首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
This study examined the growth inhibitory effects of the structurally related beta-diketones compounds in human cancer cells. Here, we report that 1-(2-hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione (HMDB) induces growth inhibition of human cancer cells and induction of apoptosis in A431 cells through modulation of mitochondrial functions regulated by reactive oxygen species (ROS). ROS generation occurs in the early stages of HMDB-induced apoptosis, preceding cytochrome c release, caspase activation, and DNA fragmentation. The changes occurred after single breaks in DNA were detected, suggesting that HMDB induced irreparable DNA damage, which in turn triggered the process of apoptosis. Up-regulation of Bad and p21; down-regulation of Bcl-2, Bcl-XL, Bid, p53, and fatty acid synthase; and cleavage of Bax were found in HMDB-treated A431 cells. Glutathione and N-acetylcysteine (NAC) suppress HMDB-induced apoptosis. HMDB markedly enhanced growth arrest DNA damage inducible gene 153 (GADD153) mRNA and protein in a time- and concentration-dependent manner. NAC prevented up-regulation of GADD153 mRNA expression caused by HMDB. These findings suggest that HMDB creates an oxidative cellular environment that induces DNA damage and GADD153 gene activation, which in turn helps trigger apoptosis in A431 cells.  相似文献   

2.
This study demonstrated that ergocalciferol was able to inhibit leukemia cell growth in a concentration-dependent manner. Exploration of the acting mechanisms involved this event revealed that ergocalciferol induced DNA fragmentation and increased sub-G1 DNA contents in HL-60 cells, both of which are hallmarks of apoptosis. Analysis of the integrity of mitochondria demonstrated that ergocalciferol caused loss of mitochondrial membrane potential with release cytochrome c to cytosol, generation of reactive oxygen species (ROS), and depletion of glutathione (GSH), suggesting that ergocalciferol may induce apoptosis in HL-60 cells through a ROS-dependent pathway. Further results show that caspases-2, -3, -6, and -9 were all activated by ergocalciferol, together with cleavage of the downstream caspase-3 targets, DNA fragmentation factor (DFF-45), and poly(ADP-ribose) polymerase. In addition, ergocalciferol led to the increase in pro-apoptotic factor Bax accompanied with the decrease in anti-apoptotic member Mcl-1, and the reduced Mcl-1 to Bax ratio may be a critical event concerning mitochondrial decay by ergocalciferol. Furthermore, ergocalciferol also led to induction of Fas death receptor closely linked to caspase-2 activation, suggesting the involvement of a Fas-mediated pathway in ergocalciferol-induced apoptosis. Totally, these findings suggest that ergocalciferol causes HL-60 apoptosis via a modulation of mitochondria involving ROS production, GSH depletion, caspase activation, and Fas induction. On the basis of anticancer activity of ergocalciferol, it may be feasible to develop chemopreventive agents from edible mushrooms or hop.  相似文献   

3.
Pterostilbene, an active constituent of blueberries, is known to possess anti-inflammatory activity and also induces apoptosis in various types of cancer cells. Here, the effects of pterostilbene on cell viability in human gastric carcinoma AGS cells were investigated. This study demonstrated that pterostilbene was able to inhibit cell proliferation and induce apoptosis in a concentration- and time-dependent manner. Pterostilbene-induced cell death was characterized with changes in nuclear morphology, DNA fragmentation, and cell morphology. The molecular mechanism of pterostilbene-induced apoptosis was also investigated. The results show the caspase-2, -3, -8, and -9 are all activated by pterostilbene, together with cleavage of the downstream caspase-3 target DNA fragmentation factor (DFF-45) and poly(ADP-riobse) polymerase. Moreover, the results indicate that the Bcl-family of proteins, the mitochondrial pathway, and activation of the caspase cascade are responsible for pterostilbene-induced apoptosis. Pterostilbene markedly enhanced the expression of growth arrest DNA damage-inducible gene 45 and 153 (GADD45 and GADD153) in a time-dependent manner. Flow cytometric analysis indicated that pterostilbene blocked cell cycle progression at G1 phase in a dose- and time-dependent manner. Pterostilbene increased the p53, p21, p27, and p16 proteins and decreased levels of cyclin A, cyclin E, cyclin-dependent kinase 2 (Cdk2), Cdk4, and Cdk6, but the expression of cyclin D1 was not affected. Over a 24 h exposure to pterostilbene, the degree of phosphorylation of Rb was decreased after 6 h. In summary, pterostilbene induced apoptosis in AGS cells through activating the caspase cascade via the mitochondrial and Fas/FasL pathway, GADD expression, and by modifying cell cycle progress and changes in several cycle-regulating proteins. The induction of apoptosis by pterostilbene may provide a pivotal mechanism of the antitumor effects and for treatment of human gastric cancer.  相似文献   

