six strategies were identified to jointly mitigate the trade-offs between objectives. Since the Green Revolution cropping systems have been progressively homogenized and intensified with increasing rates of inputs such as fertilizers, pesticides and water. This has resulted in higher crop productivity but also a high environmental burden due to increased pollution and water depletion. To identify opportunities for increasing the productivity and reducing the environmental impact of cropping systems, it is crucial to assess the associated trade-offs. The paper presents a model-based analysis of how 30 different crop rotations practiced in the North China Plain could be combined at the regional level to overcome trade-offs between indicators of economic, food security, and environmental performance. The model uses evolutionary multi-objective optimization to maximize revenues, livestock products, dietary and vitamin C yield, and to minimize the decline of the groundwater table. The modeling revealed substantial trade-offs between objectives of maximizing productivity and profitability versus minimizing ground water decline, and between production of livestock products and vitamin C yield. Six strategies each defining a specific combination of cropping systems and contributing to different extents to the various objectives were identified. Implementation of these six strategies could be used to find opportunities to mitigate the trade-offs between objectives. It was concluded that a holistic analysis of the potential of a diversity cropping systems at a regional level is needed to find integrative solutions for challenges due to conflicting objectives for food production, economic viability and environmental protection.  相似文献   

19.
● First evidence of BNI capacity in canola. ● BNI level was higher in canola cv. Hyola 404RR than in B. humidicola, the BNI positive control. ● BNI in canola may explain increased N immobilization and mineralization rates following a canola crop which may have implications for N management in rotational farming systems that include canola. A range of plant species produce root exudates that inhibit ammonia-oxidizing microorganisms. This biological nitrification inhibition (BNI) capacity can decrease N loss and increase N uptake from the rhizosphere. This study sought evidence for the existence and magnitude of BNI capacity in canola ( Brassica napus). Seedlings of three canola cultivars, Brachiaria humidicola (BNI positive) and wheat ( Triticum aestivum) were grown in a hydroponic system. Root exudates were collected and their inhibition of the ammonia oxidizing bacterium, Nitrosospira multiformis, was tested. Subsequent pot experiments were used to test the inhibition of native nitrifying communities in soil. Root exudates from canola significantly reduced nitrification rates of both N. multiformis cultures and native soil microbial communities. The level of nitrification inhibition across the three cultivars was similar to the well-studied high-BNI species B. humidicola. BNI capacity of canola may have implications for the N dynamics in farming systems and the N uptake efficiency of crops in rotational farming systems. By reducing nitrification rates canola crops may decrease N losses, increase plant N uptake and encourage microbial N immobilization and subsequently increase the pool of organic N that is available for mineralization during the following cereal crops.  相似文献   

20.
● Agri-environmental assessment of food, feed and/or biogas cropping systems (CS). ● Four-year experiment for the agri-environmental assessment of two innovative CS. ● Biogas CS has equal soil returned biomass than food CS but higher exported biomass. ● Feed and biogas CS present higher biomass productivity, but higher CO2 emissions. ● CO2 emissions related to produced biomass are 26% (±5%) lower in biogas CS. Bioenergy, currently the largest renewable energy source in the EU (64% of the total renewable energy consumption), has sparked great interest to meet the 32% renewable resources for the 2030 bioeconomy goal. The design of innovative cropping systems informed by bioeconomy imperatives requires the evaluate of the effects of introducing crops for bioenergy into conventional crop rotations. This study aimed to assess the impacts of changes in conventional cropping systems in mixed dairy cattle farms redesigned to introduce bioenergy crops either by increasing the biomass production through an increase of cover crops, while keeping main feed/food crops, or by substituting food crops with an increase of the crop rotation length. The assessment is based on the comparison between conventional and innovative systems oriented to feed and biogas production, with and without tillage, to evaluate their agri-environmental performances (biomass production, nitrogen fertilization autonomy, greenhouse gas emissions and biogas production). The result showed higher values in the biogas cropping system than in the conventional and feed ones for all indicators, biomass productivity (27% and 20% higher, respectively), nitrogen fertilization autonomy (26% and 73% higher, respectively), methanogenic potential (77% and 41% higher, respectively) and greenhouse gas emissions (15% and 3% higher, respectively). There were no negative impacts of no-till compared to the tillage practice, for all tested variables. The biogas cropping system showed a better potential in terms of agri-environmental performance, although its greenhouse gas emissions were higher. Consequently, it would be appropriate to undertake a multicriteria assessment integrating agri-environmental, economic and social performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号