首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The dynamic method was proposed for studying the kinetics of 137Cs selective sorption by the measurement of the 137Cs activity directly in the sorbent solid phase. A thin layer of the sorbent in a disposable syringe membrane filter (MF) was eluted with a 137Cs solution containing K+ and Ca2+ ions with a gradual decrease in the solution flow rate from 6 to 0.2 cm3/min. The activity of the sorbed 137Cs was determined periodically by placing the same MF in the detector well of a Wizard 1480 gamma counter. It was shown that the masses of the sorbent and water in the MF had no effect on the efficiency of the 137Cs measurement. A linear relationship between the RIP(K) value and the square root of the time for the period between 4 and 30 days was revealed using this method. The relative increase in the RIP(K) with time changed by 6 times (from 0.034 to 0.208 days−0.5) for the soils and by 20 times (from 0.008 to 0.153 days−0.5) for the mineral sorbents. The RIP(K) values measured for the interaction of soddy-podzolic soils with 137Cs during 24 hours using the standard limited volume method were lower than the values determined by the proposed dynamic method for the interaction period of 30 days by 50–100%.  相似文献   

3.
A close negative correlation between the biological availability of 90Sr and 137Cs for agricultural crops and the content of exchangeable calcium in soils has been revealed in a field experiment performed for soddy-podzolic loamy sandy soil. The efficiency of soil saturation with exchangeable calcium regarding 90Sr discrimination is much higher in soils with a low supply of plants with this nutrient. For the bulk of the studied crops, the minimal biological availability of 90Sr is registered at 1200–1400 mg/kg (6.0–7.0 mg-equiv./100 g) of the exchangeable calcium content in the soil and that of 137Cs is registered at 1000–1100 mg/kg (5.0–5.5 mg-equiv./100 g). The crop productivity varies significantly depending on the exchangeable calcium content in the soil.  相似文献   

4.
The vertical distribution and bioavailability of 137Cs in Histosols and mineral soils with different physicochemical properties from the southeast of Bavaria (Germany) more than ten years after the Chernobyl accident were the focus of this study. The vertical distribution of 137Cs was low in the investigated soils. About 85–98 % of the total 137Cs was located in the upper 10 cm of the mineral soils. Slightly higher 137Cs percentages were observed in deeper soil layers of the peat soils. Although the organic matter is assumed to enhance 137Cs mobility in soils, 137Cs was also located in the upper 10 cm of the peat soils (73–85 %). The highest 137Cs‐activities were found in the humus layers of forest soils, where 45–93 % of the total 137Cs soil inventories were observed. To determine the bioavailability of radiocesium, the soil‐to‐plant transfer of 137Cs and additionally added 134Cs was investigated under controlled conditions. The results revealed that the 134+137Cs soil‐to‐plant transfer factors as well as the percentages of NH4‐exchangeable 134+137Cs were much higher for the peat soils and humus layers than for the mineral soils. Nevertheless, the migration of 137Cs from the humus layers to the underlying soils was low. Considering the high bioavailability and low migration of radiocesium in the humus layers, it is suggested that radiocesium is involved in a shortcut element cycle in the system humus layer‐plant uptake‐litter. Furthermore, the organic matter has to be taken into account for radiocesium immobilization.  相似文献   

5.
6.
The susceptibility of soil organic matter (SOM) to mineralization decreases in the following sequence of zonal soils: tundra soil > soddy-podzolic soil > gray forest soil > chestnut soil > dark chestnut soil > chernozem. The content of potentially mineralizable organic matter in the plowed soils is 1.9–3.9 times lower than that in their virgin analogues. The highest soil carbon sequestration capacity (SCSC) is typical of the leached chernozems, and the lowest SCSC is typical of the tundra soil. Taking into account the real soil temperatures and the duration of the warm season, the SCSC values decrease in the following sequence: leached chernozem > dark chestnut soil > chestnut soil ≥ tundra soil > gray forest soil > soddy-podzolic soil. Arable soils are characterized by higher SCSC values in comparison with their virgin analogues.  相似文献   