4.
Garcinol, a polyisoprenylated benzophenone, was purified from Garcinia indica fruit rind. The effects of garcinol and curcumin on cell viability in human leukemia HL-60 cells were investigated. Garcinol and curcumin displayed strong growth inhibitory effects against human leukemia HL-60 cells, with estimated IC(50) values of 9.42 and 19.5 microM, respectively. Garcinol was able to induce apoptosis in a concentration- and time-dependent manner; however, curcumin was less effective. Treatment with garcinol caused induction of caspase-3/CPP32 activity in a dose- and time-dependent manner, but not caspase-1 activity, and induced the degradation of poly(ADP-ribose) polymerase (PARP). Pretreatment with caspase-3 inhibitor inhibited garcinol-induced DNA fragmentation. Treatment with garcinol (20 microM) caused a rapid loss of mitochondrial transmembrane potential, release of mitochondrial cytochrome c into cytosol, and subsequent induction of procaspase-9 processing. The cleavage of D4-GDI, an abundant hematopoietic cell GDP dissociation inhibitor for the Ras-related Rho family GTPases, occurred simultaneously with the activation of caspase-3 but preceded DNA fragmentation and the morphological changes associated with apoptotic cell death. Of these, Bcl-2, Bad, and Bax were studied. The level of expression of Bcl-2 slightly decreased, while the levels of Bad and Bax were dramatically increased in cells treated with garcinol. These results indicate that garcinol allows caspase-activated deoxyribonuclease to enter the nucleus and degrade chromosomal DNA and induces DFF-45 (DNA fragmentation factor) degradation. It is suggested that garcinol-induced apoptosis is triggered by the release of cytochrome c into the cytosol, procaspase-9 processing, activation of caspase-3 and caspase-2, degradation of PARP, and DNA fragmentation caused by the caspase-activated deoxyribonuclease through the digestion of DFF-45. The induction of apoptosis by garcinol may provide a pivotal mechanism for its cancer chemopreventive action.  相似文献   

5.
Shikonin is a main constituent of the roots of Lithospermum erythrorhizon that has antimutagenic activity. However, its other biological activities are not well-known. Shikonin displayed a strong inhibitory effect against human colorectal carcinoma COLO 205 cells and human leukemia HL-60 cells, with estimated IC(50) values of 3.12 and 5.5 microM, respectively, but were less effective against human colorectal carcinoma HT-29 cells, with an estimated IC(50) value of 14.8 microM. Induce apoptosis was confirmed in COLO 205 cells by DNA fragmentation and the appearance of a sub-G1 DNA peak, which were preceded by loss of mitochondrial membrane potential, reactive oxygen species (ROS) generation, cytochrome c release, and subsequent induction of pro-caspase-9 and -3 processing. Cleavages of poly(ADP-ribose) polymerase (PARP) and DNA fragmentation factor (DFF-45) were accompanied by activation of caspase-9 and -3 triggered by shikonin in COLO 205 cells. Here, we found that shikonin-induced apoptotic cell death was accompanied by upregulation of p27, p53, and Bad and down-regulation of Bcl-2 and Bcl-X(L), while shikonin had little effect on the levels of Bax protein. Taken together, we suggested that shikonin-induced apoptosis is triggered by the release of cytochrome c into cytosol, procaspase-9 processing, activation of caspase-3, degradation of PARP, and DNA fragmentation caused by the caspase-activated deoxyribonuclease through the digestion of DFF-45. The induction of apoptosis by shikonin may provide a pivotal mechanism for its cancer chemopreventive action.  相似文献   

