首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
棉秆起拔力的研究为设计棉花拔秆收获机械提供了一个重要参数依据。对棉秆起拔力的影响因素主要有棉秆直径、土壤含水率及起拔角度等因素。试验地点在新疆库尔勒尉犁县的试验田中进行,棉秆品种为新陆早45号,以棉秆直径和土壤含水率为影响因素进行单因素试验。分别在土壤含水率为25.3%、21.2%、15.8%,起拔角度为30°、45°、60°,起拔线速度为114.9、153.4、192.1mm/s条件下,进行三因素的试验组合。试验结果表明:随棉秆直径变大,棉秆起拔力呈上升趋势。组合试验结果显示:起拔角度对棉秆起拔力影响最为显著,土壤含水率比棉秆的起拔线速度影响显著;试验范围内的最佳起拔角度为30°,最佳含水率为25.3%,最佳起拔线速度为192.1mm/s。试验研究结果可以为棉秆机械收获机构的设计提供参考,也可作为棉秆力学研究的试验装置。  相似文献   

2.
为解决棉秆起拔机拔断率高、起拔后铺放散乱的问题,基于带夹原理设计了一种前置式皮带夹持输送棉秆起拔机。该机关键部件为起拔输送机构,作业时通过皮带将棉秆夹持拔出,随后将其输送至机具一侧,有序铺放到地面上。首先分析棉秆起拔过程中产生漏拔及拔断的原因,其次进行拔秆机理理论分析,确定影响拔秆效果的主要因素及其取值范围。在棉花高度为750mm、根部直径为10mm、棉秆含水率为25%~35%的试验地进行正交试验,进一步研究各影响因素对棉秆起拔效果的影响。试验结果表明,优化后的参数组合为机具前进速度2.27km/h、张紧量71.26mm、主动轮转速244.98r/min,此时棉秆拔断率为3.53%,棉秆漏拔率为5.09%。验证试验表明,在参数组合为机具前进速度2km/h、张紧量70mm、主动轮转速250r/min条件下,棉秆拔断率为3.67%,棉秆漏拔率为5.32%,与优化值相对误差均小于5%,证明样机设计合理,满足棉秆整株起拔的作业要求。  相似文献   

3.
密植棉秆对行铲拔铺放机设计与试验   总被引:1,自引:0,他引:1  
为实现机采棉密植棉秆机械化对行、低耗收获目标,融合机采棉宽窄行密植种植农艺要求,基于对行低耗铲切方法和反向推拔作用原理,设计了一种密植棉秆对行铲拔铺放机。简述了整机结构和工作原理,结合相关作业性能要求,通过分析计算确定了对行铲切装置、铲切调节装置和齿型推拔辊的结构参数,并完成了关键部件的工作参数分析,确定对行铲切装置最小铲倾角为5°、铲切调节装置铲倾角调节范围为5.00°~8.95°、齿型推拔辊转速取值范围为97.66~391.16r/min。田间试验表明,该机可实现压、铲、拔、铺放棉秆等多项作业,且具有分离泥土的功能;根据试验田密植棉秆根系扎根深度,调整机组使对行铲切装置铲切深度约为11.5cm,此时对应铲倾角约为7.1°,齿型推拔辊旋转半径为245mm;当机组作业速度为2.76~3.39km/h、齿型推拔辊转速为156~174r/min时,该机拔净率为90.87%~91.42%,生产率为0.63~0.77hm2/h,机组作业性能稳定,满足密植棉秆对行整秆铲拔作业要求。  相似文献   

4.
以市场上现有的齿盘式拔棉秆机为基础,采用SolidWorks三维设计软件设计了棉花秸秆拔秆机,建立仿真模型,结合COSMOS/Motion、COSMOS/Work和Simulation对所设计的拔棉秆机进行了机构运动分析,模拟了拖拉机前进与拔取部件旋转复合运动的余摆线轨迹,分析了单个点的运动轨迹分量,力图为齿盘式拔棉秆...  相似文献   

5.
针对现有棉秆收获机械拔断率、漏拔率高,作业时需对行等问题,设计了一种夹持辊式棉秆拔取装置。该装置主要由棉秆拔取机构、棉秆输送机构组成,通过对棉秆拔取机构作业过程进行运动学与动力学分析确定了各零部件的结构参数与工作参数。为了验证棉秆拔取装置工作的可靠性与作业性能,以机具前进速度、上拔秆辊转速、机具前进速度与拨秆轮线速度比值(简称速比)作为试验因素,棉秆拔断率、漏拔率为试验指标进行了三因素三水平二次回归响应面试验,建立了回归模型,分析了各因素对棉秆拔取装置作业性能的影响,并进行了参数优化与试验验证。试验结果表明:影响棉秆拔断率的因素主次顺序为上拔秆辊转速、机具前进速度、速比;影响棉秆漏拔率的因素主次顺序为速比、机具前进速度、上拔秆辊转速。优化后的工作参数为:机具前进速度0.60 m/s、上拔秆辊转速46 r/min、速比0.50,以此参数组合进行田间试验,得到棉秆拔断率为3.68%,漏拔率为5.19%,与理论优化值相对误差不超过5%,研究结果可为棉秆拔取装置的设计提供参考。  相似文献   