7.
Pits of sandy alluvial soils were studied in different parts of the floodplains of the Iput River and its tributary the Buldynka River near the settlement of Starye Bobovichi (Bryansk oblast). The 137Cs content in the soil horizons varied from 0.01 to 31.2 Bq/g reaching the maximum in the initially polluted layers buried at depths of 6 to 40 cm. Radiocesium was found in all the particle-size fractions with its predominate concentration in the finest fractions. The specific 137Cs activity in the fractions of <1, 1–5, 5–10, and >10 μm comprised 44.1 ± 11.5; 33.3 ± 7.6, 20.9 ± 4.9, and 2.4 ± 0.6 Bq/g of soil. However, the contribution of the coarse (>10 μm) fractions to the total radiocesium pool in the soils (19–60%, or 34 ± 2% on the average) was comparable with that of the clay fraction (16–71%, or 38 ± 3% on the average), because of the predominance of the sand-size fractions in the soils. The highest coefficient of variation with respect to the relative contribution of particular fractions to the total soil pool of 137Cs was characteristic of the fraction of 5–10 μm; in the other fractions, it varied from 31 to 41%. The portion of 137Cs bound with the finest fractions increased in the deeper layers. The total 137Cs activity in the polluted horizons of the soils was mainly determined by its concentration in the clay fraction (Spearman’s coefficient of rank correlation (r) for the moderately polluted horizons comprised 0.926 at n = 14). It was experimentally proved that clay particles, upon the destruction of organic films on their surface, could readsorb the released radiocesium for a second time.  相似文献   

8.
The structure of humic acids (HAs) in zonal soil types—soddy-podzolic soils (two samples), gray forest soil (one sample), and chernozems (two samples)—was quantitatively studied by 13C NMR spectros-copy. In the series considered, the content of unsubstituted carbon in the aromatic fragments of HAs increased, and the fraction of unsubstituted aliphatic structures decreased. HAs of soddy-podzolic soils were found to be enriched with carbohydrate fragments compared to HAs of chernozems and gray forest soil. The carbon skeleton of HAs from typical rich chernozem contained significantly more aliphatic and carbohydrate fragments compared to typical chernozem, which probably reflected the lower degree of HA transformation in rich chernozem.  相似文献   

9.
The concentrations and distribution of 137Cs in alluvial soils (Fluvisols) of the upper and middle reaches of the Markha River in the northwest of Yakutia and 226Ra and 238U in alluvial soils within the El’kon uranium ore deposit in the south of Yakutia have been studied. It is shown that the migration of radiocesium in the permafrost-affected soils of Yakutia owing to alluviation processes extends to more than 600 km from the source of the radioactive contamination. The migration of 137Cs with water flows is accompanied by its deposition in the buried horizons of alluvial soils during extremely high floods caused by ice jams. In the technogenic landscapes of southern Yakutia, active water migration of 238U and 226Ra from radioactive dump rocks. The leaching of 238U with surface waters from the rocks is more intense than the leaching of 226Ra. The vertical distribution patterns of 238U and 226Ra in the profiles of alluvial soils are complex. Uranium tends to accumulate in the surface humus horizon and in the buried soil horizons, whereas radium does not display any definite regularities of its distribution in the soil profiles. At present, the migration of 238U and 226Ra with river water and their accumulation in the alluvial soils extend to about 30 km from the source.  相似文献   

10.
The carbon chemistry of 10 profiles of peat soil has been described in detail using 13C nuclear magnetic resonance (NMR) spectroscopy. The changes with depth in the allocation of signal to different carbon functional groups were consistent with an increase in the extent of decomposition (EOD) of the organic material with depth. This increase in EOD with depth is typical of peat soils. Incubation experiments were carried out on peats spanning the range of EODs encountered, to investigate the effect upon mineralization of substrate quality (as defined by 13C NMR spectroscopy), water content and particle size. The confounding factors of depth, water content, bulk density, aeration and carbon content were eliminated by incubating ground peat material in a sand matrix. The size of the mineralizable carbon pool and the rate of carbon mineralization were both significantly affected by substrate quality, water content and particle size. Substrate quality had the greatest effect upon the size of the mineralizable carbon pool: as substrate quality decreased, so too did the size of the mineralizable carbon pool. Water content had the greatest effect upon the rate of carbon mineralization, which increased and then decreased as water content increased, with a maximum rate constant at a volumetric water content of 0.37 cm3 cm?3.  相似文献   