6.
Caffeic acid phenethyl ester (CAPE) is an active component isolated from propolis. The aim of this study was to investigate the mechanism of CAPE-induced apoptosis in human leukemic HL-60 cells. It was found that CAPE entered HL-60 cells very quickly and then inhibited their survival in a concentration- and time-dependent manner. CAPE induced characteristic DNA fragmentation and morphological changes typical of apoptosis in these cells. Estimation of the apoptotic percentage showed a time-dependent increase after CAPE (6 microg/mL) treatment (up to 66.7 +/- 2.0% at 72 h). Treatment with CAPE caused rapid activation of caspase-3 after 4 h, down-regulation of Bcl-2 expression after 6 h, and up-regulation of Bax expression after 16 h. These results suggest that CAPE is a potent apoptosis-inducing agent; its action is accompanied by activation of caspase-3, down-regulation of Bcl-2, and up-regulation of Bax in human leukemic HL-60 cells.  相似文献   

7.
In this study, we examined the antitumor effect of marine algae extracts on human hepatoma and leukemia cells. Ethyl acetate extracts from Colpomenia sinuosa (Cs-EA), Halimeda discoidae (Hd-EA), and Galaxaura oblongata (Go-EA) directly inhibited the growth of human hepatoma HuH-7 cells and leukemia U937 and HL-60 cells in a time- and dose-dependent manner. Specifically, these algae extracts induced apoptosis of U937 and HL-60 cells as evaluated by detection of hypodiploid cells using flow cytometry and observation of condensed and fragmented nuclei in algae extract-treated cells. Intracellular reactive oxygen species (ROS), especially hydrogen peroxide and superoxide anion, were increased about 2-3-fold in U937 cells treated with Cs-EA for 3-5 h. Interestingly, antioxidant N-acetylcysteine effectively blocked Cs-EA-, Hd-EA-, and Go-EA-induced apoptosis, suggesting that ROS is a key mediator in the apoptotic signaling pathway. In conclusion, our results show that algae extracts induce apoptosis in human leukemia cells through generation of ROS.  相似文献   

8.
This study examined the growth inhibitory effects of theasinensin A (from oolong tea) and black tea polyphenols, including theaflavin (TF-1), a mixture (TF-2) of theaflavin-3-gallate (TF-2a) and theaflavin-3'-gallate (TF-2b), and theaflavin-3,3'-digallate (TF-3) in human cancer cells. Theasinensin A, TF-1, and TF-2 displayed strong growth inhibitory effects against human histolytic lymphoma U937, with estimated IC50 values of 12 microM, but were less effective against human acute T cell leukemia Jurkat, whereas TF-3 and (-)-epigallocatechin-3-gallate (EGCG) had lower activities. The molecular mechanisms of tea polyphenol-induced apoptosis as determined by annexin V apoptosis assay, DNA fragmentation, and caspase activation were further investigated. Loss of membrane potential and reactive oxygen species (ROS) generation were also detected by flow cytometry. Treatment with tea polyphenols caused rapid induction of caspase-3, but not caspase-1, activity and stimulated proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). Pretreatment with a potent caspase-3 inhibitor, Z-Asp-Glu-Val-Asp-fluoromethyl ketone, inhibited theasinensin A induced DNA fragmentation. Furthermore, it was found that theasinensin A induced loss of mitochondrial transmembrane potential, elevation of ROS production, release of mitochondrial cytochrome c into the cytosol, and subsequent induction of caspase-9 activity. These results indicate that theasinensin A allows caspase-activated deoxyribonuclease to enter the nucleus and degrade chromosomal DNA and induces DFF-45 (DNA fragmentation factor) degradation. The results suggest that induction of apoptosis by theasinensin A may provide a pivotal mechanism for their cancer chemopreventive function.  相似文献   

9.
Sweetpotato leaves (Ipomoea batatas L.) contain a high content of polyphenolics that consist of caffeic acid, chlorogenic acid, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid, and 3,4,5-tri-O-caffeoylquinic acid. We investigated the suppression of the proliferation of selected human cancer cells by phenolic compounds isolated from sweetpotato leaf. The human cancer cells used in this research included a stomach cancer (Kato III), a colon cancer (DLD-1), and a promyelocytic leukemia cell (HL-60). Caffeic acid and di- and tricaffeoylquinic acids dose-dependently depressed cancer cell proliferation, and the difference in sensitivity between caffeoylquinic acid derivatives and each kind of cancer cell was observed. Specifically, 3,4,5-tri-O-caffeoylquinic acid effectively depressed the growth of three kinds of cancer cells, and caffeic acid had an exceptionally higher effect against HL-60 cells than other di- and tricaffeoylquinic acids. In attempting to clarify the mechanism of growth suppression with the addition of the apoptotic inhibitor N-ethylmaleimide, we observed that the nuclear granulation in 3,4,5-tri-O-caffeoylquinic acid-treated HL-60 cells suggested apoptosis induction. This effect was confirmed by DNA fragmentation, an increase of caspase-3 activity, and expression of c-Jun. Growth suppression of HL-60 cells by 3,4,5-tri-O-caffeoylquinic acid was determined to be the result of apoptotic death of the cells. These results indicate that 3,4,5-tri-O-caffeoylquinic acid may have potential for cancer prevention.  相似文献   