6.
为了探讨棉秆直径、土壤条件(土壤含水率与土壤坚实度)、棉秆起拔角度对棉秆起拔力的影响,设计了一种简易棉秆起拔力测量装置并在田间对棉秆进行了起拔阻力测试试验。以棉秆直径、土壤条件为影响因素对棉秆起拔力分别进行单因素试验分析,并在单因素试验的基础上,采用二因素三水平正交试验方法,研究分析了棉秆起拔角度、土壤环境条件对棉秆起拔力的影响。试验结果表明:棉秆起拔力随着棉秆直径的增大而增大,并呈正线性相关关系;棉秆起拔角度、土壤条件对棉秆起拔力影响显著,主次顺序为棉秆起拔角度、土壤条件;试验条件下最佳起拔角度为30°,最佳土壤条件为土壤含水率16.8%、土壤坚实度330kPa。该研究为棉秆收获机械的设计及其作业时间提供了参考,有利于减少功率消耗及提高棉花秸秆的收获效率。  相似文献   

7.
齿盘式多行拔棉秆装置拔秆过程分析与参数优化   总被引:1,自引:0,他引:1  
为解决拔棉秆机漏拔、拔断、拔净率低等问题,基于电液控制技术设计了齿盘式多行拔棉秆台架并开展试验研究。采用ADAMS软件进行齿盘式拔棉秆装置运动仿真分析进而揭示拔秆机理;利用试验台架的调速比模式和调转速模式,通过单因素和多因素试验研究齿盘圆周线速度、拖拉机前进速度及齿盘圆周线速度与拖拉机前进速度之比(以下简称速比)对棉秆拔净率、拔断率和漏拔率的影响。试验结果表明,调速比和调转速2种模式的齿盘式多行拔棉秆台架满足设计要求,可开展多种条件下拔棉秆试验研究;齿盘对棉秆起拔力大小、方向及夹持时间影响拔秆效果,棉秆被夹持时间小于起拔时间易导致棉秆断裂,一定程度上增大齿盘圆周线速度有助于减少漏拔;速比、齿盘圆周线速度对棉秆拔净率、漏拔率和拔断率均有极显著影响,其中速比是影响棉秆拔净率最关键因素;速比最佳范围为0. 55~0. 80,齿盘圆周线速度最佳范围为0. 24~1. 10 m/s;齿盘倾角为6°、拖拉机前进速度为0. 85 m/s、速比0. 75时,棉秆拔净率最高,为93. 89%,满足设计要求,此时拔断率为4. 43%,漏拔率为1. 68%。  相似文献   

8.
4MB-6型密植棉秆对行铲拔铺放机改进设计   总被引:1,自引:0,他引:1  
针对原4MB-6型密植棉秆对行铲拔铺放机田间性能试验中存在的减阻装置壅土严重、对行铲切装置处棉秆堆积、拔秆铺放辊拔秆不连续及有效性差等问题,对该机具进行了改进设计;为进一步提高该机具的作业性能,对其核心工作部件的作业机理进行了分析;对行铲切装置采用原地放垡间隔作业技术,当铲切深度约为115mm时,在1幅宽膜内(2050mm),其底部虚实作业比例为1∶242,地表虚实作业比例为1∶0.59,该比例从地面到底部呈连续递减趋势,有利于降低作业功耗;在铲切作业过程中,在梯形框架带刃口的侧板部分和铲切板的挤压、剪切作用下,棉茬周围土壤被剪切和弯曲破坏、土壤-棉根系复合体产生失效被原位抬升于土壤上层,对其余土壤的扰动较小;齿型推拔辊采用反向推拔作业原理,有利于棉秆导入V形刀齿并进行有效夹持,由于其所起拔的棉秆已被铲切抬升,且入土深度(0~10mm)小,因此进一步减小了整机作业功耗。田间试验表明,改进后的机具整机作业性能稳定,对行铲切装置工作流畅,实现了棉秆对行铲切及原位抬升作业目标,齿型推拔辊能有效抓取棉秆,并进行切向甩抛使得整株棉秆根茬土壤分离、铺放于田间,拔净率为90.87%~91.42%,达到了整秆铲拔的设计要求(拔净率90%以上),是新疆棉区棉秆资源机械化收获的适用设备。  相似文献   

9.
棉秆起拔力关键因素的研究及试验   总被引:1,自引:0,他引:1  
棉秆起拔力是设计棉秆拔秆收获机械的一个重要指标参数。为了研究收获期的棉秆高度、棉秆直径、土壤含水率、土壤坚实度等因素对棉秆起拔力的影响,在新疆农垦科学院的试验田进行了棉秆起拔力的测试试验,采集了其中5块试验田棉秆起拔力、棉秆直径、土壤坚实度、土壤含水率和棉秆高度的数据。试验结果表明:在已测得5块试验田的数据中,第3组棉秆起拔力最大,单株棉秆最大起拔力为821.1 N,平均起拔力为534.49N;第2块试验田的棉秆起拔力最小,单株棉秆最大起拔力为7 2 6.1 N,棉秆平均起拔力为473.62 N。对已获取的5块试验田数据做的回归分析表明:同一块试验田的棉秆起拔力与棉秆直径成正相关关系;土壤含水率越高,起拔力越小;土壤紧实度越大,起拔力越大;棉秆高度与棉秆直径成正比。  相似文献   

10.
基于棉花穴播器工作原理,采用逆向工作方法设计了一种适用于密植种植模式的棉秆对行起拔铺放机,可实现对机采棉棉秆的减阻开沟、对行整秆起拔、铺放等作业,且具有分离泥土和整理棉秆的功能;该机一次作业6行,经计算得理论生产率约为1.21~1.26 hm~2/h。运用SolidWorks Motion对拔秆装置进行了运动仿真,分析了在拔秆装置转速一定时(207.69 r/min),机组在不同前进速度下两个相邻拔齿刀端点的运动路径,得出机组的前进速度约为1 600~1 660 mm/s时,可使拔秆装置正常有序工作。该研究为该机组结构优化、物理样机的搭建、优化拔秆装置旋转速度和前进速度的匹配提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号