11.
The accumulation and redistribution of 137Cs in natural ecosystems within the 30-km impact zone of the Smolensk nuclear power plant (SNPP) are analyzed. It is shown that the radioactive pollution of this territory is mainly due to the Chernobyl-derived radioactive fallout. However, the radioactive decay of 137Cs from the Chernobyl disaster is partly compensated for by the 137Cs technologic emission from the SNPP. The highest rate of the vertical migration of 137Cs is typical of the bog phytocenoses and deciduous forests. The components of biota may be ranked by their capacity for 137Cs accumulation as follows: higher fungi > mosses > herbs and shrubs > trees. The organisms and their parts that may serve as bioindicators of the modern radioactive contamination of the territory have been identified. These are the assimilative organs and bark of the trees, various fern species among herbs, sphagnum mosses and Pleurozium schreberi (among mosses), and Typolius felleus among higher fungi.  相似文献   

12.
Profiles of vertical 137Cs distribution in alluvial meadow soils on the low and medium levels of the Lokna River floodplain (central part of the Plavsk radioactive spot in Tula oblast) 28 years after the Chernobyl fallout have been studied. A significant increase in the 137Cs pool is revealed on the low floodplain areas compared to the soils of interfluves due to the accumulation of alluvium, which hampers the reduction of the total radionuclide pool in alluvial soils because of radioactive decay. The rate of alluvium accumulation in the soil on the medium floodplain level is lower by three times on average. An imitation prognostic model has been developed, which considers the flooding and climatic conditions in the region under study. Numerical experiments have quantitatively confirmed the deciding role of low-mobile forms in the migration of maximum 137Cs content along the soil profile in the absence of manifested erosion–accumulation processes.  相似文献   

13.
The exchangeable portion of the selectively sorbed 137Cs extractable by a 1 M ammonium acetate solution (α Ex ) for soils, illite, bentonite, and tripolite was found to increase with the increasing concentration of the competitive cation M+ (K+ or NH4+) and can be approximated by a logarithmic relationship. For clinoptilolite, the values of α Ex did not depend on the concentration of M+. The expression 1 − α Ex (C M=n )/α Ex (C M = 16) as a function of the M+ concentration (where α Ex (C M=n ) is the α Ex value at the competitive cation concentration equal to 16 mmol/dm3) was proposed to compare the dependence of α Ex on the concentration of K+ or NH4+in different sorbents. For soils and illite, these dependences almost coincided, which indicated that the selective sorption of 137Cs in soils is determined by the presence of illite-group minerals.  相似文献   

14.
Data on the concentrations of natural (226Ra, 232Th and 40K) and artificial (137Cs) radionuclides and on the physicochemical properties of chernozems sampled in different years are presented. In 1952, upon the creation of the Penza-Kamensk state shelterbelt, three deep (up to 3 m) soil pits were examined within the former arable field under two-year-old plantations of ash and maple along the transect crossing the territory of the Beloprudskaya Experimental Station of the USSR Academy of Sciences in Volgograd oblast. The samples from these pits were included into the collection of dated soil samples of the Dokuchaev Central Soil Science Museum. Five pits were examined along the same transect in 2009: three pits under shelterbelts (analogues of the pits studied in 1952) and two pits on arable fields between the shelterbelts. In the past 57 years, certain changes took place in the soil structure, bulk density, and the content and composition of humus. The salt profile of soils changed significantly under the forests. The comparison of distribution patterns of natural soil radionuclides in 1952 and 2009 demonstrated their higher contents at the depth of 10–20 cm in 2009 (except for the western shelterbelt). Background concentrations of natural radionuclides in parent materials and relationships between their distributions and the salt profiles of soils have been determined; they are most clearly observed is the soils under shelterbelts. Insignificant contamination with 137Cs (up to 34 Bq/kg) has been found in the samples of 2009 from the upper (0–20 cm) horizon. The activity of 137Cs regularly decreases from the east to the west; the highest concentrations of this radionuclide are found in the topmost 10 cm. This allows us to suppose that 137Cs was brought with aerial dust by eastern winds, and the shelterbelts served as barriers to the wind flow.  相似文献   