10.
Previously, we observed that luteolin effectively inhibited cell growth and induced apoptosis in HL-60 cells. In that study, we also explored the modulatory effects and molecular mechanisms of pyrrolidine dithiocarbamate (PDTC) on the cytotoxicity of luteolin to HL-60 cells. In this study, we found that PDTC was able to inhibit luteolin-induced cell apoptosis in a dose-dependent manner. When HL-60 cells were treated with PDTC for 0.5 h before 60 microM luteolin treatment, the DNA ladder disappeared. Moreover, flow cytometry showed that PDTC had dose dependently decreased the percentage of apoptotic HL-60 cells and had not interfered with luteolin's ability to change the mitochondrial membrane potential or its ability to trigger the release of cytochrome c to cytosol. Detection by Western blotting, however, did show that PDTC had interfered with luteolin's ability to cleave poly(ADP-ribose)polymerase and DNA fragmentation of factor-45. Three hours after the PDTC-pretreated HL-60 cells were treated with 60 microM luteolin, the product cleaved from Akt started to appear. Therefore, not only was PDTC able to stop the apoptosis of HL-60 cells treated with luteolin, it was also found to increase phosphorylation of Akt and caspase-9. These results suggest that in the luteolin-induced apoptotic pathway, phosphorylation of procaspase-9 by survival signals might play an important role in the ultimate fate of HL-60 cells.  相似文献   

11.
This research aimed to investigate erythrodiol, uvaol, oleanolic acid, and maslinic acid scavenging capacities and their effects on cytotoxicity, cell proliferation, cell cycle, apoptosis, reactive oxygen species (ROS) level, and oxidative DNA damage on human MCF-7 breast cancer cell line. The results showed that erythrodiol, uvaol, and oleanolic acid have a significant cytotoxic effect and inhibit proliferation in a dose- and time-dependent manner. At 100 μM, erythrodiol growth inhibition occurred through apoptosis, with the observation of important ROS production and DNA damage, whereas uvaol and oleanolic acid growth inhibition involved cell cycle arrest. Moreover, although all tested triterpenes did not show free radical scavenging activity using ABTS and DPPH assays, they protected against oxidative DNA damage at the concentration 10 μM. Uvaol and oleanolic and maslinic acids, tested at 10 and 100 μM, also reduced intracellular ROS level and prevented H(2)O(2)-induced oxidative injury. Overall, the results suggest that tested triterpenes may have the potential to provide significant natural defense against human breast cancer.  相似文献   

12.
Ganoderma lucidum is known as a medicinal mushroom used in traditional Chinese medicine. In the present study, the effect of lucidenic acids (A, B, C, and N) isolated from a new G. lucidum (YK-02) on induction of cell apoptosis and the apoptotic pathway in HL-60 cells were investigated. The results demonstrated that lucidenic acids decreased cell population growth of HL-60 cells, assessed with the MTT assay. The cell cycle assay indicated that treatment of HL-60 cells with lucidenic acid A, C, and N caused cell cycle arrest in the G 1 phase. Lucidenic acid B (LAB) did not affect the cell cycle profile; however, it increased the number of early and late apoptotic cells but not necrotic cells. Treatment of HL-60 cells with LAB caused loss of mitochondria membrane potential. Moreover, the ratio of expression levels of pro- and antiapoptotic Bcl-2 family members was changed by LAB treatment. LAB-induced apoptosis involved release of mitochondria cytochrome c and subsequently induced the activation of caspase-9 and caspase-3, which were followed by cleavage of poly(ADP-ribose) polymerase (PARP). Pretreatment with a general caspase-9 inhibitor (Z-LEHD-FMK) and caspase-3 inhibitor (Z-DEVD-FMK) prevented LAB from inhibiting cell viability in HL-60 cells. Our finding may be critical to the chemopreventive potential of lucidenic acid B.  相似文献   

13.
There is great interest in the potential chemopreventive activity of resveratrol against human cancers. However, there are conflicting results on its growth inhibitory effect on normal cells. This project examined the differential effect of resveratrol at physiologically relevant concentrations on nonmalignant (WIL2-NS) and malignant (HL-60) cell lines and compared the underlying mechanisms via cell cycle modulation, apoptosis induction, and genotoxicity potential. Twenty-four hours of exposure to resveratrol was toxic to WIL2-NS and HL-60 cells in a dose-dependent manner. WIL2-NS cells regrew 5 times more than HL-60 cells by 120 h after the removal of 100 microM resveratrol (p < 0.05). Furthermore, significant alterations in cell cycle kinetics were induced by resveratrol in HL-60 cells, but were to a lesser extent for WIL2-NS cells. The proportion of apoptosis was also 3 times higher in HL-60 cells as compared to WIL2-NS cells for 100 microM resveratrol (p < 0.05). In conclusion, resveratrol preferentially inhibited the growth of HL-60 cells via cell cycle modulation and apoptosis induction and subsequently directed the cells to irreversible cell death, whereas the effect on WIL2-NS cells was largely reversible.  相似文献   

14.
Indole-3-carbinol (I3C), a potential anticancer substance, can be found in cruciferous (cabbage family) vegetables, mainly cauliflower and Chinese cabbage. However, the bioactivity of I3C on the apoptotic effects of murine leukemia WEHI-3 cells and promotion of immune responses in leukemia mice model are unclear. In this study, we investigated the effect of I3C on cell-cycle arrest and apoptosis in vitro and immunomodulation in vivo. I3C decreased the viable WEHI-3 cells and caused morphological changes in a concentration- and time-dependent manner. I3C also led to G0/G1 phase arrest, decreased the levels of cyclin A, cyclin D, and CDK2, and increased the level of p21(WAF1/CIP1). Flow cytometric analyses further proved that I3C promoted ROS and intracellular Ca(2+) production and decreased the levels of ΔΨ(m) in WEHI-3 cells. Cells after exposure to I3C for 24 h showed DNA fragmentation and chromatin condensation. Comet assay also indicated that I3C induced DNA damage in examined cells. I3C increased the levels of cytochrome c, FADD, GADD153, GRP78, and caspase-12 as well as induced activities of caspase-3, -8, and -9. Moreover, I3C attenuated NF-κB DNA binding activity in I3C-treated WEHI-3 cells as shown by EMSA and Western blotting analyses. In the in vivo study, we examined the effects of I3C on WEHI-3 leukemia mice. Results showed that I3C increased the level of T cells and decreased the level of macrophages. I3C also reduced the weights of liver and spleen, and it promoted phagocytosis by macrophages as compared to the nontreated leukemia mice group. On the basis of our results, I3C affects murine leukemia WEHI-3 cells both in vitro and in vivo.  相似文献   

15.
The bitter acids of hops (Humulus lupulus L.) mainly consist of alpha-acids, beta-acids, and their oxidation products that contribute the unique aroma of the beer beverage. Hop bitter acids displayed a strong growth inhibitory effect against human leukemia HL-60 cells, with an estimated IC(50) value of 8.67 microg/mL, but were less effective against human histolytic lymphoma U937 cells. Induction of apoptosis was confirmed in HL-60 cells by DNA fragmentation and the appearance of a sub-G1 DNA peak, which were preceded by dissipation of mitochondrial membrane potential, cytochrome c release, and subsequent induction of pro-caspase-9 and -3 processing. Cleavages of PARP and DFF-45 were accompanied with activation of caspase-9 and -3 triggered by hop bitter acids in HL-60 cells. The change in the expression of Bcl-2, Bcl-X(L), and Bax in response to hop bitter acids was studied, and the Bcl-2 protein level slightly decreased; however, the Bcl-X(L) protein level was obviously decreased, whereas the Bax protein level was dramatically increased, indicating that the control of Bcl-2 family proteins by hop bitter acids might participate in the disruption of mitochondrial integrity. In addition, the results showed that hop bitter acids promoted the up-regulation of Fas and FasL prior to the processing and activation of pro-caspase-8 and cleavage of Bid, suggesting the involvement of a Fas-mediated pathway in hop bitter acids-induced cells. Taken together, these findings suggest that a certain intimate link might exist between receptor- and mitochondria-mediated death signalings that committed to cell death induced by hop bitter acids. The induction of apoptosis by hop bitter acids may offer a pivotal mechanism for their chemopreventive action.  相似文献   