15.
Structural changes in the 137Cs contamination fields in natural and agroecosystems of the northern forest steppe (the remote zone of the Chernobyl accident) were studied. It was shown that the lateral and vertical distribution of 137Cs in soils of different biogeocenoses depends on the features of functioning biogeocenoses and the spatial variation of the initial fallout. The effect of biogeocenosis on the spatial variation of the contaminant distribution increases with time. At present, the variation of primary distribution in soils of agrocenoses is changing. The soils of forest biogeocenoses have retained the features of primary distribution, particularly in the upper 0-to 5-cm sublitter layer. The 137Cs penetration depth is greatest in the soils of layland and functioning agrocenosis and least in the soils of forest biogeocenoses.  相似文献   

16.
Agricultural land use in the area of the post-Chernobyl Plavsk radioactive hotspot (Tula region, Central Russia) has raised a problem of radioecological safety of obtained plant foodstuff. Verification of 137Cs activities and inventories in components of “soil-plant” systems of the territory has been conducted in 2014–2017 in 10 agrosystems and 2 semi-natural meadows. It was revealed that density of 137Cs contamination of arable chernozems and alluvial calcareous soils nowadays varies in a range 140–220 kBq/m2 and exceeds radiation safety standard by ˜ 3.5–6 times. Deep plowing of the arable soils up to 30-cm in 1986–1987 resulted in decreasing of 137Cs inventories in rooting zone by ≈ 70% for crops cultivated with shallow disk plowing (wheat, barley), and by ≈ 35% for crops cultivated with middle plowing (buckwheat, amaranth, white mustard). The investigated plants and their compartments can be grouped on the basis of transfer factor values as follows: maize (stems and leaves) > amaranth > bromegrass > vegetation of dry meadow, galega, sunflower (seeds), vegetation of wet meadow > maize (grain), soybean (pods), barley (grain), buckwheat (grain), potatoes (tubers) > white mustard (seeds), wheat (grain). It is noticeable that generative plant compartments are characterized by less 137Cs activities in comparison with stems and leaves; and that 137Cs root uptake is not coincide with total flux of mineral nutrients in “soil-plant” systems. In sum, 137Cs soil-to-plant transfer in the area of the Plavsk radioactive hotspot is characterized by considerable discrimination, so 137Cs activities in plants are completely in accordance with national standards.  相似文献   

17.
Horizontal distribution of radiocesium in forest soils under spruce (Picea abies (L.) Karst.) and beech (Fagus sylvatica L.) The horizontal distribution of radiocesium in the soil under the canopy of several beeches and spruces was examined. At the base of spruces mean 137Cs activities are about twice, and under beeches 5 to 15 times as high as under more distant parts of the canopy. Between 80 and 95% of the 137Cs activity can be attributed to the Chernobyl fallout, the rest to the global fallout from weapons testing in the 1950s and 1960s. While the 137Cs accumulation at the base of spruces can be explained by litter fall and remains of bark, the up to 30 times increased values at the base of beeches are explained by stemflow. Mean activity of radiocesium in the bark of spruce (0,62 Bq/g dry weight) is about twice as high as in the bark of a beech. This can be explained by considering that in contrast to beeches the 137Cs activity in the soil under spruces is corresponding to some extend with the main rooting zone. Thus, we expect an increased uptake by the roots of this species and a subsequent transfer to the bark.  相似文献   