16.
Bitter gourd ( Momordica charantia L.) pericarp, placenta, and seed extracts were previously shown to induce apoptosis in HL60 human leukemia cells. To determine the active component that induces apoptosis in cancer cells, bitter gourd ethanol extract was fractionated by liquid-liquid partition and silica gel column chromatography. Several fractions obtained by silica gel column chromatography inhibited growth and induced apoptosis in HL60 cells. Among them, fraction 7 had the strongest activity in inhibiting growth and inducing apoptosis in HL60 cells. A component that induced apoptosis in HL60 cells was then isolated from fraction 7 by another silica gel column chromatography and high-performance liquid chromatography (HPLC) using a C18 column and was identified as (9Z,11E,13E)-15,16-dihydroxy-9,11,13-octadecatrienoic acid (15,16-dihydroxy alpha-eleostearic acid). 15,16-Dihydroxy alpha-eleostearic acid induced apoptosis in HL60 cells within 5 h at a concentration of 160 microM (50 microg/mL). (9Z,11E,13E)-9,11,13-Octadecatrienoic acid (alpha-eleostearic acid) is known to be the major conjugated linolenic acid in bitter gourd seeds. Therefore, the effect of alpha-eleostearic acid on the growth of some cancer and normal cell lines was examined. alpha-Eleostearic acid strongly inhibited the growth of some cancer and fibroblast cell lines, including those of HL60 leukemia and HT29 colon carcinoma. alpha-Eleostearic acid induced apoptosis in HL60 cells after a 24 h incubation at a concentration of 5 microM. Thus, alpha-eleostearic acid and the dihydroxy derivative from bitter gourd were suggested to be the major inducers of apoptosis in HL60 cells.  相似文献   

17.
Chalcones have been described to represent cancer chemopreventive food components that are rich in fruits and vegetables. In this study, we examined the anti-oral cancer effect of flavokawain B (FKB), a naturally occurring chalcone isolated from Alpinia pricei (shell gingers), and revealed its molecular mechanism of action. Treatment of human oral carcinoma (HSC-3) cells with FKB (1.25-10 μg/mL; 4.4-35.2 μM) inhibited cell viability and caused G(2)/M arrest through reductions in cyclin A/B1, Cdc2, and Cdc25C levels. Moreover, FKB treatment resulted in the induction of apoptosis, which was associated with DNA fragmentation, mitochondria dysfunction, cytochrome c and AIF release, caspase-3 and caspase-9 activation, and Bcl-2/Bax dysregulation. Furthermore, increased Fas activity and procaspase-8, procaspase-4, and procaspase-12 cleavages were accompanied by death receptor and ER-stress, indicating the involvement of mitochondria, death-receptor, and ER-stress signaling pathways. FKB induces apoptosis through ROS generation as evidenced by the upregulation of oxidative-stress markers HO-1/Nrf2. This mechanism was further confirmed by the finding that the antioxidant N-acetylcysteine (NAC) significantly blocked ROS generation and consequently inhibited FKB-induced apoptosis. Moreover, FKB downregulated the phosphorylation of Akt and p38 MAPK, while their inhibitors LY294002 and SB203580, respectively, induced G(2)/M arrest and apoptosis. The profound reduction in cell number was observed in combination treatment with FKB and Akt/p38 MAPK inhibitors, indicating that the disruption of Akt and p38 MAPK cascades plays a functional role in FKB-induced G(2)/M arrest and apoptosis in HSC-3 cells.  相似文献   

18.
The triterpenoids methylantcinate B (MAB) and antcin B (AB), isolated from the medicinal mushroom Antrodia camphorata , have been identified as strong cytotoxic agents against various type of cancer cells; however, the mechanisms of MAB- and AB-induced cytotoxicity have not been adequately explored. This study investigated the roles of caspase cascades, reactive oxygen species (ROS), DNA damage, mitochondrial disruption, and Bax and Bcl-2 proteins in MAB- and AB-induced apoptosis of hepatocellular carcinoma (HCC) HepG2 cells. Here, we showed that MAB and AB induced apoptosis in HepG2 cells, as characterized by increased DNA fragmentation, cleavage of PARP, sub-G1 population, chromatin condensation, loss of mitochondrial membrane potential, and release of cytochrome c. Increasing the levels of caspase-2, -3, -8, and -9 activities was involved in MAB- and AB-induced apoptosis, and they could be attenuated by inhibitors of specific caspases, indicating that MAB and AB triggered the caspase-dependent apoptotic pathway. Additionally, the enhanced apoptotic effect correlates with high expression of Fas, Fas ligand, as well as Bax and decreased protein levels of Bcl-(XL) and Bcl-2, suggesting that both the extrinsic and intrinsic apoptosis pathways were involved in the apoptotic processes. Incubation of HepG2 cells with antioxidant enzymes superoxide dismutase and catalase and antioxidants N-acetylcysteine and ascorbic acid attenuated the ROS generation and apoptosis induced by MAB and AB, which indicate that ROS plays a pivotal role in cell death. NADPH oxidase activation was observed in MAB- and AB-stimulated HepG2 cells; however, inhibition of such activation by diphenylamine significantly blocked MAB- and AB-induced ROS production and increased cell viability. Taken together, our results provide the first evidence that triterpenoids MAB and AB induced a NADPH oxidase-provoked oxidative stress and extrinsic and intrinsic apoptosis as a critical mechanism of cause cell death in HCC cells.  相似文献   

19.
Lactuca indica L. (Compositae family) is used as a folk medicine in anti-inflammatory, antibacterial, antidiabetic, and other medications in Asia. The objectives of this study were to evaluate the antiproliferative effect of ethanol extracts of Lactuca indica L. (EEL) on human leukemic HL-60 cell lines and its active components. The results showed that EEL exhibited strong cytotoxic effects against HL-60 cells; the IC50 value was 313 microg/mL. Flow cytometric analysis of the externalization of phosphatidylserine (PS) using the annexin V/PI method on EEL-treated HL-60 cells showed a concentration-dependent increase of apoptosis. Moreover, EEL could induce typical DNA fragmentation in a concentration- and time-dependent manner as determined by electrophoresis and TUNEL assays. The treatment of HL-60 cells with EEL induced significant accumulation of cells in the G0/G1 phase, indicating that EEL is a cell-cycle-dependent anticancer agent. Our results also indicate that EEL-induced apoptosis in HL-60 cells is associated with the loss of mitochondrial membrane potential (delta psi m). EEL contains 5% phenolic compounds, such as quercetin, caffeic acid, rutin, and chlorogenic acid. Among the four active phenolic compounds, quercetin was found to be the most effective in inhibition against cell viability and in alteration of mitochondrial function. Our results suggest that the induction of apoptosis by EEL might offer a pivotal mechanism for its chemopreventive action.  相似文献   

20.
Lingonberry has been shown to contain high antioxidant activity. Fruits from different cultivars of lingonberry (Vaccinium vitis-idaea L.) were evaluated for fruit quality, antioxidant activity, and anthocyanin and phenolic contents. The fruit soluble solids, titratable acids, antioxidant capacity, and anthocyanin and phenolic contents varied with cultivars. Lingonberries contain potent free radical scavenging activities for DPPH*, ROO*, *OH, and O2*- radicals. Pretreatment of JB6 P+ mouse epidermal cells with lingonberry extracts produced a dose-dependent inhibition on the activation of activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) induced by either 12-O-tetradecanoylphorbol-13-acetate (TPA) or ultraviolet-B (UVB). Lingonberry extract blocked UVB-induced phosphorylation of the mitogen-activated protein kinase (MAPK) signaling members ERK1, ERK2, p38, and MEK1/2 but not JNK. Lingonberry extract also prevented TPA-induced phosphorylation of ERK1, ERK2, and MEK1/2. Results of soft agar assays indicated that lingonberry extract suppressed TPA-induced neoplastic transformation of JB6 P(+) cells in a dose-dependent manner. Lingonberry extract also induced the apoptosis of human leukemia HL-60 cells in a dose-independent manner. These results suggest that ERK1, ERK2, and MEK1/2 may be the primary targets of lingonberry that result in suppression of AP-1, NF-kappaB, and neoplastic transformation in JB6 P(+) cells and causes cancer cell death by an apoptotic mechanism in human leukemia HL-60 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号