18.
The increased concentration of an element in plant biomass compared to the soil mass is an essential condition for the differentiated spatial distribution and status of the element on the aggregate level. Two forms of this differentiation have been revealed for 137Cs and 90Sr. Transfer of 137Cs from plant roots and concentration on the surface of soil aggregates have been established experimentally. Indirect data also point to the potential localization of 137Cs on the surface of intraaggregate pores. The effect of radionuclide concentrating on the outer and inner surfaces of aggregates is due to the rapid and strong fixation of cesium microamounts by mineral soil components. 137Cs from the surface of aggregates is more available for the repeated uptake by plant roots than from the intraped mass. The distortion of this spatial differentiation mainly occurs during the reaggregation of soil mass, which in turn decreases the availability of the radionuclide to plants. For 90Sr, its elevated concentration in the form of organic residues has been revealed in the inter- and intraaggregate pore space. However, due to the high diffusion rate, 90Sr is relatively rapidly (during several months under pot experimental conditions) redistributed throughout the entire volume of soil aggregates and its major part gradually passes into the phase of humic compounds, to which the radionuclide is bound by exchange sorption. The high level of the next root uptake (higher than for 137Cs by one to two orders of magnitude) favors the permanent renewal of loci with increased 90Sr concentrations in the inter- and intraaggregate pore space in the form of plant residues.  相似文献   

19.
Statistical analysis of a vast body of data collected during five field seasons (2011–2015) was performed to characterize the biological activity of soils in the northern taiga ecosystems of Western Siberia. Automorphic forest soils, hydromorphic (oligotrophic bog) soils, and semihydromorphic (flat-topped and large peat mounds) soils were characterized. Statistically significant differences of average levels of CO2 emission from the soils were identified at the ecosystem level. The CO2 emission from podzols of automorphic forest ecosystems at the peak of the growing season (205 ± 30 to 410 ± 40 mg CO2/(m2 h)) was significantly higher than the emission from semihydromorphic soils of peat mounds (70 ± 20 to 116 ± 10 mg CO2/(m2 h)). The presence and depth of permafrost was a significant factor that affected ecosystem diversity and biological activity of northern taiga soils. Statistically significant differences in the total, labile, and microbial carbon pools were observed for the studied soils. Labile and microbial carbon pools in the organic layer (10 cm) of forest podzols amounted to 0.19 and 0.66 t/ha, respectively; those in the organic layer (40 cm) of peat cryozems of flat-topped peat mounds reached 1.24 and 3.20 t/ha, and those in the oligotrophic peat soils (50 cm) of large peat mounds were 2.76 and 1.35 t/ha, respectively. The portion of microbial carbon in the total carbon pool (Cmicr/Ctot, %) varied significantly; according to the values of this index, the soils were arranged into the following sequence: oligotrophic peat soil < peat cryozem < podzol.  相似文献   

20.
Radioactive substances were released into the environment after the nuclear accident at the Fukushima Daiichi Nuclear Power Station; this led to the contamination of the soil at Fukushima Prefecture. Mixing of organic matter with soil during plowing is known to influence radiocesium (134Cs and 137Cs) absorption by crops. However, the effect of mixing organic matter polluted by radioactive substances during plowing on radiocesium absorption by plants is not yet known. The aim of this study was to investigate the effect on the radiocesium absorption by komatsuna (Brassica rapa L. var. perviridis) cultivated in a 45-L container containing Andosol (14,300 Bq kg?1) or Gray Lowland soil (33,500 Bq kg?1) mixed with polluted wheat (Triticum aestivum L. Thell.) straw (2080 Bq kg?1). The radiocesium concentration of the plants and the soil and the amount of exchangeable radiocesium in the soil were determined using a germanium semiconductor. The transfer of radiocesium from the soil to plants decreased by 53 and 27% in Andosol and Gray Lowland soil, respectively, after the application of 10 t ha?1 polluted wheat straw. This reduction in the level of radiocesium transfer might be attributed to potassium contained in the wheat straw, which might compete with cesium during membrane transport and thereby block the transport of cesium from the soil solution to the roots and from the roots to the shoots. Alternatively, the applied wheat straw probably absorbed radiocesium and decreased the amount of exchangeable radiocesium in the soil. Our findings suggest that the mixing of polluted wheat straw with contaminated soil might influence the absorption of radiocesium content by agricultural products. Further studies are warranted to determine the long-term effects of the application of polluted wheat straw on the rate of radiocesium transfer to crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号